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Abstract: Leaf senescence, either as a natural stage of development or as an induced process under
stress conditions, incorporates multiple intricate signaling pathways. At the cellular level, retrograde
signals have been considered as important players during the initiation and progression of senescence
in both animals and plants. The plant-specific single-strand DNA-binding protein WHIRLY1 (WHY1),
a repressor of leaf natural senescence, is dually located in both nucleus and plastids. Despite
many years of studies, the myth about its dual location and the underlying functional implications
remain elusive. Here, we provide further evidence in Arabidopsis showing that alteration in WHY1
allocation between the nucleus and chloroplast causes perturbation in H2O2 homeostasis, resulting in
adverse plant senescence phenotypes. The knockout of WHY1 increased H2O2 content at 37 days
post-germination, coincident with an early leaf senescence phenotype, which can be rescued by
ectopic expression of the nuclear isoform (nWHY1), but not by the plastid isoform (pWHY1). Instead,
accumulated pWHY1 greatly provoked H2O2 in cells. On the other hand, exogenous H2O2 treatment
induced a substantial plastid accumulation of WHY1 proteins and at the same time reduced the
nuclear isoforms. This H2O2-induced loss of nucleus WHY1 isoform was accompanied by enhanced
enrichments of histone H3 lysine 9 acetylation (H3K9ac) and recruitment of RNA polymerase II
(RNAP II) globally, and specifically at the promoter of the senescence-related transcription factor
WRKY53, which in turn activated WRKY53 transcription and led to a senescence phenotype. Thus,
the distribution of WHY1 organelle isoforms and the feedback of H2O2 intervene in a circularly
integrated regulatory network during plant senescence in Arabidopsis.

Keywords: WHIRLY1 (WHY1); H2O2; histone lysine modification; dual-location; plant senescence;
Arabidopsis thaliana

1. Introduction

Organelles, especially plastids, mitochondria, and peroxisomes, are considered as the sensors
for cellular stress signal perception, and the generated signals are usually transduced to the nucleus
leading to the occurrence of nuclear events, a process referred to as retrograde signaling [1–3]. For
example, several retrograde signaling molecules, such as O2 and H2O2 from plastids, evoke regulatory
information to the cytosol and nucleus via downstream messengers and/or a complex signaling
network [4,5]. Other plastid signal molecules, including 3′-phosphoadenosine 5Ȳ-phosphate (PAP, a
phosphonucleotide) [6], methylerythritol cyclodiphosphate (MEcPP, an isoprenoid intermediate) [7],
heme [8,9], and malate [10], are also reported. In other cases, a signal transduction may be trigged via
the movement of proteins from organelles to the nucleus, especially those of the membrane-bound
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proteins or dual-targeting transcription factors. Among them, the transmembrane domain-containing
PHD type transcription factor (PTM), the plastid envelope DNA-binding protein (PEND), and the
dual-located single-stranded DNA-binding protein WHIRLY1 are known examples [4,5]. The PTM is
released from the chloroplast envelope through proteolytic cleavage and transmits multiple retrograde
plastid signals to the nucleus by activating the ABSCISIC ACID INSENSITIVE 4 (ABI4) transcription
factor [11]. Moreover, transcription factors from the APETALA2/ethylene-responsive element binding
protein family (AP2/EREBP) are involved in retrograde signaling by integrating metabolic, hormonal,
and environmental signals [12], and the GOLDEN2-LIKE transcription factors (GKLs) participate in
activating retrograde immunity signals in response to phytochrome B (PhyB) [13–16].

The dually located WHIRLY proteins have three members (WHY1, WHY2, and WHY3) in most
dicotyledons, and WHY3 is not found in monocotyledons. All the three proteins were found to be
located in nucleus, as well as in plastids (WHY1 and the somehow redundant WHY3) or mitochondria
(WHY2). They were shown to perform several cellular functions at both locations [17–20]. In the
nucleus, WHIRLY proteins were found to regulate the expression of genes related to defense and
senescence by binding at their promoters [21,22]. The WHY1 protein bound to the promoter of WRKY53
in a development-dependent manner during early senescence in Arabidopsis [23], while in barley the
ortholog could activate the HvS40 gene during natural and stress-related senescence [24]. In tomato,
ortholog WHY1 regulated the SlPsbA gene in response to chilling treatment [25]. The involvement
of WHY1 protein in modulating telomere length by binding to the AT-rich region of telomeres has
also been suggested [26]. We recently found that Arabidopsis WHY1 accumulation in the nucleus
altered the enrichment of di/trimethylation of histone H3 at lysine 4 (H3K4me2/3) and H3K9ac and the
recruitment of RNA polymerase II (RNAP II) at the promoter’s AT-rich region of WRKY53, repressing
WRKY53 transcription [27].

