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Abstract

Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, 

including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an 

increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in 

an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies 

examining the associations between metabolic disease and disorders of androgen metabolism in men and women. 

We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the 

metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose 

tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects 

on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in 

female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver 

lipid accumulation, central fat mass expansion and insulin resistance.

Introduction

Disturbances in androgen metabolism secondary to gonadal, 
adrenal or hypothalamic–pituitary disease lead to alterations 
of circulating androgen concentrations, and result in 
reproductive and metabolic complications. In women, 
polycystic ovary syndrome (PCOS), a triad of ovulatory 
dysfunction, polycystic ovarian morphology and androgen 
excess (AE), represents the most common endocrine 
disorder (1). In men, disturbances of gonadal function 
most commonly result in hypogonadism and consequent 
androgen deficiency (AD), which can be inherited or acquired 
by disease, obesity, medications or the ageing process (2). 
Interestingly, female AE and male AD are associated with 
a similar adverse metabolic phenotype, including obesity, 
insulin resistance (IR), an increased prevalence of type 2 
diabetes mellitus (T2DM), non-alcoholic fatty liver disease 

(NAFLD), cardiovascular disease (CVD) and even premature 
mortality (3, 4, 5, 6, 7, 8). This highlights a sexual dimorphism 
in the relationship between androgens and metabolism. As 
serum testosterone (T) concentrations in female AE and 
male AD may overlap, Escobar-Morreale et al. have proposed 
the concept of a metabolically adverse window of circulating 
androgen concentrations that are associated with deleterious 
metabolic consequences (9), or a ‘metabolic valley of death’ 
(Fig.  1). However, the cellular and systemic mechanisms 
underpinning these phenomena are poorly understood. In 
this article, we will discuss disorders of AE in women and 
AD in men, examine the role of androgens in the function 
of metabolic target tissues, and compare phenotype and 
consequences of metabolic dysfunction in the context of  
AE and AD.

Correspondence 
should be addressed 
to M W O’Reilly 
Email 
m.oreilly@bham.ac.uk

European Journal of 
Endocrinology  
(2017) 177, R125–R143

www.eje-online.org	 © 2017 The authors

177:3 R125–R143L Schiffer and others Androgens in metabolic disease

177:3

10.1530/EJE-17-0124

Review

http://dx.doi.org/10.1530/EJE-17-0124
mailto:m.oreilly@bham.ac.uk
http://www.eje-online.org	�
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Eu
ro

p
ea

n
 J

o
u

rn
al

 o
f 

En
d

o
cr

in
o

lo
g

y
177:3 R126Review L Schiffer and others Androgens in metabolic disease

www.eje-online.org

Pre-receptor androgen synthesis and 
metabolism

Androgens are 19-carbon (C19) steroid hormones produced 
by the adrenal gland and gonads in both men and women; 
they derive from C21 precursor steroids and can be 

converted to C18 steroids, the oestrogens. The androgen 
precursor steroids dehydroepiandrosterone (DHEA) and 
androstenedione (A4) are secreted mainly by the adrenal 
glands in both sexes, and by the ovary in females. Active 
T is produced directly in testicular Leydig cells in men and 
ovarian theca cells in women, but may also be activated 
from precursors in peripheral tissues (10), and can be 
generated in small amounts by the adrenal gland (10). T 
can be converted downstream to the more potent androgen 
5α-dihydrotestosterone (DHT) by 5α-reductase activity. T 
and DHT bind and activate the androgen receptor (AR), 
eliciting classic genomic androgen action.

Androgens can be synthesised from cholesterol via 
three interconnected pathways, which are schematically 
visualised in Fig. 2. The classical pathway produces T, which 
is activated to DHT in peripheral target tissues. There are 
several alternative pathways to DHT synthesis that bypass 
the classic synthesis pathway; the so-called backdoor 
pathway (11, 12, 13) and alternate 5α-dione pathway (14, 
15) that directly synthesise DHT by-passing T. In healthy 
men, circulating T concentrations are approximately 
10-fold higher than those observed in women (16). Besides 
de novo biosynthesis, active androgens can be synthesised 
from circulating androgen precursors in peripheral tissues 
expressing the required enzymes, thereby modulating local 
androgen exposure. In adipose tissue, A4 is converted to T 
by 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5), 
also called as aldoketoreductase type 1C3 (AKR1C3), and 
T may be further activated to DHT by the type 1 isoform 
of 5α-reductase (17).

Recently, it has been shown that steroids 
downstream of the major adrenal androgen precursor 
11β-hydroxyandrostenedione (11OHA4), generated from 
A4 via the adrenal CYP11B1 enzyme (18), are active 
11-oxygenated androgens (19). 11-keto-testosterone (11KT) 
and 11-keto-5α-dihydrotestosterone (11KDHT) (Fig. 2) have 
been shown to have the same AR activating potential as T 
and DHT, both with regard to affinity and transactivation 
potential (20), raising the possibility of an important role 
for these previously overlooked androgens in conveying 
biological androgen action (21). While all four agonists 
have comparable maximum transactivation potential for 
the AR, DHT and 11KDHT also have an AR affinity that 
is approximately one order of magnitude higher than 
the affinity of T and 11KT highlighting the importance 
of peripheral 5α-reductase activity for androgen action 
(21). Importantly, the circulating levels of 11KT have been 
shown to be approximately four times higher than those of 
T in healthy premenospausal women, which demonstrates 
the significant contribution of 11-oxygenated androgens 

Figure 1

Sexually dimorphic associations between circulating 

testosterone levels and increasing metabolic risk. The 

estimated metabolic risk for different populations suffering 

from femal androgen excess (Panel A) or male androgen 

deficiency (Panel B) is shown in relation to testosterone levels. 

