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Abstract

In contrast to AAV, Simian Virus 40 (rSV40) not inducing neutralizing antibodies (NAbs)

allowing re-treatment seems a promising vector for neonatal treatment of inherited liver dis-

orders. Several studies have reported efficacy of rSV40 in animal models for inherited liver

diseases. In all studies the ubiquitous endogenous early promoter controlled transgene

expression establishing expression in all transduced tissues. Restricting this expression to

the target tissues reduces the risk of immune response to the therapeutic gene. In this study

a liver specific rSV40 vector was generated by inserting a hepatocyte specific promoter.

This increased the specificity of the expression of hUGT1A1 in vitro. However, in vivo the

efficacy of rSV40 appeared too low to demonstrate tissue specificity while increasing the

vector dose was not possible because of toxicity. In contrast to earlier studies, neutralizing

antibodies were induced. Overall, the lack of a platform to produce high titered and pure

rSV40 particles and the induction of NAbs, renders it a poor candidate for in vivo gene

therapy.

Introduction

Crigler-Najjar syndrome (CNs), severe unconjugated hyperbilirubinemia, results from the

deficiency of UGT1A1, the enzyme that catalyzes the conjugation of unconjugated bilirubin

(UCB) with UDP-glucuronic-acid [1]. The conjugation of the hydrophobic UCB results in

water soluble bilirubin glucuronides that can be excreted into bile [2]. If not treated effectively

the severe form of CNs is lethal in childhood due to UCB accumulation to levels that cause

irreversible brain damage [3]. Both lethality and brain damage can be prevented by intensive

phototherapy, a cumbersome treatment that becomes less effective overtime [4, 5]. Most

patients therefore do need a liver transplant at some point in their life, a highly invasive treat-

ment with several challenges, like the need for re-transplantation, toxicities and adverse effects

associated with long-term immunosuppression [6]. In addition, because of the limited avail-

ability of donor organs the patients are at risk to develop brain damage while on the waiting

list. Novel therapies are therefore warranted, and recent clinical studies for other liver diseases,

like hemophilia B show the potential of liver directed gene therapy [7].
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The efficacy of several methods for liver directed gene therapy has been investigated for

CNs in UGT1A1 deficient rodent models. Non-viral gene therapy approaches using lipophilic

nanoparticles do show potential for delivery of mRNA resulting in effective but transient

reduction of serum bilirubin levels in a Ugt1a1 deficient rat [8]. For delivery of DNA the effi-

ciency of this non-viral method still is much lower compared to viral vectors. In addition, sev-

eral viral vectors, such as rSV40 [9], Adenoviral [10], Lentiviral [11] and Adeno Associated

Viral (AAV) [12] vectors and transposons [13] have been tested in the rat model, while only

AAV vectors were tested in Ugt1a1 deficient mice [14–16]. Of all these viral vectors, AAV vec-

tors are the most advanced and are now tested in clinical trials (NCT03466463 and

NCT03223194).

A major challenge for AAV mediated liver directed gene therapy is the presence of pre-

existing Neutralizing Antibodies (NAbs) in a significant percentage of the CN patients [17].

These NAbs will block hepatocyte transduction hampering effective treatment efficacy. The

induction of a high titer of NAbs upon the first AAV administration blocking re-treatment

with this vector, is another important hurdle [18]. Re-treating a patient may be required upon

loss of correction due to liver growth, when treating juveniles, or due to drug or alcohol

induced liver damage, or in patients receiving a sub-optimal vector dose such as those partici-

pating in the safety and efficacy studies [19].

In this respect, rSV40 vectors with a low pre-existing immune prevalence seem a promising

option [20, 21]. Also, the reported absence of a cellular response and absence of neutralizing

antibodies upon repeated SV40 administration, render this vector a promising candidate for

liver directed gene therapy [22, 23]. The recently developed novel production cell line ensures

production of batches that are free of large T antigen, a prerequisite for clinical application of

this vector [24].

A potential problem of clinical use of rSV40 vectors is the ubiquitous nature of the endoge-

nous SV40 early promoter. This promoter has been used widely in expression studies and is

suitable to provide expression of a transgene in many different cell types [25, 26]. For in vivo
application, this ubiquitous nature is a disadvantage because expression of the therapeutic

UGT1A1 protein, for instance in antigen presenting cells, could increase the risk of an adaptive

immune response. Restricting the expression of UGT1A1 to the hepatocytes will reduce this

risk significantly [12].