In plastids, the WHY1 protein is located at the boundary between thylakoids and nucleoids.
This plastid isoform could be detected in nucleoids either as part of the so-called transcript active
chromosome (TAC) components [28,29] or as an RNA-binding protein [30], with the latter suggested
to function in organelle genome stability via assisting accurate DNA repair [31–33]. In addition,
WHY1 association with intron-containing RNA was also observed, hinting at a role in intron splicing
in the chloroplasts [29,30]. Under stress conditions, WHY1 might also be involved in chloroplast
photosynthetic redox sensing by producing retrograde signals to the nucleus [19,34,35]. The knockdown
of WHY1 in barley led to reprogramming of genes encoding chloroplast proteins and a decline in
photosynthetic sensitivity to low-nitrogen conditions, an outcome which might be attributed to the
disruption of communication between the plastids and the nucleus [36]. A simultaneous loss of
WHY1, WHY3, and the chloroplast DNA polymerase 1B (Pol1B) produced an acute yellow-variegated
phenotype, correlating with significant expression changes in numerous oxidation-related nuclear
genes [33]. Moreover, the why1why3polIb-1 mutant line showed decreased photosynthetic electron
transport (PET) efficiency and enhanced accumulation of reactive oxygen species (ROS) compared to
wild-type plants [33]. It seemed that both isoforms and locations of WHY1 were critical for its roles in
senescence repression or might be relevant to retrograde signaling; however, it was unclear how the
dual localization was regulated.

We have previously shown that the nuclear isoform WHY1 is required for delayed leaf senescence
via its repression of senescence-related genes, such as WRKY53, Senescence Associated Gene 12 (SAG12),
and NADH dehydrogenase F (NDHF); and that the accumulation of this nuclear isoform depended
on phosphorylation of the proteins by Calcineurin B-Like-Interacting Protein Kinase14 (CIPK14),
a SNF1-related protein kinase [20,23]. Furthermore, the plastid isoform of WHY1 interacted with
the light-harvesting protein complex I member (LHCA1), and the loss-of-function mutant why1 was
compromised in both gene expression and functionality for photosystem I (PSI) and light-harvesting
complexes (LHCI) [37]. The ectopic overexpression of the plastid isoform of WHY1 did not truly
reverse the loss-of-function mutation, indicating a tight control of proper allocation under normal
physiological conditions, possibly by a global signaling pathway linking the chloroplast’s function and
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nuclear regulation [37]. Here, we found that the plastid isoform of WHY1 had a negative effect on H2O2

homeostasis, while the nuclear isoform of WHY1 was required for balancing the homeostasis of H2O2

in the cells. H2O2 treatment reduced the distribution of WHY1 proteins in the nucleus, but increased
the plastid isoforms. Our results demonstrated the involvement of H2O2 in regulating the allocation of
WHY1 between the nucleus and chloroplast, with respective to leaf senescence in Arabidopsis.

2. Materials and Methods

2.1. Plant Materials and Culture Conditions

Wild-type plants of Arabidopsis thaliana (L.) Heynold ecotype Columbia (WT) were used. The
T-DNA insertion lines why1 (Salk_023713) [23], peroxidase 39 (prx39) (SAIL_757_G03), and peroxidase
33 (prx33) (SALK_062314) were obtained from the European Arabidopsis Stock Centre, and the
homozygous plants were selected and confirmed by PCR and RT-PCR using genomic DNA (gDNA)
and mRNA as templates, respectively, with primers listed in Supplementary Table S1. The antisense
WHY1 (awhy1) line (35S:WHY1RNAi) has been reported previously [23].

To generate transgenic plants overexpressing WHY1 organelle isoforms differently localized in
the nucleus or dually located in plastids and the nucleus, the plasmids nWHY1-HA, pnWHY1-HA, and
WHY1 own promoter driving WHY1 coding sequence plus HA tag Pwhy1:pnWHY1-HA (PWHY1-HA)
were used, as described in a previous study [23]. The pWHY1-HA plasmid, kindly provided by
Krupinska’s lab, harbored the construct of the full-length WHY1 plus the nuclear export peptide
sequence fused to an hemagglutinin (HA) tag for producing WHY1 only in plastids [19]. All cassettes
were sub-cloned into binary vectors driven by the 35S promoter [20,23]. All these overexpression
lines were constructed in the why1 background and the transgenic plants were selected by spraying
0.1% (w/v) glufosinate-ammonium (Basta, Bayer Crop Science, Germany). Homozygous transgenic
plants were obtained at the third generation (T3). The expression of WHY1 in these mutants were
monitored by both quantitative RT-PCR and immunoblot detection using an antibody against the HA
tag (Supplementary Figure S1).

Seedlings germinated on wet filter paper were subjected to vernalization at 4 ◦C for 2 d, then
transplanted to vermiculite and maintained in a climatic chamber (100 µE/h, 13 h of light at 22 ◦C/11 h
of dark at 18 ◦C, under 60% relative humidity). The rosette leaves were labeled with colored threads
after emergence, as described previously [38].

For H2O2 treatments, plants were kept without watering for two days before spraying with 0.3%
hydrogen peroxide solution. Rosette leaves were collected at 1,4,6, and 8 h after sprays and stored
in liquid nitrogen or at −80 ◦C for later use in RNA or protein isolations. Mock treatments used
distilled water.