Serum testosterone concentrations of women with androgen 

excess and men with androgen deficiency overlap and are 

associated with severe adverse metabolic consequences 

leading to the concept of the ‘metabolic valley of death’ as a 

metabolically adverse window of circulating androgen 

concentrations. Approximate hormone ranges are taken from 

recent publications using mass spectrometry-based 

quantification: Healthy women vs PCOS women (200), obese 

women (30), women with CAH on standard glucocorticoid 

replacement therapy (201), healthy and obese men (202), men 

with primary hypogonadism due to Klinefelter syndrome not 

receiving testosterone supplementation (203), men with 

secondary hypogonadism due to idiopathic hypogonadotropic 

hypogonadism and hypopituitarism (204), as well as male-to-

female and female-to-male transgender patients (70). No 

information about the method used to determine serum 

testosterone in women with type A form of severe insulin 

resistance was available, but values are included for 

completeness (205).
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not only to the androgen precursor pool, but also to the 
pool of circulating active androgens (22).

Androgen excess in women and related 
metabolic consequences

Polycystic ovary syndrome

PCOS is the most common cause of AE in women, 
affecting 5–10% of women of reproductive age (4, 23). 
PCOS is diagnosed according to the 2003 Rotterdam 
criteria (24), with two of the following three features 
required for diagnosis: ultrasound appearance of 
polycystic ovarian morphology (PCO), anovulation 
(AO) and AE. However, PCOS is also a major metabolic 
disorder, associated with IR, visceral adiposity and obesity, 
dyslipidaemia, NAFLD, CVD and potentially premature 

mortality (3, 4). PCOS-associated metabolic dysfunction 
is intimately linked with AE (25) (Fig. 1). Conventionally, 
circulating androgen burden has been typically evaluated 
by measuring serum T (25, 26), but recent work has 
defined A4 as a more sensitive marker for detecting 
PCOS-related AE, as well as demonstrating that integrated 
assessment of A4 and T is predictive of adverse metabolic 
risk (22, 27). Increased circulating concentrations of the 
DHEA sulfate ester DHEAS and 11OHA4, as well as active 
11-oxygenated androgens, are indicative of AE of adrenal 
origin in PCOS. The latter was explored for the first time 
in a recent study, which demonstrated that more than 
half of the circulating androgen pool in a large cohort 
of PCOS women consisted of 11-oxygenated androgens 
(22), highlighting the significant adrenal contribution 
to PCOS-related AE. Of note, this increase in circulating 
11-oxygenated androgens was similarly observed in 

Figure 2

Overview of the human androgen biosynthesis pathways. Pregnenolone (PREG), produced by the side-chain cleavage of cholesterol, 

is the common precursor of all androgen biosynthesis pathways. The classical pathways, proceeding parallel for ∆5- and 

∆4-precursors, lead to the formation of testosterone (T), which can be converted to dihydrotestosterone (DHT). The alternate 

5α-dione pathway and ‘backdoor’ pathway directly synthesise DHT by-passing T. The 11-oxygenated androgen pathway converts 

androstenedione (A4) to 11β-hydroxyandrostenedione (11OHA4) by adrenal 11β-hydroxylase (CYP11B1) activity, generating the active 

androgens 11-keto-testosterone (11KT) and 11-keto-dihydrotestosterone (11KDHT). CYP17A1 capable of both 17α-hydroxylase and 

17,20-lyase activity. All androgen receptor-transactivating androgens (T, DHT, 11KT and 11KDHT) are highlighted in bold and white 

boxes. Enzymes upregulated in PCOS contributing to local and systemic androgen excess (steroid 5α-reductase, 5αRed; 

17β-hydroxysteroid dehydrogenase, 17βHSD) are highlighted in bold. Impaired activity of sulfotransferase 2A1 (SULT, underlined) due 

to mutations of the co-factor synthesising PAPS synthase 2 leads to a PCOS-like phenotype. Androstenedione and T can be converted 

to the oestrogens estrone (E1) and estradiol (E2), respectively, by aromatase (CYP19A1), whose activity possibly enhances androgen 

deficiency in obese men. Steroid abbreviations: 3α-diol, 5α-androstanediol; 5α-dione, 5α-androstanedione; 5-diol, androstene-diol; 

11KA4, 11-keto-androstenedione; 11OHDHT, 11β-hydroxytestosterone; 17OH-AlloP, 17-hydroxyallopregnanolone; 17OH-DHP, 

17-hydroxydihydroprogesterone; 17OH-PREG, 17-hydroxypregnenolone; 17OH-PROG, 17-hydroxyprogesterone; AlloP, 

allopregnanolone; An, androsterone; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; DHP, 

5α-dihydroprogestrone; PROG, progesterone. Enzyme abbreviations: STS, steroid sulfatase; 3β-HSD, 3β-hydroxysteroid 

dehydrogenase/∆4–5 isomerase; 11βHSD2, 11β-hydroxysteroid dehydrogenase type 2; cytb5, cytochrome b5.
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obese and non-obese PCOS women, raising the question 
whether androgen excess precedes the development of 
metabolic complications.

In addition to systemic AE, tissue-specific androgen 
activation and its dysregulation contribute to local androgen 
burden. Systemic upregulation of 5α-reductase activity 
is observed in PCOS (28, 29, 30); resulting in enhanced 
activation of T to DHT; this phenomenon is already 
observed in daughters of PCOS women in early childhood 
(31). However, it is controversial whether daughters of 
PCOS women also develop a metabolic and biochemical 
phenotype and ovarian morphology characteristic of 
PCOS during puberty (32, 33). Overexpression of the 
steroidogenic enzyme AKR1C3 in PCOS adipose tissue is 
likely to contribute to tissue-specific AE, as this is the only 
enzyme expressed in adipose tissue that can locally generate 
T from A4 via its 17βHSD activity (34). AKR1C3 expression 
is increased in adipose tissue from patients with simple 
obesity and decreases with weight loss (34); furthermore, 
AKR1C3 expression in adipose tissue from PCOS patients 
is higher than in body mass index (BMI)-matched controls 
(35). Weight loss has been shown to represent an effective 
treatment to ameliorate PCOS-associated AE, ovulatory 
dysfunction and metabolic issues (36), further supporting 
an important role for adipose tissue as an organ of androgen 
generation in PCOS. 

