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Advances in intracranial electroencephalography (iEEG) and neurophysiology have

enabled the study of previously inaccessible brain regions with high fidelity temporal

and spatial resolution. Studies of iEEG have revealed a rich neural code subserving

healthy brain function and which fails in disease states. Machine learning (ML), a

form of artificial intelligence, is a modern tool that may be able to better decode

complex neural signals and enhance interpretation of these data. To date, a number of

publications have applied ML to iEEG, but clinician awareness of these techniques and

their relevance to neurosurgery, has been limited. The present work presents a review

of existing applications of ML techniques in iEEG data, discusses the relative merits

and limitations of the various approaches, and examines potential avenues for clinical

translation in neurosurgery. One-hundred-seven articles examining artificial intelligence

applications to iEEG were identified from 3 databases. Clinical applications of ML from

these articles were categorized into 4 domains: i) seizure analysis, ii) motor tasks,

iii) cognitive assessment, and iv) sleep staging. The review revealed that supervised

algorithms were most commonly used across studies and often leveraged publicly

available timeseries datasets. We conclude with recommendations for future work and

potential clinical applications.

Keywords: intracranial EEG (iEEG), seizure, epilepsy, neurorecording,machine learning, artificial intelligence, deep

learning

INTRODUCTION

Intracranial electroencephalography (iEEG) provides exquisite detail with which to study neural
activity. Stereotactic EEG (sEEG), strips, grids and depth electrodes are among the most common
iEEG modalities. Modern diagnostic and treatment strategies for neurological conditions such as
epilepsy rely heavily on interpreting iEEG signals to extractmeaningful information that can impact
clinical decision making (Lachaux et al., 2003). Furthermore, the study of these signals can serve
to uncover the neural syntax associated with both healthy and diseased states by using explainable
ML algorithms to shed light on important features that differentiate these states.
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Machine learning (ML) is a rapidly growing field that has
shown significant potential in complex biomedical applications
(Rajkomar et al., 2019). Simply, ML refers to algorithms that
can make seemingly intelligent decisions after identifying and
learning from hidden patterns in large pre-existing data. Training
these algorithms on large biologic datasets for example has
enabled the identification of complex patterns not apparent
to human experts and informed intelligent decision-making
without explicit programming (Kotsiantis et al., 2007). Examples
of success in these endeavors include automated diagnostic
algorithms in radiology (Syeda-Mahmood, 2018) and pathology
(Bera et al., 2019).

ML algorithms can be dichotomized into “supervised” and
“unsupervised” learning approaches. An overview of these
methodologies is illustrated in Figure 1. Supervised learning
involves the use of labeled data during training such that the
algorithm learns to associate certain patterns with a predefined

FIGURE 1 | Overview of artificial intelligence and machine learning. Artificial intelligence includes machine learning (ML) which can be divided into standard machine

learning or deep learning. In standard ML, raw iEEG signal is preprocessed followed by feature extraction and selection. Feature extraction involves breaking down the

raw signal into individual quantifiable components such as power at various frequencies. Feature selection on the other hand involves selecting a subset of these

components to be used to train a model. These features can either be fed to a supervised learning algorithm in addition to group labels, or an unsupervised learning

algorithm that does not contain labels. Examples of supervised algorithms include support vector machines (SVM), K-nearest neighbors (KNN), artificial neural

networks (ANN) or linear discriminant analysis (LDA). These classify the features into the group labels provided as inputs. Examples of unsupervised algorithms include

non-negative matrix factorization (NNMF), fuzzy-c-means (FCM), and soft clustering. These will classify the features into groups based on similarity. Deep learning

does not require feature extraction and selection. The processed or unprocessed signal can be fed directly into the deep learning model to classify the signals.

label (for example, data associated with seizure vs. non-
seizure states) (Kotsiantis et al., 2007). Unsupervised learning
involves unlabelled data where the algorithm is provided a large
dataset and learns to group certain signals together without
a priori knowledge of classification. Each method possesses
respective advantages and pitfalls. Deep learning approaches,
which were initially designed based on a simplified model
of interconnected nodes that mimic neuronal connections,
also warrant special note. Each node is analogous to a cell
body and the connections (“synapses”) between nodes are
assigned weights during training analogous to the strength of
synaptic connections between neurons. A primary advantage
of deep learning compared to standard ML is that these
algorithms can learn from the raw data and automatically extract
meaningful information thereby bypassing human-intensive
feature selection steps. However, it is important to consider
that deep networks can take significantly longer to train and
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often require larger sample sizes than commonly available in
neurosurgical populations.

Despite the potential for application of ML to iEEG data,
evidence to support the utilization of different ML techniques is
limited, and considerable heterogeneity has been reported in the
literature. As such, the present systematic review aims to: 1) assess
the current landscape of ML utilization in iEEG and 2) examine
the relative benefits and limitations of ML approaches as they
relate to specific neurosurgical problems.

METHODS

Search Strategy
In order to identify published, peer-reviewed articles that employ
ML in the context of iEEG data, we performed a systematic
search of articles using 3 commonly accessed medicine and
engineering databases: OVID MEDLINE, IEEE, and Web of
Science. We selected these databases as we aimed to capture
the breadth of applications of this technology in the fields of
science, medicine, and engineering. The search was conducted
on August 18th, 2020. Our inclusion criteria comprised of
two categories of keywords which must appear in either the
article title, abstract or article keywords. The first category
comprised of machine learning keywords (“machine learning”,
“deep learning”, “artificial intelligence”, “neural network$”),
while the second category comprised of keywords relevant to
intracranial EEG (“stereoelectroencephalography”, “stereotactic
EEG”, “sEEG”, “electrocorticography”, “ECoG”, “intracranial
EEG”, “intracranial electroencephalography”, “iEEG”). Relevant
articles were required to contain at least one keyword from
the first category and at least one from the second category. A
detailed summary of our search strategy and yield is provided in
the Supplementary Material 1.

Article Filtering
The PRISMA guidelines (Moher et al., 2009) were followed to
filter through articles in a systematic and transparent manner
(Figure 2). Following our database search, 674 articles were
found (OVID MEDLINE: 159, IEEE: 225, Web of Science: 290).
One-hundred-sixty-five duplicates were removed leaving 509 for
title and abstract filtering. Three-hundred-seventy-three articles
were excluded following this first step of filtering as they did
not fit our inclusion criteria for the following reasons: reviews,
editorials, case reports, conference proceedings, book sections,
animal studies, not relevant to intracranial EEG or machine
learning. Two independent reviewers (NM, NW) then filtered the
full text of 136 remaining articles. Disagreements were resolved
by discussion and, when required, a third adjudicator (GMI).
Twenty-nine articles were excluded for the following reasons:
preliminary results, not clinical application, brief book series,
not machine learning, animal studies, not intracranial EEG, not
relevant, abstract only. Following this step, 107 articles were
selected for this review.