In this study an rSV40 vector with a liver specific promotor to drive the expression of a

reporter gene and the therapeutic hUGT1A1 gene was developed and its specificity, efficacy

and immunogenicity was tested in vitro and subsequently in vivo in a Ugt1a1 deficient mouse

model.

Material and methods

Production of viral vectors

To generate liver specific rSV40 vectors a hybrid liver specific promoter (HLP) [27, 28] was

inserted between the endogenous SV40 early promoter and the luciferase or hUGT1A1 cDNA,

using the ClaI and SpeI sites present in Pam310 from AMARNA [24] and rSV-hUGT1A1 [29].

rSV-Luc and rSV-HLP-Luc vectors were produced in using co-transfection with a Cre-recom-

binase expressing plasmid as reported previously [29] or by removal of the bacteria backbone

with Not-I, gel purification and re-ligation [24]. 3 and 6 days after transfection, the medium

was collected and viral vector was concentrated using a spin filter (100 KD, Lot R9NA92290,

Merck Millipore Ltd, Ireland). The rSV-hUGT1A1 and rSV-HLP-hUGT1A1 vectors used in
vitro and in vivo studies were produced in Super-Vero cells by AMARNA Therapeutics (Lei-

den, The Netherlands) as described [24].
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Transfection, transduction and Western blot analysis

104 cells per well were seeded in Costar white 96 well plates (ref 3610, corning incorporated

Kennebunk, ME, USA). The next day cells were transfected using 40 ng of plasmid and 80 ng

of PEI/well or transduced with rSV40 vector (400 vg/cell). Luciferase expression was deter-

mined 48 hours after transfection or 2–5 days after transduction by adding 100 μl lysis buffer

with substrate (ONE-Glo™ Luciferase, Promega), and after a 15 minutes incubation at room

temperature, luminescence was measured in the synergy HT, measurement time was 1 sec-

ond/well. UGT1A1 expression was determined using western blotting at 2 days after transfec-

tion or 2–5 days after transduction. The cells were washed once with PBS and lysed with RIPA

(50 mM Tris PH 8.0, 150 mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS)

buffer containing Protease-Inhibitor (1:100 dilution) (Roche, Germany) for 20 minutes. 30 μg

of cell lysate was loaded on a 10% Acrylamide gel and blotted to PVDF membrane (semi-dry

blotting, 1 hour, 0.05 mA per gel). A monoclonal antibody towards UGT1A1 (1:700 dilution)

followed by a goat anti-mouse HRP labeled (Dakoplast, the Netherlands) (1: 5,000) was used

to detect UGT1A1 as described previously [12]. An anti-UGT1 rabbit polyclonal antibody

(Santa Cruz Biotechnology, Santa Cruz, CA) [28] was used to detect UGT1A1 expression in

liver of Ugt1a1 deficient mice treated with rSV40 and for comparison, treated with rAAV8

and in wild type mice.

Animal study

FVB/NJ background Ugt1a -/- mice were treated with phototherapy (PT) until weaning and

housed in a temperature-controlled environment with 12/12-hour light-dark cycle, with a

standard diet and water ad libitum in the animal house unit [30]. The Ugt1a-/- mice have a one

nt deletion in exon 4 of the Ugt1a locus causing a shift in the reading frame introducing a stop

codon immediately after the deletion. Due to the absence of the co-substrate binding and

transmembrane domains the truncated enzyme is inactive, as published previously [14]. All

animal protocols were approved by the Animal Welfare and Ethics Committee of the Interna-

tional Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy. At 60 days

after birth, the mice were randomized and a single administration of rSV-hUGT1A1 (n = 7) or

rSV-HLP-hUGT1A1 (n = 8) or a PBS injection control (n = 7) by tail vein injection, 3 mice

with dose of 2x1011 vg/kg, and 4–5 mice with dose of 1.7x1012 vg/kg, respectively. Intravenous

of rSV40 was performed under isoflurane anesthesia. No surgical or other procedures requir-