Women with monogenic causes of androgen excess

The variants of congenital adrenal hyperplasia (CAH) 
represent a group of inborn disorders with autosomal 
recessive inheritance characterized by glucocorticoid 
deficiency and variable impact on mineralocorticoid and 
androgen secretion. Three CAH variants are associated 
with AE in affected women: 21-hydroxylase deficiency, 
11β-hydroxylase deficiency and 3β-hydroxysteroid 
dehydrogenase type 2 deficiency. The most common 
defect is 21-hydroxylase deficiency, with a frequency of 
1:16 000 in newborns (37, 38) and is the only enzyme 
deficiency frequently resulting in a non-classic CAH form 
with only mild glucocorticoid deficiency, but relevant 
AE (39, 40). As a consequence of the enzymatic block, 
precursor steroids are shunted down the pathways of 
androgen biosynthesis, which is further increased by 
enhanced hypothalamic–pituitary adrenal drive due to 
the loss of the negative feedback by cortisol (18, 41). While 
patients with major loss-of-function mutations usually 
present at birth or in early childhood, patients with mild 
mutations are often only diagnosed in early adulthood, 

as their glucocorticoid and mineralocorticoid secretion 
is sufficiently upheld by continuously increased ACTH 
stimulation of the adrenals, at the expense of AE. These 
patients usually do not present with outright virilisation, 
but generally with a PCOS phenotype in adolescence or 
early adulthood, including hirsutism, irregular periods 
and PCO appearance of the ovaries. In patients with 
non-classic CAH, an increased prevalence of obesity and 
insulin resistance has been reported (42, 43, 44), mirroring 
the adverse metabolic phenotype found in PCOS. As 
PCOS represents a diagnosis of exclusion and on average 
2–3% of women presenting with a PCOS phenotype are 
identified as suffering from non-classic CAH (4), screening 
for CAH by baseline serum 17-hydroxyprogesterone is 
recommended in the work-up of PCOS.

Recently, another monogenic cause of AE, 
PAPSS2 deficiency (PAPSS2, 3′-phosphoadenosine 
5′-phosphosulfate synthase 2), has been described to 
present with a PCOS-like phenotype (45). PAPS is the 
universal sulfate donor, generated by the two human 
PAPS synthase isoforms, and inactivating muations in 
PAPS synthase 2 have been shown to result in significantly 
impaired DHEA sulfotransferase (SULT2A1) activity (46). 
Consequently, fewer molecules of the androgen precursor 
DHEA are inactivated to DHEAS, resulting in increasing 
rates of conversion of DHEA towards T and DHT (Fig. 2). 
The first reported case, a homozygously affected young girl, 
presented with premature pubarche followed by irregular 
cycles and secondary amenorrhoea; investigations revealed 
AE with non-detectable serum DHEAS. Interestingly, her 
heterozygous mother, who harboured a major loss-of-
function mutation on one allele, had presented with 
PCOS as a young woman (45). A further family affected 
by PAPSS2 deficiency was recently identified, and work-up 
revealed significant AE not only in the affected children 
but also in the heterozygous mother, co-incidentally again 
the carrier of a major loss-of-function mutation, with 
clinical manifestation as PCOS (47).

Women with monogenic insulin resistance

Severe insulin resistance can develop independent of 
obesity as a consequence of monogenic gene defects 
impacting on insulin signalling or adipose tissue 
development. Defects in insulin signalling can be found at 
the level of the insulin receptor or in post-receptor signal 
transduction. Monogenic disorders may also cause severe 
obesity and consequent IR, or dysfunctional adipose 
tissue development resulting in congenital complete 
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or partial lipodystrophy (48). Patients with IR due to 
monogenic lipodystrophy or insulin receptor (INSR) 
mutations present with AE, ovulatory dysfunction, PCO 
and acanthosis nigricans, usually in the absence of obesity. 
Compensatory hyperinsulinaemia may stimulate ovarian 
androgen biosynthesis by direct effects of insulin on theca 
and stromal cells (49), although other peripheral sources 
of insulin-stimulated androgen generation cannot be 
discounted. Monogenic INSR mutations may be suspected 
clinically in the setting of severe hyperinsulinaemia, 
which is accompanied by normal or elevated levels of 
leptin, adiponectin and SHBG, alongside a normal lipid 
profile and absence of hepatic steatosis (48).

Androgen deficiency in men and related 
metabolic consequences

Male AD is a clinical syndrome arising from failure 
of testicular T production, in the context of primary 
testicular pathology or hypothalamic–pituitary disease 
(2). In adult men, it is diagnosed by the presence of 
physical symptoms of AD with biochemical evidence of 
low circulating T. Common symptoms are a reduction 
of libido and erectile strength, fatigue, reduced physical 
strength and endurance as well as sometimes impaired 
cognitive function and mood disturbances (50).

Primary male hypogonadism

Primary male hypogonadism (HG) is defined by low serum 
T in combination with increased luteinizing hormone (LH). 
Normal T and high LH levels characterize compensated 
hypogonadism, which represents impaired testicular 
function that is rescued by increased LH stimulation. 
Compensated hypogonadism is subclinical, but increases 
the likelihood to progress to overt AD when compared 
to the eugonadal state (51). Congenital primary HG can 
be caused by gonadal dysgenesis and cryptorchidism (52), 
as well as by autosomal or sex chromosome aneuploidies 
like in Klinefelter syndrome (53, 54).