2.2. Chlorophyll Fluorescence and Concentration Measurement

For chlorophyll fluorescence and concentration measurement, the seventh leaf from individual
plants at different stages of development was sampled. After dark incubation for 15 min, chlorophyll
fluorescence was measured at three spots on each leaf taken from at least 12 individual plants using a
Pocket PEA chlorophyll fluorimeter (Hansatech Instruments, Norfolk, UK). Chlorophyll concentration
was determined with Dualex 4 (FORCE-A, Paris, France). Data were shown as mean ± SD.

2.3. Measurement of H2O2 Content in Rosette Leaves

Quantitative H2O2 measurements were made using the Amplex Red Hydrogen Peroxide/

Peroxidase Assay Kit (Molecular Probes, Thermo Fisher China, Shanghai, China) following the
manufacturer’s instructions. Briefly, leaves were ground into fine powders in liquid nitrogen and
30 mg of the powders was suspended in 200 µL of the extraction buffer (25 mM Tris-HCl buffer,
pH 6.5). The supernatant was collected after centrifugation at 12,000 rpm for 15 min at 4 ◦C and
used for the quantitative assay. The measurement of 560 nm absorbance was performed using Tecan
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Infinite F200/M200 (Tecan, Männedorf, Switzerland) equipped with a microplate reader (FlexStation3,
Molecular Devices, San Jose, Unite states). H2O2 concentration was calculated based on the fresh
weight of the leaves used.

2.4. Staining of Hydrogen Peroxide

The visualization of H2O2 accumulation in leaves was performed using the 3′,3′-diaminobenzidine
(DAB) staining method according to Yang et al. (2014) and Huang et al. (2019) [39,40]. Detached
rosette leaves were vacuum filtered in 20 mL staining solution containing 1 mg/mL DAB in 50 mM
Tris-HCl, pH 5.0 for 10 min, and incubated in darkness at room temperature for 12 h. The stained
leaves were clarified by boiling in a mixture of ethanol, glycerol, and acetic acid (3:1:1, v/v/v) for 15
min [41] before imaging.

The detection of superoxide free radicals was performed by the nitro blue tetrazolium (NBT)
staining method described by Lee et al. (2002) [42]. The whole rosette leaves of 5- to 6-week-old plants
were harvested and immersed in 0.1 mg/mL of NBT solution (25 mM HEPES, pH 7.6). After vacuum
infiltration, samples were incubated at 25 ◦C for 2 h in the darkness. Subsequently, stained samples
were bleached in 70% ethanol and incubated further for 24 h at 25 ◦C to remove the chlorophyll.

Imaging was conducted using an Epson Perfection V600 Photo scanner (Epson China,
Beijing, China).

2.5. Quantitative RT-PCR Analysis (qRT-PCR)

The qRT-PCR analysis was performed using the SYBR Green master mix (SABiosciences, Frederick,
MD, USA) according to the manufacturer’s instructions. Complementary DNA synthesis was carried
out using the Fermentas First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA,
USA) on RNA from 28- to 55-day-old plants grown under normal light conditions. Complementary
DNAs were diluted 20-fold prior to quantitative PCR experiments. The Touch 1000 platform (Bio-Rad
Company, Beijing, China) was used for qRT-PCR experiments, and the data were analyzed using the
Bio-Rad software version 1.5. We used glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2) or ACTIN2
(for monitoring gene expression in plants, including the wrky53 plants) as the internal reference gene
for calculation of relative expression. Primers are listed in Supplementary Table S1. All determinations
were conducted in three biological replicates.

2.6. In Vitro DNA-Binding Assays

Recombinant WRKY53 and WRKY33 proteins were produced in Escherichia coli as described
by Miao et al. [23,43]. An electrophoretic mobility shift assay (EMSA) was performed following the
protocol in the same reference. The DNA probes were amplified from Arabidopsis gDNA by using
specific primer pairs listed in Supplementary Table S1. Labeling of the probes with 32P was achieved
using the 5′-end labeling protocol with T4 polynucleotide kinase forward reaction.

2.7. Isolation and Detection of Plastid and Nuclear Proteins

Chloroplasts were prepared and purified on Percoll gradients as described in our previous
paper [20]. A detailed protocol for nuclei isolation could be found in the same reference. Approximately
8 µg protein of each fraction was separated on 14% (w/v) acrylamide gels. After transferring to
nitrocellulose membranes, immunodetection was performed using specific antibodies against the
WHY1 C-terminal peptide, CASPNYGGDYEWNR (Faan, Hangzhou, China). To monitor the purity of
the chloroplast and nuclear fractions, we used antibodies against cytochrome b559 apoprotein A [44]
and histone H3 (Cell Signaling, Munich, Germany), respectively (Supplementary Figure S5).
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2.8. ChIP-qPCR Assay