ing anesthesia were performed. Animals were treated by researchers trained for animal care

and monitored daily for general appearance. No signs of stress (lack of appetite, body weight

loss, hair loss, stereotypic or aggressive behavior, etc.) or macroscopic alterations of vital func-

tions were observed throughout the experimental phase. Blood was sampled at 1, 3, 5 and 8

weeks after vector administration by facial vein puncture and collected in EDTA-containing

tubes. At the time of sacrifice mice were anesthetized with 5% isoflurane, cardiac puncture was

performed to obtain blood samples, and sacrificed by cervical dislocation. Plasma was obtained

by centrifuging at 400 g for 15 min at room temperature, and stored at -80˚C for further analy-

sis. Total bilirubin determination in plasma was performed following the instructions of the

supplier (BQ KITS) as previously described [30]. Organs were directly frozen in liquid nitro-

gen and stored at -80˚C for further analysis.

Determination of rSV40 neutralizing antibodies

SV40 NAbs titer in mice plasma were determined using the protocol reported for determina-

tion of the NAbs titer towards AAV, using serial dilution of plasma in FCS after complement

inactivation by incubation at 56˚C for 30 minutes [31]. Briefly, 104 COS-1 cells/well were
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seeded in costar white 96 well plates, in Dulbecco’s modified Eagle’s medium (DMEM)

(Lonza/Westurg) containing 10% fetal calf serum (FCS), 100 U/ml penicillin/streptomycin

(Invitrogen) and 20 mM L-Glutamine (Lonza/Westurg) and cultured overnight at 37˚C in 5%

CO2. The next day plasma samples were diluted in 7 steps on a half-log scale in FCS. Diluted

samples were incubated with an equal volume of 2.5x109 vg/ml rSV-Luc at 37˚C for one hour.

The maximal transduction control, set to 100%, consisted of rSV-Luc incubated with FCS

only, the negative control consisted of FCS diluted with medium; both were incubated under

the same conditions. After this pre-incubation, 7.5 μl per well of each dilution was added to

the COS-1 cells in triplicate. Positive and negative controls were performed in six-fold. The

cells were incubated at 37˚C, 5% CO2, and after two days the luciferase expression was deter-

mined using ONE-Glo™ Luciferase assay system (Promega), according to manufacturer’s

protocol.

Anti-UGT1A1 antibody assay

An indirect ELISA approach was used to detect the anti-UGT1A1 IgG in the mice serum as

previously described [32]. Per well of a 96 ELISA plate, 50 μl of recombinant human UGT1A1

protein (Bio Connect) (1 μg/ml) in coating buffer (15 mM Na2CO3, 35 mM NaHCO3) was

added and incubated overnight at 4˚C. The next day the UGT1A1 coating solution was

replaced with 100 μl of blocking buffer, 1% gelatine in phosphate-buffered saline (PBS). After

1 hour, the blocking was removed and 50 μl serial dilutions of heparin plasma samples diluted

in washing buffer were added to the wells and incubated for 1,5 hours at room temperature.

After 3 washings with washing buffer 0.05% Tween-20 in PBS, UGT1A1 binding mouse

immunoglobulins were detected with horseradish peroxidase (HRP) conjugated anti-mouse

IgG 1:1000 dilution in conjugation buffer containing 4/5 blocking buffer and 1/5 washing

buffer followed by o-phenylenediamine (Sigma) conversion.

Statistical analysis

Statistical significance was determined using GraphPad Prism 8.3.0 (GraphPad Software, La

Jolla, CA).

Results

Insertion of a liver-specific promoter in rSV40 increases transcriptional

activity in liver-derived cells

To restrict the expression provided by an SV40 vector to the liver, a liver specific promoter was

inserted between the SV40 early promoter and the luciferase gene generating the rSV-HLP-

Luc plasmid. In both human hepatoma cell lines, Huh7 and HepG2, transfection of the

rSV-HLP-Luc plasmid provided a higher luciferase expression than the construct containing

only the endogenous SV40 promoter, rSV-Luc (Fig 1A and 1B). In non-hepatoma cell lines,