Secondary male hypogonadism

Secondary HG, or hypogonadotropic HG, is defined 
by low T and reduced gonadotrophin secretion due to 
impaired hypothalamic–pituitary stimulation of testicular 
androgen synthesis. The overwhelming majority of such 
cases are caused by tumours of the hypothalamo–pituitary 
area. Congenital hypogonadotropic hypogonadism 

may be observed in the context of multiple pituitary 
hormone deficiencies in conditions such as septo-optic 
dysplasia, but more commonly is associated with isolated 
gonadotrophin deficiency as observed in Kallmann 
syndrome, which may be associated with anosmia and 
cranio-facial abnormalities (55).

Acquired male hypogonadism

Acquired HG may be caused by lesions or tumours of the 
central nervous system or testis, radio- and chemotherapy, 
pharmacological treatment, chronic illness, poor health 
and obesity (2). Surgical or pharmacological androgen 
deprivation therapy is an established treatment option for 
both metastatic hormone-naive and castration-resistant 
prostate cancer (56).

Ageing affects the hypothalamic–pituitary–gonadal 
(HPG) axis and can lead to late-onset AD, which is defined 
as low T levels if any form of classical causes of AD can be 
excluded (57). Ageing can result in gradual development of 
testicular failure due to a decreased number and response 
to LH of Leydig cells, and in reduced hypothalamic–
pituitary signalling (58, 59). This manifests in an age-
related decline of T levels of around 0.1 nmol/L per year 
starting during the third decade of life (60).

Male AD can also be induced by obesity (61). Obesity 
significantly increases the age-related T decline and is 
associated with disordered gonadotrophin release (60). 
Conversely, weight loss can reverse obesity-associated 
hypogonadism (62). The concept of a hypogonadal–
obesity–adipokine cycle is a proposed mechanism behind 
this association (50, 63, 64): Obesity has been suggested to 
lead to enhanced aromatisation of androgens to oestrogens 
by aromatase (CYP19A1, Fig. 2) in adipose tissue, thereby 
reducing the level of active androgens. Oestrogens may 
suppress the HPG axis, which reduces gonadal T synthesis 
(65). Treatment of obese men with the CYP19A1 inhibitor 
letrozole normalises T levels (66). Additionally, elevated 
levels of adipocyte-derived inflammatory cytokines (67, 
68) have been shown to inhibit the HPG axis in healthy 
men and a contribution of leptin excess to the reduction 
of androgens in obesity has been suggested (69).

Androgens and metabolic health in 
transgender patients

Replacement and blockade of sex hormones underpin 
the principle of gender reassiginment, both before and 
after gonadectomy where appropriate, thereby enabling 
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the development of secondary sex characteristics of 
the desired gender. Circulating sex hormones should 
be maintained in the upper-normal physiological 
reference range for the desired gender (70, 71). However, 
metabolic consequences for androgen deprivation and 
replacement therapy may be observed in both male-
to-female and female-to-male gender reassignment 
patients (72).

Female-to-male gender reassignment

For female-to-male gender reassignment, T is administered 
both before and after genital reconstruction surgery, 
aiming to induce virilisation and suppress female 
secondary sex characteristics. Target serum T levels are 
generally between 12 and 24 nmol/L (70). Long-term 
T administration for female-to-male gender transition 
increases total lean mass (73) and visceral fat mass, 
while reducing subcutaneous fat mass (74); BMI may be 
increased (75, 76). Surrogate cardiovascular risk factors 
have been reported to be increased by T administration, 
including arterial stiffness, blood pressure (77) and 
dyslipidaemia (78). Female-to-male transgender patients 
also show an increased prevalence of T2DM compared to 
female control populations (79, 80). Despite presenting 
with PCOS symptoms, female-to-male transgender 
patients taking T show ovarian hyperplasia, but no 
polycystic ovarian morphology (81) further supporting 
that AE and not ovarian dysfunction drives the metabolic 
phenotype in PCOS.

Male-to-female gender reassignment

Oral or transdermal oestrogen supplementation is the 
primary treatment for feminization of male-to-female 
transgender patients, both before and after orchidectomy; 
anti-androgen treatment is frequently co-prescribed 
in the pre-gonadectomy stage (71). Serum T levels 
<1.9 nM are recommended (71). Delineating the specific 
effects of androgen deprivation therapy in this patient 
population is clouded by co-administration of relatively 
large doses of oestrogen. Male-to-female transgender 
patients on combined estrogen and anti-androgen 
treatment develop an adverse lipid profile (76, 78) with 
reduced muscle mass and total lean mass percentage, but 
increased subcutaneous and visceral fat mass (73, 74). 
Prevalence rates of T2DM, thrombo-embolic disease and 
cerebrovascular disease compared to control men appear 
to be increased (79).

The role of androgens in metabolic 
target tissues

In addition to their central role in the development and 
maintenance of male and female reproduction and sex 
drive, androgens exert key effects on metabolic target 
tissues. These include adipose tissue and skeletal muscle, 
compartments crucially involved in maintaining systemic 
glucose and lipid homeostasis.

Androgens, adipose tissue and lipid metabolism

There is a clear sexual dimorphism in patterns of body fat 
distribution, with women having a higher percentage of 
body fat than men, while men have greater total lean mass. 
In women, body fat is distributed in a gynaecoid manner, 
with less visceral but more subcutaneous (SC) fat; men 
have a predominant android fat distribution, with more 
visceral and less SC adipose tissue (82, 83, 84). Adipose 
tissue expansion is a consequence of both hyperplasia 
(adipogenesis), which is driven by proliferation of 
preadipocytes and their differentiation into adipocytes, 
and hypertrophy, which is driven by accumulation of 
lipid in differentiated adipocytes; both processes are 
major determinants of metabolic dysfunction (85).