Data Collection
Each full-text article was reviewed and data regarding
demographics, data acquisition, machine learning application,
and types of features were gathered into a spreadsheet.

Demographics
Demographics data was composed of year of publication,
country of origin, name of the journal, journal category
(medical, engineering/computer science, or multidisciplinary).
The country of origin was defined by the affiliation of the
first author.

Data Acquisition
Data acquisition comprised of intracranial recording method.
This includes sEEG, and electrocorticographic (ECoG) strips or
grids, or depth electrodes. A fourth option was available if the
studies did not specify the type of recording method used. The
source of EEG data was also compiled as free-text entries to
track whether studies used their own data, or data obtained from
online databases.

Machine Learning
The application of machine learning algorithms was classified
into four broad categories. Due to the heterogeneity of studies
in these fields, studies in the seizure and motor categories were
further subdivided as follows:

1. Seizure: seizure prediction/detection, surgical outcome
prediction, pathological tissue detection, high-frequency
oscillation (HFO) detection/classification, seizure onset zone
(SOZ)/epileptic focus localization, bad channel detection,
spike detection, tumor tissue detection.

2. Motor: movement classification, motor imagery,
speech production.

3. Cognitive tasks
4. Sleep Staging.

The type of ML algorithm was categorized into four groups:
Standard supervised ML includes popular algorithms such
as support vector machines (SVM), K-nearest neighbors
(KNN), single-layered artificial neural networks (ANN), linear
discriminant analysis (LDA) and any others that did not
fit the definition of deep learning. Deep learning algorithms
include recurrent neural networks (RNN), convolutional neural
networks (CNN) and multi-layered neural networks (LeCun
et al., 2015). The third option applied to studies that employed
both standard ML and deep learning methods. The last option
included unsupervisedmachine learning algorithms such as non-
negative matrix factorization (NNMF) amongst others. We also
recorded whether a study employed one or multiple types of
algorithm for purposes of comparing classification performance.
Studies which compared their algorithm performance with
previously published algorithms trained on the same data were
considered one algorithm as they did not themselves train
multiple algorithms.

A summary of relevant feature selection steps was also
collected in order to understand the data extraction approach
utilized by each study. For purposes of comparison, feature
selection approaches were split into two main categories: 1)
higher order feature selection algorithms; and 2) physically
interpretable features (raw or hand-crafted). Studies that
used higher-order feature-selection algorithms were defined as
those in which the feature selection/pre-processing workflows
contained one or more of: i) non-standard time-frequency
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FIGURE 2 | PRISMA analysis of articles searched, filtered and included in the systematic review. Six-hundred-seventy-four articles were identified through database

searching in OVID MEDLINE, IEEE, and Web of Science. Duplicates were removed leaving 509 abstracts for screening. Three-hundred-seventy-three articles were

excluded as they did not fit out inclusion criteria. From the remaining 136 articles, 29 were excluded following full-text screening. The remaining 107 articles were

analyzed in this study.

transforms; ii) dimensionality reduction of feature space; iii)
abstract feature selection algorithms; or iv) abstract features
(entropy, fractal dimension, etc.).

Performance metrics of the best final algorithms from each
paper were recorded to gain insight on relative performance
based on algorithmic and feature selection decisions. As
algorithm performance can only be fairly compared between
studies where both studies use the same dataset, this step was
only done in studies employing the same publicly available
datasets further discussed in Section Intracranial EEG Datasets.
Although accuracy may be considered a sufficient measure of
performance, it holds many caveats whereby it may give a
false impression of performance in highly unbalanced data. As

such, we opted to record all performance metrics presented
within each study to provide a more objective picture. These
include accuracy, area-under-ROC-curve, sensitivity, specificity,
precision, positive predictive value, and/or negative predictive
value. As model specificity was most commonly reported
in all included studies, this metric is used to compare
performance of algorithms between studies. If this metric was
not provided, accuracy is used for comparison. Where studies
solely reported cross-validation performance, a single mean
performance metric was tabulated. In others that split their data
into validation and testing sets, both the validation and testing
performance were compiled and the testing performance was
used for comparison.

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 913777

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Mirchi et al. AI and iEEG

RESULTS

One-hundred-seven articles were included in the systematic
review (Hellmann, 1999; Petrosian et al., 2000; D’Alessandro
et al., 2005; Hill et al., 2006; Firpi et al., 2007a,b; Chan et al.,
2008; Shenoy et al., 2008; Demirer et al., 2009; Liu et al., 2009,
2012; Mirowski et al., 2009; Scherer et al., 2009; Yanagisawa et al.,
2009; Ayala et al., 2011; Chua et al., 2011; Kharbouch et al.,
2011; Benz et al., 2012; Yang et al., 2012; Ikeda et al., 2014;
McMullen et al., 2014; Zhang et al., 2014, 2015; Combrisson
and Jerbi, 2015; Li et al., 2015; Memarian et al., 2015; Wang
and Lyu, 2015; Yuan et al., 2015; Zheng et al., 2015; Boussen
et al., 2016; Geng et al., 2016, 2020; Schrouff et al., 2016; Song
and Zhang, 2016; Zhang and Parhi, 2016; Andrade et al., 2017;
Antoniades et al., 2017; Chen et al., 2017; Combrisson et al.,
2017; Elahian et al., 2017; Hosseini et al., 2017, 2018, 2020; Jrad
et al., 2017; Khambhati et al., 2017; Kragel et al., 2017; Kremen
et al., 2017, 2019; Parvez and Paul, 2017; Raghu and Sriraam,
2017; Sathish et al., 2017; Tomlinson et al., 2017; Vidyaratne and
Iftekharuddin, 2017; Alickovic et al., 2018; Arora et al., 2018;
Baud et al., 2018; Derner et al., 2018; Grinenko et al., 2018;
Hermiz et al., 2018; Kiral-Kornek et al., 2018; Manzouri et al.,
2018; Muller et al., 2018; O’Leary et al., 2018; Pan et al., 2018;
Ramsey et al., 2018; Rutigliano et al., 2018; Shoaran et al., 2018;
Truong et al., 2018, 2019; Tuyisenge et al., 2018; Varatharajah
et al., 2018; Wu et al., 2018; Xie et al., 2018; Angrick et al.,
2019a,b; Cimbalnik et al., 2019; Klimes et al., 2019; Lai et al., 2019,
2020; Livezey et al., 2019; Mahmoodian et al., 2019; Medvedev
et al., 2019; Meisel and Bailey, 2019; Nejedly et al., 2019a,b; Pailla
et al., 2019; Principe et al., 2019; Saboo et al., 2019; Sumsky
and Santaniello, 2019; Thomas et al., 2019; Weidemann et al.,
2019; Abou Jaoude et al., 2020; Akter et al., 2020; Burrello
et al., 2020; Daoud and Bayoumi, 2020; Ghoroghchian et al.,
2020; Gong et al., 2020; Karthick et al., 2020; Lian et al., 2020;
Makaram et al., 2020; Makin et al., 2020; Rashid et al., 2020;
RaviPrakash et al., 2020; Sciaraffa et al., 2020; Yu et al., 2020;
Zhao et al., 2020; Zhu et al., 2020). Information regarding each
article was collected into four categories: demographics, data
acquisition, machine learningmodel, types of features. A succinct
summary of studies employing publicly available datasets and
reporting best AI model performance is presented in Table 1