COS-1 and HEK293T, the latter was clearly more active (Fig 1C and 1D). This indicates that

the liver-specific promoter is functional and significantly increases transcriptional activity in

liver-derived cells. To investigate if the tissue-specific promoter remains functional in the viral

vector, both plasmids were used to produce recombinant SV40 vector. The hepatoma and

non-hepatoma cell lines were transduced using 400 vg/cell of rSV40, and luciferase expression

was determined at 2–5 days after transduction. In both hepatoma cell lines transduced with

the rSV-HLP-Luc vector, the luciferase intensity was significantly higher than in cells trans-

duced with the rSV-Luc (Fig 2A and 2B). In contrast, in both non-hepatoma cell lines, the

rSV-Luc vector provided a higher luciferase intensity (Fig 2C and 2D).
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To confirm that insertion of a liver-specific promoter in SV40 gene delivery vector also can

improve expression of a therapeutic gene in hepatoma cells, rSV-hUGT1A1 and rSV-HLP-

hUGT1A1 vectors were generated and used to transfect human hepatoma and non-hepatoma

cell lines. The UGT1A1 expression was measured by western blot at 48 hours after transfection

and demonstrated that presence of the HLP resulted in a significant increase in HepG2 cells

(Fig 3A and 3B). In Huh7 cells, the difference in UGT1A1 expression between both vectors

did not reach significance due to large variation. Again in non-hepatoma cell line HEK293T

cells, the expression of HLP-driven UGT1A1 was significantly lower compared to the cells

transfected with rSV-hUGT1A1. This increased transcriptional activity in liver-derived cells

induced by presence of the HLP promoter was confirmed upon transduction of these cell lines

with the rSV vector generated from these plasmids (Fig 3C and 3D).

In vivo, the poor efficacy of rSV vectors is not improved by the insertion of

a liver specific promoter

Upon showing that a liver specific promoter enhances transgene expression in hepatocyte-

derived cells, compared to other cell types, the efficacy of both vectors was studied in vivo.

2x1011 vg/kg rSV-hUGT1A1 or rSV-HLP-hUGT1A1 were injected in the tail vein of 60-day-

old Ugt1a -/- mice. Upon injection the effect on serum bilirubin was monitored overtime. This

resulted in at some time points significant, albeit a minor and far from therapeutic, decrease of

serum bilirubin in mice injected with rSV-hUGT1A1 (Fig 4). In the mice treated with the liver

specific rSV-HLP-hUGT1A1, the serum bilirubin levels were comparable to that in untreated

controls, indicating that inserting the hepatocyte specific promoter does not improve in vivo
efficacy of this vector. A possible explanation for the apparent lower in vivo efficacy of the

rSV-HLP-hUGT1A1 compared to the rSV-hUGT1A1 vector could be a lack of liver tropism of

the SV40 vectors, since the latter would result in transduction of many tissues upon injection

into a peripheral vein. The bio-distribution of SV40, determined by the ratio between the

human UGT1A1 gene carried by the vector and the mouse β-actin gene, showed presence of

rSV vector genomes in several tissues. Although in several animals these levels were below

detection, the bio-distribution results did not support a specific liver tropism for rSV40 upon

injection into a peripheral vein (Table 1). Subsequently, in a higher dose of 1.7x1012 vg/kg

rSV-hUGT1A1 and of rSV-HLP-hUGT1A1 was tested (Fig 4). At the time of injection, the

Fig 1. Insertion of a liver-specific promoter in rSV40-Luc plasmid enhances specific expression. HepG2 (A), Huh7 (B), COS-1 (C), or HEK293T (D) cells were

transfected with 40 ng plasmid/104 cells in a well of a 96 well plate, of rSV-Luc, rSV-HLP-Luc or rSV-GFP, respectively in 6 fold. 48 hours after transfection, luciferase

expression was quantified by determining the luminescence intensity. � p<0.05, �� p<0.01, ���� p<0.0001. Data represent the mean ± SD. Statistical significance was

determined by One-way ANOVA test.