Androgens impair adipogenesis by inhibiting 
proliferation and differentiation of mesenchymal stem 
cells and preadipocytes (86). DHT and T have inhibitory 
effects on multipotent stem cell commitment to the 
preadipocyte lineage, and adipocyte differentiation in 
both sexes (87, 88). In addition, DHEA, but not DHEAS, has 
been shown to inhibit proliferation and differentiation of 
a human SC preadipocyte cell line and to enhance basal 
glucose uptake (89). Klöting  et  al. hypothesise that an 
impairment of adipocyte proliferation and differentiation 
may lead to adipocyte hypertrophy as a compensatory 
mechanism to increase adipose tissue mass, which 
could induce adipocyte dysfunction manifested in IR, 
intracellular stress and inflammation (90).

Hypertrophic, dysfunctional adipocytes induce a 
proinflammatory, diabetogenic and atherogenic serum 
profile (90). However, comprehensive human in vivo 
studies evaluating the direct effects of androgens on 
the secretion of cytokines by adipose tissue are lacking. 
Incubation with active androgens in primary cultures 
of human abdominal SC and omental adipocytes from 
male and female donors (88) showed no significant 
effect on adiponectin secretion, which has systemic 
insulin-sensitizing effects. However, women with PCOS 
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have lower levels of adiponectin than healthy controls 
(91), and hypogonadal men show higher adiponectin 
than eugonadal men (92) suggesting a potential role for 
androgens in adiponectin secretion.

Androgens may modulate the balance between lipid 
catabolism and lipid accumulation. However, studies to 
date have shown conflicting results. T and its precursor 
DHEAS have been shown to stimulate lipolysis in humans 
in a sex- and depot-specific manner (93, 94, 95, 96, 97). 
Conversely, Corton et al. have compared the expression 
profile of omental adipocytes in obese women with AE 
to the profile of obese controls with normal androgens 
revealing hints at enhanced lipogenesis (98, 99) and thus 
at a possible role of androgens in promoting adipose lipid 
accumulation.

Androgens also exert direct and indirect effects 
on adipose insulin sensitivity. T directly induces IR 
in female SC adipocytes in vitro, and inhibits insulin-
stimulated glucose uptake by impairing phosphorylation 
of protein kinase C via an AR-mediated mechanism (100). 
The adipose gene expression studies by Corton  et  al. 
comparing adipocytes from women with and without 
PCOS show distinct changes in several biological 
pathways, including oxidative stress, inflammation and 
lipid metabolism (98). Effects of androgens on adipose 
tissue are summarised in Fig. 3.

Androgens, skeletal muscle and insulin sensitivity

Androgens enhance the differentiation of stem cells to 
myotubes, as well as skeletal muscle protein synthesis, 
lipid oxidation, insulin sensitivity and glucose usage 
and mitochondrial function (64, 101) (Fig. 3). The intake 
of T in combination with non-aromatisable synthetic 
androgens increases the number of myonuclei, resulting 
from fusion with satellite cells and promoting muscular 
growth, and proportion of central nuclei indicative 
of muscle repair in human skeletal muscle of athletes 
compared to non-steroid users (102). T stimulates the 
proliferation and differentiation of satellite cells (103), 
which can subsequently fuse with the adjacent myofiber. 
Additionally, androgens induce myogenic differentiation 
and inhibit adipogenesis of pluripotent mesenchymal 
stem cells via an AR-dependent pathway (104). Healthy 
men receiving intramuscular T injections exhibit increases 
in skeletal muscle protein synthesis (105). Intramuscular T 
replacement in hypogonadal men confirms the effect of T 
in reducing protein oxidation (106). In men, T correlates 
with genetic and functional markers of mitochondrial 

function in skeletal muscle (107), consistent with findings 
reporting a positive effect of T on mitochondrial biogenesis 
and maintenance in skeletal muscle of mice (108, 109).

Incubation of primary human muscle cells with T 
leads to an upregulation of insulin receptor substrate-2 
(110). In cultured rat muscle cells, the addition of T and 
DHEA enhances GLUT4 expression and translocation 
to the plasma membrane as well as intracellular insulin 
signalling (111). T and DHEA stimulate the activity of 
phosphofructokinase, the key regulatory enzyme of 
glycolysis, and hexokinase, which phosphorylates free 
glucose, thereby impairing its release from the cell and 
channelling it into the pathways of glycolysis, glycogen 
synthesis or the pentose phosphate pathway (111). T 
administration leads to increases in muscle glycogen levels 
in rat (112) due to reduced glycogen breakdown (113). 
In summary, current evidence suggests that androgens 
stimulate insulin sensitivity and glucose utilisation in 
skeletal muscle cells, in both men and women but with 
sex-specific gradual differences, hinting at a stronger 
effect in females (110).

Figure 3

Differential effects of androgens on adipose tissue and 

skeletal muscle and implications for global metabolism. 

Androgens may exert pro-lipogenic effects on adipose tissue, 

resulting in fat mass expansion. At higher concentrations, as 

observed in the healthy male range, net anabolic effects on 

increasing skeletal muscle bulk predominate. However, with 

circulating androgen levels in the range of female androgen 

excess and male androgen deficiency, a loss of muscle mass 

and an increase in abdominal obesity drive the systemic 

phenotype, and give rise to metabolic and cardiovascular 

disease. Testosterone (T), dihydrotestosterone (DHT), 11-keto-

testosterone (11KT), 11-keto-dihydrotestosterone (11KDHT).
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Table 1  Selected studies highlighting the effects of androgens on metabolic dysfunction in men and women.