while a more extensive table containing all studies is available in
Supplementary Material 2.

Demographics
The number of publications per year is illustrated in Figure 3A.
A dramatic increase in the number of publications was observed
from 2017 onwards. The majority of articles before 2017 utilized
standard machine learning algorithms as opposed to deep
learning or unsupervised learning. For comparison, the use of
deep learning or both (standard ML and deep learning) made up
only 20% of articles published in 2017 compared to 68% of those
published in 2020.

Fifty-one articles were published in medical journals while
50 were published in engineering or computer science journals.
Six articles were published in multidisciplinary journals. This
distribution is illustrated in Figure 3B.

The distribution of country of origin for each article is
displayed in Figure 3C. The majority of articles originated from
the United States of America (46/107, 42%), followed by China
(18/107, 17%), Germany (7/107, 7%) and Canada (6/107, 6%).

Data Acquisition
The types of intracranial recording varied across each study.
Some articles employed only one type of intracranial recording,
while others used two methods. Articles which did not specify
their method of intracranial EEG recording were simply
labeled as unspecified iEEG. The distribution of intracranial
recording method is illustrated in Figure 4A. Of those which
specified a recording technique, ECoG strips or grids were used
most frequently (53/107 articles), followed by depth electrodes
(23/107) and sEEG (9/107). Thirty-seven articles were labeled
as unspecified iEEG. Some articles used more than one method,
hence this sum is greater than the number of articles.

Just over half of the articles analyzed in this review reported
using their own datasets (57/107, 53%). The 50 remaining
reported the use of at least one pre-existing dataset, either from
their own research group or a freely available dataset available
online. Some publications use more than one source of data.

Intracranial EEG Datasets
Pre-existing iEEG datasets are utilized in a number of these
papers. The most popular of these include the Freiburg
(Andrzejak et al., 2012) (21/50, 42%), the UBonn (Andrzejak
et al., 2001) dataset (6/50, 12%), BCI Competition III (Blankertz
et al., 2006) (4/50, 8%), Mayo Clinic (Stead et al., 2010) (3/50,
6%), Bern-Barcelona (3/50, 6%), and EPILEPSIAE (3/50, 6%).
The Freiburg EEG database is composed of grid, strip and depth
electrode recordings from 21 patients suffering from medically
intractable focal epilepsy. The UBonn dataset is composed of
strips and depth electrodes recorded from epilepsy patients. It
is divided into 5 sets where A and B are scalp EEG and C, D
and E are iEEG recordings from patients with temporal lobe
epilepsy. Sets C and D are composed of inter-ictal intervals
while set E shows ictal activity. The BCI Competition III
includes 8 scalp and intracranial EEG datasets involving motor
imagery and P300 speller paradigms. Specifically, only dataset 1
includes ECoG grids, while the remaining solely include scalp
EEG. The Mayo Clinic dataset is composed of strips, grids
and depth electrode recordings from 11 epilepsy patients. The
Bern-Barcelona dataset comprises of strips and depth electrodes
from 5 pharmacoresistant temporal lobe patients. Finally, the
EPILEPSIAE database is the product of a collaboration between
epilepsy centers in Portugal, France and Germany. It contains
both scalp and intracranial EEG recordings including grids and
depth electrodes.

Machine Learning
The ML applications for each article were grouped into 4
categories, all illustrated in Figure 5. Four articles employed
machine learning for more than one application, thereby leading
to 111 counts for 107 articles. The vast majority of applications
relate to seizures (74/111, 67%), followed bymotor (25/111, 23%),
cognitive tasks (8/111, 7%), and sleep staging (4/111, 4%).
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TABLE 1 | Summary of literature on artificial intelligence in intracranial EEG.

Application Dataset Authors Recording

Method

Machine Learning Features

Category Best Al Performance

Seizure Seizure

Detection /

Prediction

Freiburg Yu et al., 2020 Not specified Standard 87.7% (ss) Higher order

Geng et al., 2020 Not specified Deep 98.09% (ss),

98.69% (sp)

Higher order

Lian et al., 2020 Not specified Standard and

Deep

95.67% (acc) Higher order

Truong et al., 2019 Not specified Standard and

Deep

88.86 (auc) Higher order

Meisel and Bailey, 2019 Strips/grids Standard and

Deep

Not reported Higher order

Mahmoodian et al., 2019 Not specified Standard 96.8% (acc) Higher order

Alickovic et al., 2018 Not specified Standard 100% (acc) Higher order

Parvez and Paul, 2017 Not specified Standard 95.4% (acc) Standard

Zhang and Parhi, 2016 Not specified Standard 100% (ss) Standard

Geng et al., 2016 Not specified Standard 96.72% (ss) Standard

Song and Zhang, 2016 Not specified Standard 85.73% (acc) Higher order

Zheng et al., 2015 Not specified Standard 92% (ss) Higher order

Wang and Lyu, 2015 Not specified Standard 98.8% (ss) Higher order

Yuan et al., 2015 Not specified Standard 94.41% (ss),

96.97% (sp),

96.87% (acc)

Higher order

Zhang et al., 2015 Not specified Standard 92.94% (ss),

97.47% (sp),

97.57% (acc)