https://doi.org/10.1371/journal.pone.0250605.g001
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serum bilirubin levels in this experiment were lower due to the natural variation occurring in

this model. Administration of the higher vector dose did not result in therapeutic correction

albeit that after one week the levels in the mice receiving rSV-HLP-hUGT1A1 did have lower

serum level. The hUGT1A1 expression in liver was determined by western blot showing sig-

nals in mice treated with rSV-hUGT1A1 or rSV-HLP-hUGT1A1 comparable to that in PBS

treated Ugt1a1 deficient mice (Fig 4D). In contrast administration of a 10 fold lower dose of

AAV8 vector, containing hUGT1A1 behind the same liver specific promoter (AAV-L), did

show presence of hUGT1A1 while treatment with a comparable dose of this vector (AAV-H),

showed a very prominent presence of UGT1A1. Two of the mice injected with rSV-hUGT1A1
died within 24 hours after the injection.

Intravenous injection of rSV40 does induce a neutralizing antibody

response

Absence of a humoral response towards rSV40 would allow repeated administrations of this

vector. Retreatment in case of loss of efficacy or upon sub-optimal dosing would be a major

Fig 2. Insertion of a liver specific promoter in rSV40 vectors enhances specific expression of reporter gene. 400 vg/cell of rSV40-Luc or rSV40-HLP-Luc were

added to 104 cells of HepG2 (A), Huh7 (B), COS-1 (C), or HEK293T (D) in a well of a 96 well plate (n = 3). After 2–5 days the luciferase expression was quantified by

measuring the luminescence using the synergy HT machine. � p<0.05, �� p<0.01, ��� p<0.001. Data represent the mean ± SD. Statistical significance was

determined by Two-way ANOVA test.

https://doi.org/10.1371/journal.pone.0250605.g002
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advance for rSV40 compared to AAV and Adenoviral vectors. To determine the presence of

neutralizing antibodies COS-1 cells were transduced with rSV-Luc vector pre-incubated with

serum from naïve mice or mice injected with rSV40. After 48 hours transduction efficiency

was determined by measuring the luciferase expression in COS-1 cells. Pre-incubation with

serum from mice injected with rSV40 did impair luciferase expression, indicating that intrave-

nous administration of rSV40 does induce neutralizing antibodies towards this vector in vivo.

Comparing to the mice before administration, the anti-SV40 neutralizing antibody titer

increased in rSV40 treated mice but not in PBS treated ones (Fig 5). No humoral response

towards the encoded hUGT1A1 was detectable irrespective of the presence of the hepatocyte-

specific promoter restricting hUGT1A1 expression to the liver or to several tissues when its

expression was controlled by the ubiquitous SV40 early promoter (S1 Fig).

Fig 3. Insertion of a liver specific promoter in rSV40 provides specific expression of a therapeutic gene. (A) 105 cells of HepG2, Huh7, COS-1, or HEK293T cells

were transfected with 1 μg of rSV-hUGT1A1 or, rSV-HLP-hUGT1A. 48 hours later, UGT1A1 expression was determined by western blotting and quantified

normalizing to calnexin, a membrane protein (B). (C) 105 cells of Huh7 and COS-1 cells were transduced with 400 vg/cell of rSV-hUGT1A or rSV-HLP-hUGT1A1.

After 2–5 days the cells were lysed and UGT1A1 expression was detected by western blotting and quantified by western blotting normalized to calnexin. All

experiments were repeated 3–5 times. � p<0.05, �� p<0.01, ��� p<0.001, ���� p<0.0001. Data represent the mean ± SD. Statistical significance was determined by two-

tailed Student t test.

https://doi.org/10.1371/journal.pone.0250605.g003
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Discussion

The data reported in this study show that insertion of a liver-specific promoter results in more

specific expression of transgenes encoded by rSV40 vectors in vitro. The insertion of a

Fig 4. Insertion of liver specific promoter does not improve the low efficacy of rSV40 vectors in vivo. (A) 60-day-old Ugt1a -/- mice were treated with rSV-

hUGT1A1, rSV-HLP-hUGT1A1, or PBS via tail vein injection. (B-C) Total serum bilirubin (mg/dL) was monitored overtime until week 8 after injection. (D) Presence

of UGT1A1 in Ugt1a1 deficient mice treated with 1x1011 vg/kg of AAV8-hUGT1A1 (AAV L), PBS, 1.7x1012 vg/kg of rSV-hUGT1A1, 1.7x1012 vg/kg of rSV-HLP-

hUGT1A1, or 1x1012 vg/kg of AAV8-hUGT1A1 (AAV H), and in a non-treated wild type mouse (WT). Calnexin was used as loading control on the same membrane.