Chromatin immunoprecipitation (ChIP) assays were performed using 1.5 g of leaf tissue from
entire rosettes of 4-week-old plants at 4 h after H2O2 treatment, as described in a previous paper [23].
Antibodies against H3K4me2 (Cat. Nr. 07-030, Upstate Biotechnology Inc, Lake Placid, NY, USA),
H3K4me3 (Cat. Nr. 07-473, Upstate Biotechnology), H3K9ac (Cat. Nr. 07-352, Upstate Biotechnology),
histone H4 acetylation (H4ac) (Cat. Nr. 07-352, upstate Biotechnology), and RNAP II (Cat. Nr. ab817,
Abcam, Cambridge, GB, USA) were used to immunoprecipitate genomic DNA. After purification, the
precipitated DNAs were used as templates for qPCR to determine the enrichment of two fragments in
the WRKY53 promoter, one encompassing the GTNNNAAAT motif region (−416 to −266 upstream of
transcription start site (TSS) and the other flanking the 5′-end untranslated region (UTR) and first exon
region (−155 to +77). The primers can be found in Supplementary Table S1. Relative enrichment was
calculated by the ChIP/input ratio and then normalized to H2O treatment to obtain fold change over
the mock. The assays were conducted for three biological replicates.

For ChIP-qPCR determinations of WHY1-HA or WRKY53-HA occupancies on promoter regions
in PRX39 or PRX33 gene, four-week-old rosettes of transgenic plants of the WHY1-HA-overexpressing
line (why1 background) or the WHRY53-HA-overexpressing line (WT background) were used in sample
preparations, respectively. The cross-linked DNA fragments ranging from 200 to 1000 bp in length
were immunoprecipitated by an antibody against the HA tag (Cell Signaling, Munich, Germany). The
enrichment of the selected promoter regions of both genes was resolved by comparing the amounts in
the precipitated and non-precipitated (input) DNA samples, which were quantified by quantitative
PCR using designed region-specific primers (Supplementary Table S1). The same quantification in
mutant line why1 or WT served as a control for the respective overexpression lines, and was used for
normalizations to give the fold enrichment factors over the mock. The experiments were performed in
three biological replicates.

2.9. Statistical Analysis

Where appropriate, quantitative data were determined by at least three biological replicates and
the statistical significance was analyzed either using two-way ANOVA or pair-wide multiple t-tests,
with the GraphPad Prism software version 7 (GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Ectopic Expression of a Plastid Isoform WHY1 Causes a Strong Leaf Senescence

To address the subcellular functions of WHY1, we generated transgenic lines overexpressing
different organelle isoforms of WHY1 in the why1 background [20,23,37]. These included the plastid
isoform of WHY1 (pWHY1), which contained the full-length WHY1 coding sequence plus a nuclear
export peptide; the nuclear isoform WHY1 (nWHY1), which contained the WHY1 coding sequence
without its plastid transit peptide; and the full-length WHY1 (pnWHY1) (Figure 1a; Supplementary
Figure S1). Homozygous transgenic lines obtained after screening for the third generation were
used to compare subcellular localization of the expressed WHY1 proteins in leaf preparations by
western blot (Figure 1b). As expected, expressed pWHY1 and nWHY1 were predominantly detected
in plastids and nucleus, respectively, while pnWHY1 gave signals in both the nucleus and plastids
(Figure 1b). The why1 plants were early senescent when compared with WT, whereas overexpression of
the full-length WHY1 (pnWHY1) or the nuclear isoform nWHY1 could rescue this phenotype or delay
leaf senescence (Figure 1c,d). These phenotypes were consistent with previous observations [20,23,37].
The overexpression of the plastid isoform of WHY1 (pWHY1) resulted in an accelerated senescence
phenotype—apparently pale yellow or cell death in rosette—even more pronounced than why1, as
justified by parameters including the total ratio index of leaf coloring, chlorophyll content, and
photosystem II fluorescence index (Fv/Fm, ratio of variable fluorescence to maximum fluorescence), of
the seventh leaf (Figure 1c,d). Typically, differential senescence phenotypes began during the sixth
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week (approximately at 35 to 42 days post-germination, Figure 1c,d). In this period, WT exhibited peak
expression levels of WRKY53 and an activated transcription of SENESCENCE-ASSOCIATED GENE 12
(SAG12) (Supplementary Figure S2a).

1 
 

 

Figure 1 

  