Higher order

Zhang et al., 2014 Not specified Standard 89.33% (ss), Higher order

Liu et al., 2012 Not specified Standard 94.46% (ss),

95.26% (sp), 95.33

(acc)

Standard

Chua et al., 2011 Not specified Standard 78% (ss) Standard

Liu et al., 2009 Strips/grids and

Depth electrodes

Deep 93.75% (ss), Standard

Mirowski et al., 2009 Strips/grids and

Depth electrodes

Standard and

Deep

71% (ss) Higher order

Bonn Gong et al., 2020 Not specified Standard and

Deep

99.79% (acc CE),

98.96% (acc DE),

83.13% (acc CD),

98.75% (acc CD-E),

85.75% (acc CDE)

Standard

Vidyaratne and

Iftekharuddin, 2017

Not specified Standard 99.8% (acc CD-E),

99% (ss CD-E),

100% (sp CD-E)

Higher order

Raghu and Sriraam, 2017 Strips/grids and

Depth electrodes

Standard 97.68% (acc CE),

94.56% (acc DE),

84.58% (acc CDE),

57.8% (acc CD)

Higher order

EPILEPSIAE Ghoroghchian et al., 2020 Not specified Standard 0.89 (auc) Standard

Manzouri et al., 2018 Strips/grids and

Depth electrodes

Standard 0.98 (auc) Higher order

O’Leary et al., 2018 Not specified Standard 97.7% (ss) Higher order

Mayo-UPenn Hosseini et al., 2018 Strips/grids and

Depth electrodes

Standard 97% (acc), 98% (ss),

96% (sp)

Higher order

Hosseini et al., 2017 Strips/grids Standard and

Deep

96% (acc), 97% (ss) Higher order

(Continued)
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TABLE 1 | Continued

Application Dataset Authors Recording

Method

Machine Learning Features

Category Best Al Performance

Bern-

Barcelona

Sathish et al., 2017 Not specified Standard 99.6% (acc) Higher order

Freiburg

and

Mayo-Upenn

Truong et al., 2018 Not specified Deep 94.7% (acc;

Freiburg), 96.18%

(acc; M-UP

cross-validation),

88.81% (acc; M-UP

testing)

Standard

SOZ /

Epileptic

Focus

Localization

Bonn

and

Bern-

Barcelona

Daoud and Bayoumi, 2020 Not specified Deep Bern-Barcelona

93.21% (acc),

90.50% (ss),

95.92% (sp)

Bonn

96% (acc), 93% (ss),

99% (sp)

Standard

Chen et al., 2017 Not specified Standard Bern-Barcelona

83.07% (acc),

83.05% (ss),

83.09% (sp)

Bonn

88.00% (acc),

92.24% (ss),

83.76% (sp)

Higher order

Mayo-Upenn Hosseini et al., 2020 Depth electrodes Standard and

Deep

98% (acc), 96 (ss),

97% (sp)

Standard

Motor Motor

Imagery

BCI

Competition

III

Rashid et al., 2020 Strips/grids Deep Training

99.64% (acc), 100%

(ss), 99.28 (sp)

Testing

97% (acc), 96% (ss),

98% (sp)

Standard

Li et al., 2015 Strips/grids Standard 92% (acc) Higher order

Yang et al., 2012 Strips/grids Standard Training

88% (acc)

Validation

80% (acc)

Testing

80% (acc)

Overall

86%

Higher order

Demirer et al., 2009 Strips/grids Standard Training

95%

Testing

73%

Higher order

Keywords

Performance measures

acc, accuracy; auc, area under curve; sp, specificity; ss, sensitivity.

Applications
The seizure category is divided into 8 subcategories in which
seizure detection/prediction (43/74, 58%) and SOZ/epileptic
focus localization (11/74, 15%) were the most popular. The
motor category is composed of 3 subcategories where movement
classification makes up half of the applications (12/25, 48%).

Algorithm
Themajority of articles reviewed in this study employed standard
supervised MLmethods only (68/107, 63%), followed by DL only

(19/107, 18%). Fourteen articles employed both standardML and
DL in order to compare algorithm performance. Unsupervised
learning made up a minority of articles found (6/107, 6%). An
illustration of this distribution is presented in Figure 4B. The
majority of studies presented results from a single algorithm
(78/107, 73%) rather than multiple algorithms (29/107, 27%).

Comparing Algorithmic Performance
Performance metrics for each study employing a publicly
available dataset are summarized in Table 1. Five public datasets
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FIGURE 3 | Demographics of 107 articles reviewed. (A) The number of publications in the field of machine learning and iEEG dramatically increased in 2017

incorporating more deep learning and unsupervised learning models. (B) Just under half of articles reviewed were published in a medical journal and a similar

proportion were published in an engineering or computer science journal. A minority was published in a multidisciplinary journal. (C) Almost half of the studies were

conducted in North America. The United States published the most papers, followed by China, Germany and Canada.

were identified amongst the studies employing ML for seizure
detection or prediction. Amongst studies utilizing the same
dataset, a variety of different metrics were reported. It is also
important to note that while some studies employ all patient
data from public datasets, some may only select a subgroup of
participant data from a dataset. Therefore, Table 1 provides the
specific recording method as reported by the authors.

Amongst the studies utilizing the Freiburg dataset, 11 reported
metrics on the entire set of 21 patients (Liu et al., 2012; Zhang
et al., 2014, 2015; Yuan et al., 2015; Geng et al., 2016, 2020;
Parvez and Paul, 2017; Alickovic et al., 2018; Mahmoodian et al.,
2019; Meisel and Bailey, 2019; Yu et al., 2020). Within this group,
deep learning methods achieved significantly higher sensitivity
for seizure detection compared to standard methods (mean 0.922
vs. 0.980, p = 0.019 by Student’s t-test). Few of these studies,
however, reported specificity thereby making a performance
comparison based on thismetricmore difficult. In those using the
Freiburg dataset and exclusively investigating standard machine
learning (Chua et al., 2011; Liu et al., 2012; Zhang et al., 2014,
2015; Wang and Lyu, 2015; Yuan et al., 2015; Zheng et al., 2015;
Geng et al., 2016; Song and Zhang, 2016; Zhang and Parhi,
2016; Parvez and Paul, 2017; Alickovic et al., 2018; Mahmoodian
et al., 2019; Yu et al., 2020), SVM was the most popular. Fewer
studies employed the Bonn dataset, where deep learning and a

vector machine algorithm achieved greater accuracies compared
to a standard multilayer perceptron (MLP) with a single hidden
layer (Raghu and Sriraam, 2017; Vidyaratne and Iftekharuddin,
2017; Gong et al., 2020). Studies using EPILEPSIAE data all
employed standard ML but specificity metrics were not reported
for comparison (Manzouri et al., 2018; O’Leary et al., 2018;
Ghoroghchian et al., 2020). Those using the Mayo-UPenn show
similar accuracies with deep learning and a combination classifier
of standard supervised algorithms (Hosseini et al., 2017, 2018;
Truong et al., 2018).