Data represent the mean ± SD. Statistical significance was determined by Two-way ANOVA with Dunnett’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0250605.g004

Table 1. Bio-distribution of rSV vector genomes.

Treatment Liver Spleen heart colon jejunum muscle brain

SV-hUGT1A1 mouse 1 UD 4.4E-03 UD 3.4E-03 UD UD UD

SV-hUGT1A1 mouse 2 UD UD UD 4.0E-03 UD 3.4E-03 8.3E-03

SV-hUGT1A1 mouse 3 UD 3.9E-03 7.0E-03 3.3E-03 UD 2.2E-03 UD

SV-HLP-hUGT1A1 mouse 4 3.3E-03 UD UD 4.2E-03 4.4E-03 UD UD

SV-HLP-hUGT1A1 mouse 5 3.7E-03 4.5E-03 UD UD UD 4.3E-03 6.6E-03

SV-HLP-hUGT1A1 mouse 6 UD UD UD 4.9E-03 2.9E-03 4.1E-03 UD

Note: the data represents the value of 2x(UGT1A1/B-actin), UD represents undetectable.

https://doi.org/10.1371/journal.pone.0250605.t001
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hepatocyte specific promoter did not improve the efficacy of the rSV40 vector in vivo. A dose

of 1.7x1012 vg/kg of these vectors did not result in a relevant reduction of serum bilirubin lev-

els. Intravenous administration of both rSV40 vectors did result in the induction of neutraliz-

ing antibodies in all animals, rendering effective retreatment with this vector most unlikely.

In vivo gene therapy using rSV40 vector has been reported for unconjugated hyperbilirubi-

nemia [9]. A replication-deficient rSV40 mediated a long-term amelioration of jaundice in

Gunn rats. In that study, serum bilirubin levels were lowered by 35% upon a single injection,

while in this study the reduction using a similar rSV40 vector in a UGT1A1 deficient mouse

model is only about 10%. The different administration route, peripheral vein versus portal

vein, may explain the difference in correction since upon peripheral vein injection no clear

liver tropism for rSV40 was seen. The bio-distribution showed transduction of many tissues by

rSV40 albeit all at a low level (Table 1). The lack of a liver tropism can also explain the better

performance of the non-hepatocyte specific rSV40 vector since UGT1A1 expression in non-

hepatic tissues also provides effective conjugation of UCB [15, 33, 34]. Administration into a

peripheral vein of AAV8, a vector that does display a clear liver tropism, provides a much

more efficient correction. A dose of 1x1011 vg/kg results in therapeutic correction of serum bil-

irubin levels [28] and in contrast to both rSV40 vectors, in clearly detectable levels of UGT1A1

in the liver (Fig 4D). In the Gunn rat, at least three repeated administrations of 3x109 I.U./ rat

of 200–300 g, resulting in a total dose of 3x1010 I.U./kg of rSV40 were needed to provide a

reduction of serum bilirubin by 70% [9]. In this animal model, AAV does provide therapeutic

correction upon peripheral administration [28]. A dose of 5x1012 AAV8 vg/kg comparable to

2x108 Huh7 transducing AAV8 units, results in sustained and complete normalization of

serum bilirubin [35]. These data indicate that the liver transduction efficacy of AAV vectors is

higher than that of rSV40 vectors. This difference in liver transduction efficacy between AAV

and SV40 vectors in rats has also been observed by others [36]. In that study a dose of 3.4x109

vg of AAV1-IGF1 provided a comparable expression of IGF-1 as 1x1011 vg of rSV40-IGF-1 per

rat, which is a 30 fold higher dose. Although, comparing doses of different viral vectors is

Fig 5. Intravenous injection does induce neutralizing antibodies towards rSV40. 60-day-old Ugt1a -/- mice were treated with a lower dose of 2x1011 vg/kg of rSV-

hUGT1A1 vector (n = 3), or rSV-HLP-hUGT1A1(n = 3), and a higher dose of 1.7x1012 vg/kg of rSV-hUGT1A1 vector (n = 4), or rSV-HLP-hUGT1A1(n = 5) via tail

vein injection. Serum samples at 8 weeks after vector administration were tested for presence of NAbs towards rSV40 vectors using an in vitro transduction assay.