Figure 1. Ectopic overexpression of differently localized WHY1 isoforms in the why1 background. (a)
Schematic constructs for 35S promoter-driven expression of WHY1 isoforms: pnWHY1, the full-length
WHY1 coding sequence (CDS) plus an HA tag; nWHY1, the WHY1 CDS minus the plastid transit signal
(PTS) plus the HA tag; and pWHY1, the full-length WHY1 CDS plus a nuclear export signal (NES)
and the HA tag; (b) Western blot images showing subcellular (N: nucleus, P: plastids) accumulation of
WHY1 isoforms in leaves of respective transgenic plants, using antibodies against the HA tag, histone
H2B, and cytochrome b559 (cytb559); (c) Left, statistic assessment of senescent leaves by color at the
sixth week post-germination, error bars represent the SD for 30 plants each. Right, visualization of
leaves of a typical plant at the same age, leaves were ordered by emergence; (d) Chlorophyll content
and photosystem II fluorescence index (Fv/Fm) of the seventh rosette leaf measured after the fifth week
post-germination. Error bars indicate the SD of five independent measurements.
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At this developmental stage, the steady-state gene expression was monitored and compared in
these overexpression lines. The selected genes included several senescence-related genes, including
WRKY53, WRKY33, SAG12, SAG29 (SENESCENCE-ASSOCIATED GENE 29) and SEN4 (SENESCENCE
4). In consistence with the phenotypes, the five genes were upregulated in the loss-of-function why1
mutant. Among the three transgenic plant lines overexpressing different WHY1 isoforms, however,
abnormal WHY1 transcript accumulation and discrepancy between gene expression and phenotypes
were observed (Figure 2). The nWHY1 plant, which accumulated approximately 4-fold higher WHY1
transcripts over WT plants, had apparently lower expression levels for its repressed targets WRKY53
and WRKY33, as well as SEN4. But on the other hand, this line expressed significantly higher SAG12
and SAG29 (Figure 2), which encoded, respectively, a cysteine protease and a sucrose transporter and
functioned in remobilization of nitrogen and carbon in senescent organs as well as in normal organs
under stress conditions [45–47]. This line showed more or less delayed leaf senescence as compared
to the why1 mutant or WT (Figure 1). Furthermore, in the pWHY1 transgenic line that accumulated
approximately 11.9-fold more WHY1 transcripts than the WT, only the expression of SEN4 and to
some extent, the expression of WRKY53 were restored to the WT level, while transcripts of WRKY33,
SAG12, and SAG29 were higher than in WT by a factor of about 4, 34, and 4, respectively (Figure 2).
The pnWHY1 transgenic line displayed the highest level of WHY1 transcripts (up to 150-fold more than
in WT plants) and it restored SAG12, SAG29, and SEN4 gene expression to the WT level, but still had
somewhat higher transcript levels of WRKY53 and WRKY33, which were approximately 2.9-fold and
2.4-fold higher than that in WT, respectively (Figure 2).

 

2 

 

 

Figure 2 Figure 2. Relative mRNA levels of senescence-related genes in leaves of six-week-old wildtype and
why1 transgenic lines. Reverse transcription quantitative PCR using GAPC as the reference gene
was conducted and data were normalized to that of WT. The error bars represent SD from three
biological replicates.

Thus, ectopic overexpression of the full-length WHY1 and the nuclear isoform nWHY1 had
distinguishable senescence-related phenotypes from that of the plastid isoform pWHY1. Yet, at the
molecular level, senescence-related gene expression was not always correlated to phenotypes in the
35S promoter-driven overexpression lines, in part probably due to the abnormally higher levels of
transgenic expression, which might result in temporary perturbation on gene regulatory networks.
Nevertheless, the forced plastid accumulation of WHY1 presumably meant the loss of its nuclear
function as a transcriptional regulator.
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3.2. Allocation of WHY1 into Plastid-Enhanced Production of Reactive Oxygen Species (ROS)

It was previously reported that the plastid isoform of WHY1 interacted with the light-harvesting
protein LHCA1, and had a positive effect on heat dissipation from singlet excited chlorophylls under
high light conditions [37], a protective mechanism coupled with the generation of reactive oxygen
species [48]. The impressed leaf phenotype of the pWHY1 overexpression line prompted us to consider a
possible link to ROS perturbation. Under normal growth conditions in WT plants, the expression of the
senescence-related gene WRKY53 reached its maximum at 37 days post-germination (Supplementary
Figure S2a), while in the early senescence mutant why1, its transcripts peaked earlier by approximately
one to two weeks (unpublished observation). Peak expression of WRKY53 was considered as a sign of
the initiation stage of leaf senescence [23,43]. In our experiment, the why1 plants at day 37 also showed
a peak in leaf H2O2 content (Supplementary Figure S2b). Therefore, by using the timing of senescence
in WT plants as a reference, we selected this time point to further examine the effects of overexpressed
WHY1 isoforms on ROS status.

Both DAB staining and quantitative assay confirmed that the pWHY1 transgenic plants contained
the highest H2O2 in the rosettes compared with the other plants, followed by the loss-of-function
mutants, why1 and WHY1RNAi (Figure 3). Overexpression of nuclear isoform nWHY1 in the why1
background, as well as the full-length WHY1, either driven by the constitute promoter 35S or the
native promoter, restored the high H2O2 accumulation of why1 plants to a level comparable to that of
the WT plants (Figure 3). A similar result was obtained using whole plant staining with DAB and
NBT, although the signal difference was not so strong due to sensitivity of the method (Supplementary
Figure S3).