Three datasets were employed by studies for SOZ or epileptic
focus localization. Two studies used the Bonn and Bern-
Barcelona datasets where a deep MLP (more than one hidden
layer) (Daoud and Bayoumi, 2020) outperformed a standard
SVM (Chen et al., 2017) by achieving greater specificity. The
only study that employed theMayo-UPenn dataset in this context
revealed a greater specificity with an LSTM-SVM in comparison
to an LSTM alone (Hosseini et al., 2020). This is particularly
interesting as it shows that combining a deep learning approach
for feature extraction and selection with a standard SVM model
may further outperform deep learning alone.

A single publicly available dataset was found amongst the
motor studies in the context of motor imagery classification.
Three of the 4 studies employing the BCI Competition III dataset
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FIGURE 4 | Types of iEEG recording and classification algorithm employed.

(A) Less than half of the publications employed electrocorticography

techniques such as strips and grids. The second most popular recording

method was depth electrodes followed by a minority of stereotactic EEG. One

third of the articles did not specify the type of recording method. (B) The

majority of studies employ standard supervised machine learning (ML) only,

while only 18% used deep learning (DL) only. Thirteen percent used both

standard and deep learning while a minority used unsupervised learning.

split their data into a training and testing group (Demirer et al.,
2009; Yang et al., 2012; Rashid et al., 2020) while one only
reported their validation accuracy (Li et al., 2015). Amongst the
standard ML methods, SVM (Demirer et al., 2009) achieved a
greater accuracy than LVQ (Li et al., 2015) and ANN (Yang
et al., 2012) in validation sets, but the ANN performed better in
testing. This may indicate that although the SVMmay performed
well in training, it appears to overfit the training data and did
not generalize as well as the ANN in this context. However, the
most recent study using this dataset employed deep learning
and achieved significantly greater accuracies compared to all
previous standard ML methods in both training and testing
(Rashid et al., 2020).

All studies involved in cognitive tasks or sleep staging used
unique datasets and therefore cannot be effectively compared

based on classification performance. Amongst the cognitive
task studies, two compared different types of algorithm within
their own dataset. Though detailed statistical comparison is not
possible, deep learning appeared to outperform linear regressions
and SVM (Arora et al., 2018). A second study revealed that
a combination of LSTM and CNN outperformed CNN alone
thereby further probing the potential of combined approach
(RaviPrakash et al., 2020). No sleep staging studies were reported
to compare different algorithms.

Influence of Feature Selection
In general, studies focusing on seizure detection and prediction
applied time-frequency representations of raw EEG signals.
This was accomplished with bandpass filtering or signal
decomposition using Fourier or wavelet transforms. Less
commonly other signal decomposition methods were also used
for this purpose, such as the Stockwell transform (Geng et al.,
2020), harmonic wavelets (Vidyaratne and Iftekharuddin, 2017)
or empirical mode decomposition (EMD) (Zheng et al., 2015).
These transforms yield frequency-domain representations of the
signal, namely the amplitudes of various frequency ranges in
a given signal segment or epoch. These amplitudes were most
often used to calculate statistical features such as the mean,
variance, and standard deviation (Alickovic et al., 2018; Meisel
and Bailey, 2019), as well as higher-order statistical features
including skew and kurtosis (Mirowski et al., 2009; Hosseini
et al., 2017). Amplitude at various frequencies were also be used
to calculate the envelope (Wang and Lyu, 2015; Meisel and
Bailey, 2019) (a function enclosing the peaks of the signal, or
instantaneous amplitude), or line length (Baud et al., 2018) to
capture spikes. Several algorithms in our dataset used bivariate
or multivariate (i.e., features calculated from pairs or groups
of electrodes) features including cross-correlation and phase-
locking value between pairs of signals, as well as higher-order
measures of synchrony such as non-linear interdependence,
dynamical entrainment, and entropy in difference of phases
(Mirowski et al., 2009; O’Leary et al., 2018).

Signal entropy is a measure of the predictability of a signal–
that is, disordered and unpredictable signals have high entropy
and vice versa. Studies reviewed herein used entropy of various
time series, in particular the raw EEG signal, frequency and
power spectra, phase, as well as multi-electrode signals (Hosseini
et al., 2017; Vidyaratne and Iftekharuddin, 2017; Mahmoodian
et al., 2019). A closely related measure to entropy is fractal
dimension, in that the latter measures the “roughness” of a signal
at different scales. The fractal dimension of frequency- or time-
domain signals can be estimated using box-counting methods, as
well as the more formal Hausdorff dimension.

SOZ localization depends on the detection and analysis of
signal phenomena such as HFOs, phase-amplitude coupling
(PAC), and interictal epileptiform discharges (IED). In particular,
HFOs have been proposed as epileptogenic biomarkers with
emerging prognostic utility in cortical resection outcomes (Jacobs
et al., 2010; Frauscher et al., 2017). These events are first detected
in raw EEG signals using well-validated detectors in the literature,
such as the line-length and Cimbalnik-Stead HFO detectors. The
rate of these events in specific electrodes are used to localize the
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FIGURE 5 | Applications of machine learning in intracranial EEG. The applications were divided into 4 categories: seizure, motor, cognitive tasks. Over half of the

articles were relevant to seizures. Four studies had more than one application thereby leading to a total of 111 applicants for 107 articles.

epileptic focus, either as the sole feature (Sumsky and Santaniello,
2019) or in an ensemble with other first-order or abstract features
(Klimes et al., 2019).