Metabolic outcomes/Sex Study design Parameters assessed: Main outcome Reference

Body composition

M 139 PCOS grouped according to combination 
of PCO, AO and AE

BMI: No difference
WHR: ↑ in groups with AE, highest in 

PCO + AO + AE

(135)

M 60 PCOS (biochemical and/or clinical AE) vs 
60 controls matched for age, race, BMI

WHR: ↑ in PCOS
% body fat: ↑ in PCOS
Lean mass: No difference
Fat–lean–mass ratio: ↑ in PCOS

(131)

F 130 nonsmoking men, age 21–70 Body fat mass, % body fat, WC, vic adiposity: 
Negatively associated with T and DHEAS

(121)

M/F 17 female-to-male transsexuals on T 
supplementation followed over 1 year

T levels: ↑ to supraphysiol levels
Body fat distribution: ↓ SC, ↑ vis fat
TG: ↑
HDL: ↓

(206)

IR and T2DM
M 86 PCOS grouped according to severity of 

AE vs 43 controls (matched for age  
and BMI)

T and A4, IGT, fasting insulin, HOMA-IR:  
↑ with severity of AE

(25)

M 15 PCOS on resveratrol treatment vs 15 
PCOS placebo controls

T, DHEAS: ↓ by resveratrol
Fasting insulin: ↓ by resveratrol
ISI: ↑ by resveratrol

(119)

F 1413 men, age ≥20 T levels, Prevalence of diabetes: Negative 
association: Free T, bioavailable T and 
diabetes persisting upon exclusion of men 
with abnormally low T

(207)

F 156 obese, hypogonadal, diabetic men on T 
therapy followed over 6 years

Fasting insulin, glycated Hb, WC, weight, 
blood pressure: ↓

Lipid profile: Ameliorated

(128)

NAFLD
M Prospective cross-sectional study involving 

314 PCOS women and 74 controls
Various liver fibrosis scores, HOMA-IR, 

HOMA-β, QUICKI: Indices of hepatic steatosis 
were all significantly higher in the PCOS 
than the control group, as well as in PCOS 
women with rather than without metabolic 
syndrome

(151)

M Prospective case control study with 29 PCOS 
women and 29 controls

HOMA-IR, MRI liver, MRS: Differences in liver 
fat remained apparent after adjusting for 
differences in obesity and insulin resistance

(152)

F 
 
 
 

Retrospective cross-sectional observation 
study of 495 healthy Korean men

Serum testosterone, BMI, HDL, TG: Low serum 
T was associated with higher risk of NAFLD 
independent of vis fat and IR

(154) 
 
 
 

F Prospective cohort study of 55 men with 
chronic spinal cord injury

Serum T, ultrasonography liver, HOMA-IR: Low 
T was independently associated with NAFLD

(208)

F Cross-sectional population-based study of 
1912 men

Serum T, serum DHEAS, ultrasonography liver: 
Hepatic steatosis was associated with low T 
and high DHEAS

(155)

Dyslipidaemia and CVR
M PCOS on hypocaloric diet and flutamid (17) 

or placebo (19) treatment
A4, DHEAS: ↓ secondary to flutamide
Vis/SC fat TG, cholesterol, LDL: ↓
HDL: Trend for ↑

(141)

M 40 PCOS vs 20 normoandrogenic controls CIMT: ↑ in PCOS; Correlation with total T, free 
T, A4 and DHEAS

(164)

M 
 
 

2301 PCOS (evidence of AE in 88%) 
followed over 20 years 
 

T2DM, MI, angina, HF, stroke, CV related 
death: ↑ age-specific prevalence of T2DM, 
MI, angina compared to local male  
population

(172) 
 
 

(Continued)
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Insulin resistance, type 2 diabetes mellitus 
and androgen status in men and women 

Insulin resistance is defined as the impaired systemic 
metabolic response to insulin, which includes glucose 
uptake and metabolism, suppression of lipolysis and 
promotion of lipogenesis, as well as protein and glycogen 
synthesis (114). IR is accompanied by compensatory 
hyperinsulinemia, leading to an exaggerated insulin 
response in normally less responsive tissues, as well as 
disturbances in hepatic and adipose lipid metabolism. 
Frank hyperglycaemia occurs after decompensation 
of the exaggerated pancreatic beta-cell response to 
systemic insulin resistance. Studies selected from those 
discussed in the following sections are summarised 
in Table 1.

Female androgen excess and insulin resistance

The presence of AE in PCOS is closely correlated 
with insulin resistance. Women with PCOS show a 
trend to progress from normal glucose tolerance to 
impaired glucose tolerance (IGT) and to T2DM, and 
obesity significantly increases this risk (115). Both 
obese and non-obese PCOS women with AE show a 
higher prevalence of IGT and T2DM than controls, 
but obesity deteriorates the diabetic phenotype (116, 
117). Conversely, T levels are significantly higher in 
women with T2DM even after adjustment for age, race, 
diabetes diagnosis criteria, BMI and waist-to-hip ratio; 
consequently, AE in women has been suggested as risk 
factor for T2DM (118). When grouping PCOS patients 

according to severity of AE, insulin sensitivity decreases 
and risk of overt hyperglycaemia increases across a 
spectrum or increasing androgen burden (25). Lowering 
circulating androgen burden in PCOS by treatment with 
resveratrol has been shown to reduce fasting insulin and 
to improve the insulin sensitivity index (119). In vitro 
studies demonstrated selective inhibition of proliferation 
and androgen production of rat ovarian theca-interstitial 
cells by resveratrol (120).

Male androgen deficiency and insulin resistance

In men, T levels are positively associated with insulin 
sensitivity (107, 121) and even in men with an 
established diagnosis of T2DM, low T is independently 
associated with IR (122). A meta-analysis correlating 
significantly lower T levels in men with T2DM also 
found the inverse association in women, with higher T 
levels predicting hyperglycaemia (118). The significance 
of this correlation is attenuated, but still significant, 
after adjustment for IR (123, 124). An increase in the 
prevalence of subnormal T has been found in diabetic 
men when compared to BMI-matched controls (125). 
This identifies low T levels as a risk factor for T2DM, 
independent of obesity. Men with prostate cancer on 
androgen deprivation therapy have higher BMI, fasting 
glucose, leptin levels and HOMA-IR compared to 
healthy controls, with significant negative correlations 
between total and free T and IR parameters observed 
(126). Androgen replacement therapy improves insulin 
sensitivity and diabetes in obese and non-obese 
hypogonadal men (127, 128).