NAbs titers are expressed as the highest serum dilution that inhibited AAV transduction by� 50% compared with the control without serum. Pre represents before

vector injection. Data represent the mean ± SD. Statistical significance was determined by Ordinary one-way ANOVA with Dunnett’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0250605.g005
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complicated by different titration methods, the higher efficacy seen with AAV vector renders

that vector more suitable for in vivo gene therapy for inherited liver disorders. Another major

hurdle for rSV40 vectors is the absence of a production and purification protocol to generate

sufficiently high titered vector batches, which rendered testing the therapeutic efficacy of

higher rSV40 vector doses in vivo is not possible because of toxicity. The cause of the toxicity

seen in two out of four mice upon injection of the high dose of rSV-hUGT1A1 suggest the

presence of impurities in our vector batch.

In the Gunn rat, repeated injections with rSV-hUGT1A1 did not inhibited liver transduc-

tion of rSV40-HBs antigen [9]. This indicated that rSV40 did not induce neutralizing antibod-

ies. Others also reported the absence of NAbs upon injection of rSV40 [22]. Absence of a

NAbs response would be a major advantage for rSV40 compared to AAV since it renders effec-

tive retreatment feasible upon loss of efficacy. Using an in vitro NAbs assay, comparable to

that used to test for a response towards AAV, we observed the induction of an immune

response that prevented transduction in vitro. At 8 weeks after rSV40 administration, serum

from animals treated with rSV40 completely prevented the transduction of COS-1 cells. The

observation that in Gunn rats re-administration was effective may be explained by the high

dose of rSV40 administered locally to the liver via the portal vein. Presence of NAbs against

AAV can, at least in part, be overcome by a high dose of vector or by co-administration of

empty particles as a decoy [37]. Upon portal delivery the amount of NAbs present locally may

not be sufficient to block the liver transduction completely. Although we cannot exclude that

the presence of impurities in the vector batches used may have had an adjuvant effect resulting

in a more prominent immune response seen in this study. However, the production system

used in these studies is very similar to that used in those Gunn rat studies rendering such an

explanation less probable.

Presence of pre-existing immunity towards viral gene therapy vectors is a challenge for

AAV mediated in vivo gene therapy for liver disorders. The presence of NAbs renders about

30% of the Crigler-Najjar patients screened not eligible for the ongoing trial [17]. In this

respect, the lower pre-existing immunity towards rSV40 is an advantage. In the general popu-

lation seroconversion towards SV40 immunity is observed at a young age [38]. Most studies

report about 10 to 25% of all subject have antibodies to this vector. The percentage of the pop-

ulation that has neutralizing antibodies towards SV40 is much lower [21, 39]. Although this

shows that pre-existing immunity towards rSV40 is clearly lower than that reported for AAV,

these studies do report presence of neutralizing antibodies in the normal healthy population.

This presence supports our finding that injection of rSV40 vectors does induce neutralizing

antibodies, which argues against the possibility of effective re-administration indicating this

remains a hurdle for rSV40 vector also.

Conclusion

Our data indicate that a platform to generate high titered pure rSV40 vector batches is needed

to support the potential use of rSV40 as an additional gene therapy vector to treat inherited

liver diseases. The current vector batches have, compared to for instance AAV, a much lower

transduction efficacy and lack the previously reported immune privilege could not be repro-

duced. Presently, the only advantage of rSV40 is the lower pre-existing immunity towards this

vector in the general population.

Supporting information

S1 Fig. Absence of antibodies towards hUGT1A1 in serum of mice treated with rSV

hUGT1A1 or rSV-HLP-hUGT1A1. 60-day-old Ugt1a-/- mice were treated with 2x1011 vg/kg
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of rSV-hUGT1A1 vector (n = 3), or rSV-HLP-hUGT1A1 (n = 3) via tail vein injection. At 8

weeks after vector administration the level of anti-hUGT1A1 IgG in serum was determined.

Data represent the mean ± SD.
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