Features for speech production, motor imagery, and cognitive
tasks differed in key respects with those for seizure prediction.
While high-frequency oscillations in high-gamma (70-135Hz)
and ripple (135-200Hz) bands were most useful in seizure
prediction (Pan et al., 2018), features sources from lower
frequencies, such as theta (Livezey et al., 2019), alpha (Andrade
et al., 2017; Hosseini et al., 2020), and beta bands (Yang et al.,
2012) were most useful for speech, motor and cognitive tasks.
In addition, features for these three categories generally focused
on amplitude, spectral power and its transformations rather than
measures of disorder like entropy and fractal dimension (Pan
et al., 2018; Xie et al., 2018; Pailla et al., 2019; Thomas et al., 2019).
In particular, the normalized (or Z-transformed) log-spectral
power obtained from a morlet wavelet transform is commonly
used in speech and cognitive tasks (Ikeda et al., 2014; Schrouff
et al., 2016; Kragel et al., 2017; Arora et al., 2018; Weidemann
et al., 2019).

Hand-selected feature sets through these various methods
may be ensemble-optimized to reduce dimensionality and
redundancy, thereby making downstream classification more

accurate and computationally efficient. Parallel arrays of time-
varying features may be subject to dimensionality reduction
using principal component analysis (PCA) or its variants as a data
pre-processing step (Tomlinson et al., 2017; O’Leary et al., 2018;
Yu et al., 2020). Some algorithms rely on feature selection using
some optimization algorithm or neural network (Firpi et al.,
2007b; Antoniades et al., 2017; Abou Jaoude et al., 2020), or even
generating artificial features de novo using a genetic algorithm
(Firpi et al., 2007a; Yang et al., 2012; Sathish et al., 2017).

Measures such as fractal dimension and higher-order
moments have unintuitive physical correlates and may not
correlate with underlying biological signals. Thus, we compared
“higher-order” feature selection algorithms with approaches
with physically interpretable features to determine if differences
in model performance arise. Studies that used higher-order
feature-selection algorithms were defined as those in which
the feature selection/pre-processing workflows contained one
or more of: i) non-standard time-frequency transforms; ii)
dimensionality reduction of feature space; iii) abstract feature
selection algorithms; or iv) abstract features (entropy, fractal
dimension, etc.). When comparing seizure prediction/detection
algorithms that were tested on all 21 patients from the Freiburg
iEEG dataset, “standard” and “higher-order” feature selection
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approaches did not differ in overall sensitivity (mean 0.966 vs.
0.930, p = 0.1696 by Student’s t-test). This suggests that while
higher-order input features have few biological and physical
correlates, this penalty to interpretability does not necessarily
translate into better model performance.

DISCUSSION

The study of iEEG provides unprecedented insight into the
neural code, revealing the underpinnings of a variety of
physiological and pathological brain processes. At present, the
gold standard of iEEG analysis involves extraction of features
through digital signal processing and analyses by human experts.
However, ML is rapidly becoming a viable tool that may facilitate
better understanding of intracranial data. In the current review,
we describe the landscape of ML applied to iEEG. We also
compare and contrast various methods and provide a synopsis
of relative advantages and pitfalls.

Seizure
Machine learning applications to iEEG predominantly relate
to epilepsy. The majority of studies reviewed herein focused
on classification of signals as seizures or non-seizure events,
while others employed ML for seizure onset prediction. In
the latter, the algorithm identifies patterns in the pre-ictal
signal in order to pre-emptively predict seizure onset. This is
a particularly challenging task for humans to accomplish and
therefore an ideal opportunity for the implementation of AI tools
(Assi et al., 2019).

Deep learning algorithms demonstrate the best performance
in the classification of seizures and SOZ localization. Unlike an
ML-informed approach, current practices of seizure detection
are susceptible to inter-rater variability. A recent study studying
seizure detection from ECoG signal revealed an interrater
agreement of only 79% (Quigg et al., 2015). This supports the
potential role of using ML-powered algorithms to better inform
experts in complex cases thereby reducing variability.

Another benefit of ML-based tools is the ability to integrate
multiple data streams including EEG, electromyography (EMG),
accelerometry (ACM), electrocardiography (ECG), near-infrared
spectroscopy (NIRS), video, and electrodermal activity (EDA)
inputs beyond what can be achieved by a human interpreter
(Ulate-Campos et al., 2016). This type of approach has also
been applied for other applications relevant to neurology such
as early detection of Parkinson’s disease (Prashanth et al., 2016),
falls (Nahiduzzaman et al., 2020) and identification of cortical
dysplasia (Mo et al., 2019). One of the studies reviewed utilized
this multidimensional approach and achieved an accuracy of 95%
for surgical outcome prediction in epilepsy patients, albeit on an
in-house dataset (Memarian et al., 2015).

Enhanced SOZ localization is an emerging area for increased
ML utilization. Indeed, in medically-refractory epilepsy, post-
operative seizure freedom rates remain in the range of 50–
70% despite multimodal analytic tools to guide localization
and resection of the putative epileptogenic zone (Englot et al.,
2011, 2012). Accurate localization of the SOZ also remains
the strongest predictor of positive surgical outcome (Jacobs

et al., 2010). Through network-based analytic approaches, ML
algorithms can provide more detailed localizations of seizure
onset zones based on higher-order patterns not immediately
apparent to experts, with the potential to improve post-operative
outcomes. Studies reviewed herein demonstrate accuracies in
excess of 90% using deep learning and 80% with standard
ML (Chen et al., 2017; Daoud and Bayoumi, 2020; Hosseini
et al., 2020). A growing body of literature also supports the
use of ML in identifying spectral patterns such as high-
frequency oscillations that may further refine SOZ localization
(Jacobs et al., 2010; Weiss et al., 2019; Si, 2020).

Beyond epilepsy, the breadth of ML use in neurosurgical
outcome prediction spans multiple fields from neoplasms to
spinal disease to arteriovenous malformations, with promising
success. (Senders et al., 2018) Such applications of ML may not
only guide the decision-making process of neurosurgical teams
when selecting surgical candidates, but may also reveal patterns
previously unknown to influence surgical outcome.

Despite the significant potential of deep learning, there
are several challenges to its clinical deployment. First, deep
learning generally requires a significantly larger pool of data
compared with standard ML algorithms, and datasets of this
size may be clinically unavailable. A second limitation of deep
learning relates to its status as a “blackbox” algorithm whereby
the underlying decision-making process of the algorithm
cannot be readily understood. A great deal of contemporary
literature has examined this subject and is producing algorithmic
approaches to explain such “blackbox” models. Examples include
game theoretic “Shapley” values and permutation importance
which provide insight through backpropagation of altered to
retrospectively determined feature importance (Wong et al.,
2019; Sundararajan and Najmi, 2020). Conversely, standard ML
remains more transparent without the use of these complex
middle-ground interpreters. Given the reported performance
advantages of deep learning, we suggest that an area for
substantial future research should relate to the development
of clinical tools that may improve inherent sample sizes
(such as the development of large, centralized databases).
We also recommend that future work should also focus
on deeper development of backpropagation tools to explain
model predictions.