Metabolic outcomes/Sex Study design Parameters assessed: Main outcome Reference

F 255 hypogonadal men receiving T therapy 
for 60 months

T levels: ↑ to physiological levels
TG, LDL, blood pressure, glucose, glycated 
HbA, CRP, liver enzymes: ↓
HDL: ↑

(209)

F 
 

4736 men with low T supplemented to 
persistently low, normal or high T for 
3 years

MACE (stroke, MI, death): ↓ in normal T 
compared to persistenly low T; ↑ stroke risk 
for high T compared to normal T

(198) 
 

A4, androstenedione; BMI, body mass index; CIMT, carotid intima-media thickness; CRP, C-reactive protein; CV, cardiovascular; CVR, cardiovascular 
risk; DHEA, dehydroepiandrosterone; DHEAS, dihydroepiandrosterone sulfate; HbA, haemoglobin A; HDL, high density lipoprotein; HF, heart 
failure; HOMA-β, homeostatic model assessment of β-cell function; HOMA-IR, homeostatic model assessment of insulin resistance; IR, insulin 
resistance; ISI, insulin sensitivity index; LDL, low density lipoprotein; MACE, major adverse cardiovascular event; MI, myocardial infarct; MRI, 
magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAFLD, non-alcoholic fatty liver disease; QUICKI, quantitative insulin 
sensitivity check index; Ref, reference; SC, subcutaneous; T, testosterone; T2DM, type 2 diabetes mellitus; TG, triglycerids; vis, visceral; WC, waist 
circumference; WHR, waist–hip ratio.

Table 1  Continued.
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Body composition and impact of androgen 
status in men and women

Similar to the gender-specific effects observed for androgen 
effects on systemic IR, there are sexually dimorphic effects 
of androgens on body composition.

Female androgen excess and body composition

PCOS women with clinical and/or biochemical evidence 
of AE show a higher prevalence of obesity than the 
general female population (4) and an increased global 
adiposity compared to control cohorts (129). In a detailed 
study comparing hyperandrogenic PCOS women, healthy 
women and men, Borruel  et  al. demonstrated increased 
amounts of visceral fat depots in women with PCOS 
in addition to the increased global adiposity (130). 
They have an increased body fat mass resulting in a 
higher body fat-to-lean mass ratio, which is positively 
associated with metabolic risk (131, 132). For women 
with and without PCOS, BMI correlates with the FAI 
and systemic 5α-reductase activity (25) and body weight, 
waist circumference and waist-to-hip ratio are higher 
in the presence of AE in PCOS (133, 134, 135). Women 
presenting with isolated hirsutism show significantly 
higher increases in BMI during early adulthood than 
controls (136). A recent study found a significant positive 
correlation between circulating androgens with body fat 
mass and obesity in pre-pubertal and pubertal girls (137). 
Studies on PCOS women with AE describe an increased 
lean mass correlating with serum T and A4 (138, 139), 
with a shift in fat distribution from a gynaecoid to an 
android pattern (132). The treatment of PCOS women 
on a hypocaloric diet with the anti-androgen flutamide 
decreases androgen levels and the visceral-to-SC fat ratio 
(140, 141).

Male androgen deficiency and body composition

In comparison to women, circulating androgens in men 
correlate inversely with BMI and visceral adiposity. 
Cross-sectional studies analysing age-advanced men, 
men across different ages and obese vs non-obese men 
consistently support the association between low T and 
increased fat mass compared to eugonadal controls 
(107, 142, 143). BMI negatively correlates with total and 
free T (142, 144), and waist circumference is negatively 
associated with total T in men (142). Although age is 
associated with decreased androgen levels (143, 144), 
negative associations between T and total body fat mass, 

body fat percentage, waist circumference and visceral 
adipose tissue are maintained after adjustment for age 
(121). T administration in men reduces accumulation 
of visceral and retroperitoneal fat compared to 
controls, but not in SC depots; hypogonadal men also 
have increased visceral fat mass (145). Lean body mass 
is lower in hypogonadal men compared to eugonadal 
controls (146, 147). T replacement therapy of 
hypogonadal men leads to increases in lean body mass 
and reduces vis adiposity in men with and without 
T2DM (127, 148).

Non-alcoholic fatty liver disease (NAFLD) 
and male and female androgen status

NAFLD is an umbrella term encompassing a spectrum of 
hepatic injury induced by obesity and IR, in the absence 
of significant alcohol consumption. The NAFLD spectrum 
ranges from intra-hepatic accumulation of TG or simple 
steatosis, to diffuse tissue inflammation or non-alcoholic 
steato-hepatitis (NASH), with a risk of progression to 
advanced hepatic fibrosis and cirrhosis (149). NAFLD is a 
major metabolic complications and emerging as the most 
frequent cause of liver transplantation in the Western world.

Female androgen excess and NAFLD

Prevalence rates of NAFLD in PCOS appear to be higher than 
those in BMI-matched individuals from the background 
population; a recent meta-analysis found that patients 
with PCOS have an almost 4-fold higher prevalence 
of NAFLD compared to controls with simple obesity 
(150). Polyzos and colleagues reported a significantly 
higher prevalence of hepatic steatosis in a large cohort 
of Mediterranean women with PCOS when compared to 
the healthy female population. However, they did not 
find any difference in the prevalence of hepatic fibrosis, 
which was attributed to younger age of the cohort (151). 
Jones  et  al. compared several metabolic parameters in 
PCOS women with and without AE diagnosed according 
to the Rotterdam criteria and found that liver fat was 
significantly higher in hyperandrogenic PCOS compared 
to normoandrogenic PCOS women (diagnosed with PCOS 
due to PCO + AO), even after adjustment for obesity, IR 
and visceral and intra-abdominal fat (152). Androgenised 
female rats fed with a diet rich in advanced glycation end 
products have been shown to develop deranged hepatic 
function (153). However, putative causative mechanisms 
underlying PCOS-related NAFLD remain to be elucidated.
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Male androgen deficiency and NAFLD