 

3 

 

Figure 3 

  
Figure 3. H2O2 content in leaves of WT, why1, and transgenic plants at day 37 post-germination.
(a) Representative DAB staining of rosette leaves for visualization of H2O2 accumulation; (b) H2O2

content in rosettes of the plants. Values are shown as mean ± SD (n = 3). Bars labeled with the same
letter were not significantly different based on one-way ANOVA using the Prism software, p < 0.05.
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3.3. PRX33 and PRX39 were Downstream of WHY1 but with no Obvious Involvement in WHY1-Mediated
ROS Pathway

Next, to determine whether the expression of genes responsible for the endogenous generation
and scavenging of ROS were affected by the overexpression of the WHY1 isoforms, we checked the
expression of ten related genes in WT and loss-of-function WHY1 mutant plants during development,
from day 28 through day 42 post-germination, when senescence was set. These included genes encoding
superoxide dismutase 1 (SOD1, cytosolic) and 2 (SOD2, chloroplastic), two chloroplastic ascorbate
peroxidases (stromal sAPX and thylakoid tAPX), one transmembrane cytochrome b561/ferric reductase,
and peroxidase 33 (PRX33) and 39 (PRX39), among others. Unexpectedly, only the peroxidase genes
PRX33 (at3g49110) and PRX39 (at4g11290) were upregulated in loss-of-function WHY1 plants at days
35 and 37, whereas the expression of the other plants remained unchanged (Figure 4a, Supplementary
Figure S4a). Both PRX33 and PRX39 belong to class III plant-specific peroxidases that are responsible
for apoplastic ROS burst and implicated in cellular growth and in stress signaling in response to
numerous biotic or abiotic stimuli [49]. We further compared their expression levels in the WHY1
overexpression lines at the 37th day post-germination.

 

4 

 

Figure 4 

  

Figure 4. Quantitative RT-PCR analysis of PRX39 and PRX33 expression. (a) Gene expression during
development in WT and why1 plants. Relative expression was normalized to that of WT at 28 days
after germination; significant difference between WT and why1 plants was determined by pairwise
t-test. * p < 0.05, ** p < 0.01; (b) Gene expression in different lines with ectopic overexpression of WHY1
at 37 days after germination. Error bars represent SD for three biological replicates. Bars with the same
letter were not significant in the one-way ANOVA test (p < 0.05).

The transcript levels of SOD1 and SOD2 did not differ significantly among all genetic backgrounds
(Supplementary Figure S4b). Both PRX33 and PRX39 showed similar expression patterns depending
on the WHY1 genetic background (Figure 4b). The loss-of-function WHY1 plants of both the knockout
and knockdown lines showed enhanced expression of PRX33 and PRX39, while complementation
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with full-length WHY1 under its native promoter restored a comparable mRNA level to the WT plants.
The 35S promoter-driven full-length WHY1 (pnWHY1 plants) only partially reduced the transcript
levels of both PRX33 and PRX39, which were still higher than in the WT plants. Despite the similar
phenotypes and the low H2O2 content (relative to the WT) in both WHY1p:WHY1 and pnWHY1 plants
(Figures 3 and 4), the pnWHY1 plants expressed an unusually higher level of WHY1 transcripts than
the WT plants by ~150-fold (Figure 2). This abnormality might account for the subtle difference in
the expression of peroxidase genes between both lines, even though no obvious phenotype difference
was observed. In the transgenic line of nWHY1, both PRX33 and PRX39 gene expression levels were
much reduced from that of the why1 mutant, but comparable to that in the pnWHY1 plants, and were
still higher than that in the WT plants (Figure 4b). Thus, the PRX33/39 gene expression was affected
similarly in nWHY1 and pnWHY1 plants.

Unexpectedly, the high H2O2-containing pWHY1 plants showed reduced transcript levels of
both PRX33 and PRX39 and the levels were closer to that observed in WT (Figure 4b). In this case,
PRX33/39 may not contribute to H2O2 generation, or the high H2O2 content in the transgenic plants
had a feedback effect inhibiting the expression of both genes.

These observations indicated that the elevated expression of PRX33 and PRX39 in loss-of-function
WHY1 lines could be further reduced by ectopic expression of WHY1, though only the full-length
WHY1 under a native promoter control could restore the expression to the WT level (Figure 4b),
suggesting that WHY1 might work as their transcriptional upstream regulator and that a proper
amount of the nuclear isoform nWHY1 might be necessary for repression.

A further analysis of the promoter sequence by using the PlantCARE Program (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/) [50] predicted the existence of two W-box
elements in the promoter of PRX33 and several WHY1-binding elements (including GTNNNAAATT)
in the promoter of PRX39, suggesting that PRX33 and PRX39 might be a target downstream of WRKY53
and WHY1, respectively. To this end, we performed electrophoretic mobility shift assays (EMSAs),
and confirmed that the purified recombinant WRKY53 physically interacted with a 169 bp, two
W-box-containing fragment in the PRX33 promoter region (-3 upstream from the star codon), whereas
the negative control protein WRKY33 did not have the ability to interact with the DNA fragments
(Figure 5a, right panel). Similarly, the recombinant WHY1 protein could interact with a 309 bp fragment
from the PRX39 promoter region containing two consensus GTNNNAAATT elements in the EMSA assay
(Figure 5a, left panel). The binding of WHY1 on PRX33 promoter DNA and the binding of WRKY53 on
PRX39 promoter DNA were further confirmed by in planta chromatin immunoprecipitation quantitative
PCR (ChIP-qPCR) experiments, in which transgenic lines expressing the HA-tagged WHY1 and
WRKY53 were used as plant materials. In the WHY1-HA-expressing plants, the two GTNNNAAATT
fragments within the promoter of PRX39 were significantly enriched by immunoprecipitation with an
antibody against the HA tag, by approximately 4.8-fold and 5.5-fold compared to that in the why1 plants
(Figure 5b, left panel). As a comparison, the promoter GTNNNAAATT fragments of WRKY53 were
enriched by a factor of 3.5 over the mock. In the WRKY53-HA-expressing plants, the WRKY53-binding
W-box region in PRX33 promoter was enriched by about 5.4-fold compared to that in the WT plants
(without a tagged WRKY53), while the promoter W-box region in WRKY53, known to interact with its
own protein, was also enriched by a factor of 2.4 over that in the mock plants (Figure 5b, right panel).