Interestingly, the realm of neuro-oncology may also be
impacted by these advanced AI technologies. A study reviewed
herein presented a novel proof of concept using ML to
differentiate healthy tissue from brain tumor tissue during awake
craniotomy (Boussen et al., 2016). Although the gold standard
of intraoperative mapping remains direct cortical stimulation,
Boussen et al. were able to discriminate tumoral tissue from
eloquent brain using an ANN based on spectral data from ECoG
electrodes with a classification accuracy of 93.6%. The finding
of profound spectral alteration within tumoral tissue when
compared to healthy brain may serve as a useful intraoperative
adjunct in awake surgery.

Motor
A significant number of machine learning applications to iEEG
relate to motor tasks. Our analysis of the model performances
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in this context provided a reminder on the importance of
model generalizability. Although Demirer et al.’s SVM (Demirer
et al., 2009) showed better validation metrics for motor imagery
classification with the BCI Competition III dataset compared to
Yang et al.’s ANN (Yang et al., 2012), the final testing accuracy was
significantly lower. This finding poses a critical reminder with
regards to overfitting. When a validation set is used to explicitly
optimize a model, the metrics must be interpreted with caution
as they may provide an overly optimistic estimate of model
performance, as seen in the Demirer study. Therefore, whenever
possible, performance should be evaluated on an unseen testing
set once the model has been finalized to accurately judge
generalization performance. As it relates to the classification of
motors tasks, given the small number of studies for comparison,
it is not possible to conclude whether an ANN or SVM would be
superior in terms of motor classification tasks. However, it does
underscore the importance of using unseen data to generate an
unbiased estimate of model performance.

The majority of movement classification studies employ
algorithms to differentiate motor tasks such as upper limb
movement (Yanagisawa et al., 2009; McMullen et al., 2014;
Thomas et al., 2019) and hand or finger gesturing (Scherer et al.,
2009; Pan et al., 2018; Xie et al., 2018; Pailla et al., 2019; Zhu et al.,
2020) based on electrophysiological recordings. One study used
a similar paradigm but trained their algorithm to differentiate
rest, movement intention andmovement execution (Combrisson
et al., 2017). By distinguishing the vital steps ofmotor preparation
based on neural correlates, ML in these cases can provide
insight on the importance of specific features such as oscillatory
phase and amplitude in understanding motor function. On the
other hand, motor imagery tasks require participants to imagine
performing a specific action. In these studies (Hill et al., 2006;
Shenoy et al., 2008; Demirer et al., 2009; Yang et al., 2012; Li et al.,
2015; Andrade et al., 2017; Rashid et al., 2020), algorithms were
trained to identify when a participant imagined a specific action.
Within the examined studies, we see that modernML approaches
can achieve a significant degree of accuracy–up to 98%-in these
classification tasks.

The relevance of combining iEEG signals with ML in
these domains can relate to better tailoring of neuroprostheses
to individual patient dynamics. Whereas, current myoelectric
prostheses follow a “one-size-fits-all” approach, the adaptability
of ML-based neuroprotheses could learn from the patient’s
individual movements and adapt to becomemore responsive and
precise over time. Indeed, a recent survey of upper limb prothesis
users reveals a desire for adaptable grip strength and individual
finger and thumb movements (Cordella et al., 2016). Just as
humans learn to adapt these composites of motor movements,
a brain-computer interface (BCI) powered by machine learning
may be able to learn to adapt as the user interacts with the
environment. Furthermore, recent studies indicate that BCI
prosthetics may play a role in reducing phantom limb pain
(Yanagisawa et al., 2020). The underlying mechanism for this
change has yet to be elucidated although it is believed to be related
to neuroplasticity in the sensoricortex.

The last sub-category of motor tasks relates to speech
production (Ramsey et al., 2018; Livezey et al., 2019). Here,

participants were asked to articulate sounds, phenomes or words
presented on a screen. Algorithms were trained to differentiate
these sounds based on iEEG. Unlike the traditional myoelectric
or keyboard-based voice prothesis, neuroprostheses involve a
BCI that can extract EEG signals to reconstruct the patient’s
speech. In this review, a single study (Makin et al., 2020)
employed ML to reconstruct sentences from iEEG signal in
a small number of participants, demonstrating a word error
rate (measure of incorrect predictions) of 3% compared to the
professional level of 5% (Xiong et al., 2017). Though these
applications are clearly within their infancy, speech prostheses
powered byMLmay similarly learn from each individual patient’s
speech patterns to improve speech reconstruction performance
with use.

Cognitive Tasks
The study of cognitive performance is unique in that the neural
circuitry and activity patterns remain poorly understood. This
has limited the development of neuromodulatory interventions,
such as deep brain or closed-loop stimulation that could
potentially treat deficits in subdomains of cognition. A key role
forML therefore lies in its potential to identify activity distributed
across neural assemblies related to specific tasks.

Within the studies we report, memory was the most common
cognitive task studied (Kragel et al., 2017; Arora et al., 2018;
Derner et al., 2018; Saboo et al., 2019; Weidemann et al.,
2019). Three studies employed standard ML including SVM
and LR although no comparisons were made between different
types of algorithm. Derner et al. (2018) obtained average
classification accuracies for memory recall in the range of 60%;
similarly, Kragel et al. (2017) presented AUCs of 0.59 and
0.68 with a classifier able to estimate memory task success
during retrieval and encoding, respectively. Weidemann et al.
(2019) developed LR models that performed better than chance
while also noticing that their memory performance prediction
classifiers could generalize to unrelated lists. This supports that
their classifier is trained to distinguish episodic memory without
discriminating for sematic content (Weidemann et al., 2019).
This has significant implications for the future development
of closed-loop stimulation powered by ML which may be able
to predict memory performance across a breadth of contexts.
Arora et al. (2018) is the only study that employed deep learning
for memory task performance classification and showed that
LSTM (mean AUC 0.72) modestly outperformed SVM (mean
AUC 0.68) which itself significantly outperformed LR (mean
AUC 0.59). Hence, there remains debate whether a modest
improvement in performance outweighs the lack of transparency
of LSTM in comparison with SVM.