Kim et al. report that low serum T level was independently 
associated with NAFLD in Korean men despite adjusting 
for traditional risk factors such as visceral adiposity and 
IR (154). A large observational study of German men also 
reported an inverse association between serum T and 
hepatic steatosis (155). Although indirect mechanisms, 
such as increased visceral adiposity in the context of 
hypogonadism, were initially hypothesised, recent 
studies have underpinned a direct role for androgens on 
liver metabolism. Liver-specific male AR knock-out mice 
develop hepatic steatosis and IR with a high fat diet. 
This appears to be due to activation and upregulation 
of sterol regulatory element binding protein-1c and 
acetyl coA carboxylase, coupled with a reduction in 
peroxisome proliferator-activated receptor-alpha and 
malonyl coA decarboxylase expression. This results in 
increased malonyl co-A, a substrate for de novo lipogenesis 
and negative regulator of carnitine palmitoyltransferase 
1, which is a major regulator of beta-oxidation (156). 
Mirroring female AE, however, excessive androgen 
replacement and supraphysiological serum androgens 
may also adversely impact on risk of NAFLD in men. 
Synthetic anabolic steroid use has been linked to hepatic 
steatosis in men (157), again suggesting the presence of a 
relatively narrow physiological window outside of which 
adverse metabolic consequences may arise.

Cardiovascular risk and male and female 
androgen status

Female androgen excess and cardiovascular risk

According to a recent meta-analysis, AE in PCOS is 
associated with higher total cholesterol and lower HDL 
levels, but does not affect TG and LDL levels (158). Studying 
the direct associations between AE and dyslipidaemia is 
confounded by co-existent obesity and IR in most PCOS 
studies. Nevertheless, treatment with the anti-androgen 
flutamide improves the dyslipidaemic phenotype in both 
obese and non-obese women and leads to decreases in T and 
A4 levels probably secondary to normalisation of ovulation 
and gonadotrophin secretion (140, 141, 159). Despite large 
inter-study heterogeneity, profiles of circulating markers for 
systemic inflammation, oxidative stress and coagulation 
disorders appear to be altered in PCOS, indicating an 
increased CVR (91, 160, 161, 162, 163).

Luque-Ramirez  et  al. comparing hyperandrogenic 
PCOS with non-hyperandrogenic women showed an 

increased mean carotid intimal media thickness (CIMT) 
in PCOS, independent of obesity, and indentified total 
T and A4 as major determinants of CIMT (164). Women 
with PCOS and AE also exhibit microvascular dysfunction 
due to impaired vasodilation (165, 166). Data on long-
term cardiovascular events in PCOS are inconsistent. 
Some studies conclude that there is no increased risk for 
large vessel disease (167), abdominal aortic plaque (168), 
myocardial infarction (MI) or stroke (169, 170). Others 
describe increases in the prevalence of hypertension (168, 
170) and cerebrovascular disease (171), in the age-specific 
prevalence of MI and angina (172) and in the risk of 
coronary heart disease and stroke, even after adjustment 
for BMI (173). General and cause-specific mortality 
and age at death may not be significantly higher in  
PCOS women than the background population (167, 169, 
170, 174).

Male androgen deficiency and cardiovascular risk

In men, low T levels are associated with a dyslipidaemic 
profile. An inverse relation between T and TG, total 
cholesterol and LDL as well as a positive correlation of 
total and free T with HDL (175, 176, 177, 178, 179, 180) 
was described. ADT for the treatment of PCa also induces 
dyslipidaemia (181, 182, 183), while T replacement 
therapy in hypogonadal men exhibits beneficial effects 
on the lipid profile (127, 184, 185). An inverse correlation 
exists between serum T and high-sensitive C-reactive 
protein in normal ageing (186) and hypogonadal (187) 
men, and T replacement has been shown to shift the 
cytokine balance towards a state of reduced inflammation 
(184, 188).

Increased arterial stiffness has been reported in 
hypogonadal men compared to age- and weight-matched 
controls, which can be rapidly but incompletely rescued 
by T supplementation (189). Men with coronary artery 
disease present with lower T levels (190, 191) and its 
severity is negatively correlated with T levels (190, 192, 
193). Male AD is associated with a higher risk of all-cause 
mortality (194, 195), and an inverse correlation exists 
between T levels and prospective mortality due to all causes, 
cardiovascular disease and cancer (196). We found that 
men with gonadotrophin deficiency after the treatment 
of non-functioning pituitary adenomas had increased 
mortality compared to their eugonadal counterparts (197). 
Supplementing men with initially low T levels to normal T 
levels reduces the rate of stroke, MI or death compared to 
subjects with persistently low T (198, 199).
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Conclusions

Androgens play a major role in human metabolic health 
and disease. Female androgen excess and male androgen 
deficiency exhibit overlapping metabolic phenotypes, 
highlighting the complexity of the role of androgens 
in metabolism (Fig.  1). Effects of androgens on adipose 
tissue and muscle may largely be governed by circulating 
serum and tissue-specific concentrations, with a narrow 
physiological window in both sexes, outside of which 
disturbances in metabolism and body composition are 
observed. In healthy women, low androgen concentrations 
and elevated oestrogens lead to predominant gynaecoid 
fat distribution and reduced metabolic risk; at circulating 
androgen levels observed in severe female AE and male AD, 
preferential accumulation of central and visceral adiposity 
is observed, while at higher androgen concentrations seen 
in healthy men, this effect is dissipated by increasing lean 
body mass, muscle bulk and reducing fat mass (Fig.  3). 
Further human-based studies, including in vitro, in vivo 
and epidemiological studies appropriately taking into 
account sex differences, are required to understand and 
dissect these complex associations.
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