These experiments established that WHY1 worked as a transcriptional repressor of PRX39, and
indirectly affected PRX33 expression via inhibiting its upstream gene WRKY53 [23].

Next, we further checked their expression levels in a number of mutant lines with wrky53 or why1
background (Figure 5c). The PRX39 transcript levels were raised by a loss of function of both WRKY53
and WHY1, and even more so in the double mutant (Figure 5c). The overexpression of WRKY53 in a WT
background or the overexpression of the nuclear isoform of WHY1 in a wrky53 background conferred
a similar transcript level of PRX39 as observed in the WT plants. In the why1 plants overexpressing
the nuclear isoform of WHY1, PRX39 expression was significantly reduced to more than half of that
detected in the WT plants (Figure 5c). Therefore, PRX39 was negatively regulated by both WHY1 and

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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WRKY53 at the transcriptional level under the tested conditions. Although the mechanism of how
WRKY53 repressed PRX39 was not known for the moment, nevertheless, it seemed that the loss of
WHY1 might have two opposite effects in regulating PRX39 gene expression: (i) de-repression on
PRX39 that was negative and (ii) de-repression on WRKY53 that was positive.

 

5 
 

Figure 5. Transcriptional regulation of PRX39 and PRX33 by WHY1 and WRKY53. (a) Electrophoretic
mobility shift assay demonstrating the binding of WRKY53 to 5′-UTR and promoter fragment of PRX33
and the binding of WHY1 to a region of PRX39 promoter (+1 for start codon, see Materials and Methods
for details); (b) Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) determination of
the enrichment of PRX39 or PRX33 promoter sequences associated with WHY1-HA (left panel) or
WRKY53-HA (right panel). Anti-HA antibody was used to precipitate the cross-linked genomic DNA
fragments in which the number of designated regions was compared to that in the non-precipitated
input DNAs to determine the enrichment factors. Fold enrichment was calculated by comparing the
enrichment in overexpression line to that in the background line. The fold enrichment of WRKY53
promoter fragments was shown in both cases for an experimental control, since WRKY53 was a known
transcriptional target of WHY1 and itself. Error bars represent standard errors for three biological
replicates. (c) Both PRX33 and PRX39, as well as the senescence-related catalase gene CAT2, were
expressed differently in several mutant and transgenic plants for WRKY53 and nWHY1. Values were
shown as the means of three biological replicates. Asterisks indicate significant differences from the
WT according to two-tail Student’s t-test (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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The transcript level of PRX33 was oppositely influenced by loss-of-function mutants of WRKY53
and WHY1, its upregulation could result from an overexpression of WRKY53 or a loss of WHY1
(Figure 5c). Since WHY1 was a repressor of WRKY53, loss of WHY1 might actually lead to accumulated
WRKY53 proteins that in turn activate PRX33. In consistence with this, plants of wrky53, wrky53 why1,
and wrky53 nWHY1 mutant lines showed a similar PRX33 mRNA level (Figure 5c). Furthermore,
overexpression of nWHY1 in the why1 background reduced the elevated transcript level of PRX33
caused by loss of WHY1 (Figure 5c). Thus, PRX33 was an indirect downstream target of WHY1,
likely in part via inhibition of its activator gene WRKY53. A similar situation was found in the
senescence-related catalase gene CAT2 (Figure 5c), which was a known target of WRKY53 [51].

Although WHY1 was able to repress PRX39 and PRX33 via direct or indirect transcriptional
regulation, involvement of both peroxidase genes in WHY1-mediated ROS/H2O2 pathways could not
be revealed by the present experiment. Furthermore, their loss-of-function mutations displayed a
moderate phenotype of early senescence as compared to the WT plants (Supplementary Figure S3),
indicating that they might have positive functions against senescence. The homozygous T-DNA
insertion line of prx39 had an early senescence phenotype similar to plants of pWHY1 overexpression,
whereas the homozygous prx33 T-DNA mutant showed a moderate senescence phenotype in the nWHY1
overexpression lines and the pWHY1 plants (Supplementary Figure S3, upper panel). Accumulations
of ROS and H2O2, observed by NBT and DAB staining, respectively, were stronger in the prx39 plants,
but weaker in the prx33 plants (Supplementary Figure S3, lower panel). These observations suggested
that PRX39 and PRX33 might be required for proper maintenance of ROS/H2O2 homeostasis during
senescence. Nevertheless, WHY1 repression of senescence might necessitate the ROS/H2O2 pathway
in cells, which involved other unknown factors not limited to PRX33 and PRX39.