The complexity of neural activity during cognitive tasks is
reflected in the relatively modest improvements in algorithm
classification performance when compared to chance. However,
despite these challenges, thesemodels have shown practical utility
in closed-loop stimulation for memory (Ezzyat et al., 2018).

Other studies in the cognitive realm employed machine
learning for unique purposes. Saboo et al. (2019) employed
a novel approach by comparing an unsupervised clustering
model with LDA and SVM to identify active electrodes during
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a verbal memory task. Their unsupervised method significantly
outperformed standard supervised ML reaching a sensitivity of
97% and specificity of 92.9% (Saboo et al., 2019). However, as the
ground truth for these labels was defined by expert reviewers, the
authors were unable to compare their performance with human
experts as the algorithm aimed to recreate the human decisions.
Nonetheless, this method provides a much faster alternative to
the highly time-consuming and subjective process of human
expert labeling (Saboo et al., 2019).

In another, SVMs were used to differentiate whether
participants were performing a mathematical or a memory task
and achieved best accuracies of 89.51, 87.18 and 76.80% for 3
participants (Schrouff et al., 2016). Another study byHermiz et al.
(2018) employed numerous approaches with a logistic regression
to differentiate different types of auditory and visual stimuli
achieving accuracies in the 80 to 95% range. Lastly, RaviPrakash
et al. (2020) developed a deep learning language comprehension
algorithm able to differentiate whether participants are actively
listening to a story, or listening to broadband noise. The authors
achieved a greater performance with a combination algorithm of
LSTM and CNN as opposed to CNN alone, with a classification
accuracy of 83%. Although several studies in the field of cognition
revealed a better performance of DL algorithms, the small sample
size limits definitive conclusions.

Sleep Staging
Studies identified in this review employed supervised (Kremen
et al., 2017; Rutigliano et al., 2018; Principe et al., 2019)
or unsupervised (Kremen et al., 2019) machine learning to
differentiate sleep stages in patients diagnosed with epilepsy.
Kremen et al. (2017) employed SVM to classify awake
states and slow wave sleep with an accuracy of 97.8% and
89.4% in healthy and epileptic tissue, respectively. A more
recent study by this group (Kremen et al., 2019) obtained a
94% accuracy with unsupervised learning for more complex
classification of three groups: awake states, N2 and N3 sleep.
Rutigliano et al. (2018) employed an ANN with a single
hidden layer to classify wakefulness and non-REM sleep with
an accuracy of 98.57%. As the labels were defined by a
human neurologist, a comparison to expert performance cannot
be established.

The primary advantage of ML in this context is the speed of
classification and accuracy of sleep-stage detection which would
be of importance to a variety of neuromodulatory therapeutics
that function during specific stages of sleep (Kremen et al., 2019).
An example of such an approach includes closed-loop auditory
stimulation during sleep for epilepsy (Fattinger et al., 2019).
Furthermore, such tools can lessen the healthcare burden related
to long waiting periods for patients awaiting formal sleep studies
(Rotenberg et al., 2010).

Limitations of ML Algorithms
The literature search conducted herein revealed that multiple
different types of ML algorithms can be employed in the context
of iEEG analysis and classification for variety of applications.
However, each algorithm faces its own set of limitations.
Generally, standard algorithms including SVM, KNN, and

decisions trees may not be suitable for very large datasets.
Training an SVM also involves numerous parameters which
can be a lengthy process to optimize, and they can be also be
biased if the number of features provided is greater than the
number of samples in the training set. KNNs also perform poorly
when using a large number of features and they are particularly
sensitive to outliers or missing values. Decision trees can become
hypersensitive to its input data whereby small changes in the
input can have drastic effects on the output classification. As
an ensemble of decision trees, RFs are can be limited by their
interpretability and are often considered a black box. Similarly,
deep learning models are generally criticized for their lack of
interpretability, although novel methods attempting to elucidate
how these complex multilayered models make decisions are
discussed in the literature (Montavon et al., 2018). A thorough
understanding of the dataset, as well as the goals of the ML
algorithm are critical to select appropriate models that are best
suited to data.

Future Recommendations
Exploring the current ML literature, we identified three
recommendations which may be useful for future work in ML
and iEEG. First, we believe that future studies should aim to
not only report performance metrics but provide a specific
reference point for comparison–whether the best previous
ML performance or contemporary expert performance. Such
comparisons can help ground clinical interpretation of the data
and identify the potential practical utilizations of ML in routine
clinical practice. Second, large datasets representative of the
target population may be advantageous over small datasets as
these are more likely to generalize well when applied to new
patients. This reinforces the importance of internal and external
validation to ensure that algorithms can perform equally well
with previously unseen data. Third, it may be advantageous
to employ explainable ML algorithms rather than “black box”
models in order to shed light on algorithms’ decision-making
processes. More transparent models may not only offer new
knowledge on important features of disease butmay also improve
the trust from the medical community to employ these models
clinically. A study centered around classification performance
may employ a more convoluted algorithm while sacrificing
interpretability while one aiming to provide new knowledge
on the classification process may sacrifice some performance
for interpretability.

CONCLUSIONS

Artificial intelligence is expected to have a significant impact
on the future practice of neurosurgery. By identifying complex
and hidden patterns that may be inconspicuous to human
counterparts, ML algorithms may not only offer more accurate
and more rapid tools to assist decision making but may also
elucidate the underlying mechanisms involved in a number of
neurological disorders.

This study achieved both of our aims: to assess the
current landscape of ML in iEEG, and to examine the
relative benefits and limitations of ML approached as they
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related to neurosurgical problems. We conducted a systematic
search across three databases encompassing the fields of
medicine, science and engineering and identified 107 articles.
We nonetheless recognize that some articles may have been
missed within our systematic search considering the rapid
rate at which papers within the realm of AI are currently
being published.

The studies reviewed herein reveal a promising future
of AI in iEEG by shedding light on the variety of ML
algorithms that can be employed to classify data in the
context of seizures, motor tasks, cognitive tasks and sleep.
Of these, supervised algorithms were most commonly
employed with most articles published in the realm of
seizures and epilepsy. The merits of using ML to tackle
neurosurgical problems are broad including the development
of more personalized neuroprostheses, standardizing seizure
detection compared to human analyses, predicting surgical
outcomes, and improving the speed and classification of
sleep stages.

As AI becomes increasingly utilized in medicine and surgery,
we intend for this work to serve as a resource to aid in
the interoperation and development of relevant technologies
employing ML in the context of iEEG analysis.
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