3.4. H2O2 Treatments Altered WHY1 Protein Distribution Between Plastids and the Nucleus but Not Its
mRNA Levels

We further determined how WHY1 gene expression responded to H2O2 treatment, since an
elevation in endogenous ROS was known as a cell death signal and might lead to plant senescence [52,53].
Upon H2O2 treatment, WHY1 transcripts were slightly lower than in the water control, with a similar
pattern of expression during the 8-hour period post-treatment (Figure 6a). These small differences were
not significant. We then reasoned that the treatment might instead affect the WHY1 protein distribution
between plastids and the nucleus. Using isolated nucleus and plastid fractions from 5-week-old
WT rosettes, we conducted western blotting with a specific antibody against WHY1 (Supplementary
Figure S5). Two bands in the purified nucleus fraction, corresponding to the large (~37 kDa) and small
(~29 kDa) nuclear WHY1 isoforms, and one band in the plastid fraction (~24 kDa) were detected;
these WHY1 isoforms were denoted as ‘L-band’, ‘S-band’, and ‘plastid’ in Figure 6b, respectively. The
full-length AtWHY1 protein had a putative molecular weight of ~29 kDa, the N-terminal chroloplast
transit peptide (CTP) (~47aa) may be removed once imported into the plastids. This truncated form
had a predictive molecular weight of ~24 kDa, consistent with the plastid band in Figure 6b. The
S-band was close to the predicted full-length (~29 kDa), while the L-band (~ 37 kDa) seemed to be a
modified form or bound by other unknown small peptides.

Four hours after H2O2 treatment, both L- and S-bands of the nuclear isoforms were greatly
reduced in quantity, while the plastid isoform accumulated significantly. Particularly, the L-band,
which represented a putatively modified isoform, almost disappeared (Figure 6b). Thus, external
application of H2O2 had a major effect on WHY1 protein isoforms shifting to the plastids, without a
significant change in its gene expression.
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Figure 6. Effects of exogenous H2O2 treatments on transcript levels and protein subcellular distributions
of WHY1 in 5-week-old WT plants. (a) Relative gene expression levels in plants sprayed with 0.3%
H2O2. Error bars represent the SD of three biological replicates. No significant differences were detected
using a multiple t-test by the two-stage linear step-up procedure of Benjamini et al. in GraphPad
Prism (version 7.1); (b) Organelle isoforms of WHY1 proteins in WT plants receiving H2O2 or H2O
treatment. Left, a representative protein immunodetection of purified plastid and nuclear fractions
at 4 h post-treatment. The purity of nuclear and plastid proteins without cross-contamination was
monitored using antibodies against histone 3 or photosystem II (PSII) protein (Supplementary Figure S5).
Coomassie and silver staining were used as loading controls, and the western blot was detected using
an anti-WHY1 antibody. Right, quantitative measurement of protein band intensity using Image J
software (see Materials and Methods for details). Values were means of three independent experiments.
Statistical significance was analyzed using a paired Student’s t-test. **p < 0.01.

3.5. H2O2 Induces the Enrichment of H3K9ac and RNAP II at WRKY53 Promoter Region

Alterations in H3K4me3 and H3K9ac globally [54] and specifically at the WRKY53 locus [23,27,55]
had been observed during plant senescence. The loss of nuclear isoforms of WHY1 upon exogenous
H2O2 treatment prompted us to check whether specific or global histone modification occurred under
this condition. Western blots revealed that the bulk of H3K4me2 markers were not changed, but global
H3K4me3 was blocked and total H3K9ac and RNA polymerase II (RNAP II) increased greatly after
H2O2 treatment (Figure 7a). At the WRKY53 locus, enrichment of H3K4me2 at two regions in the
5′-UTR and promoter was significantly reduced in H2O2-treated plants, by more than half of that in the
mock-treated plants, although such effect was not found for H3K4me3 (Figure 7b,c). These two regions
had a high recruitment ratio for RNAP II upon H2O2 treatment, by 4-fold and 3-fold over the mock
(Figure 7c). Furthermore, enrichment of histone 4 acetylation at the regions was reduced insignificantly,
but H3K9ac increased by more than 2-fold after H2O2 treatment (Figure 7c). Taken together, these
results indicated that a decrease of WHY1 nuclear isoform caused by exogenous H2O2 treatment was
coincident with a global reduction in H3K4me3 markers, and it also induced the expression of H3K9ac
markers and the recruitment of RNAP II globally and specifically at the WRKY53 promoter.



Cells 2019, 8, 1585 14 of 20

 

8 

 

Figure 7 

  

Figure 7. Detection of global and WRKY53-locus-specific H3K4 methylations, H3K9 acetylation,
and RNAP II recruitment in 28-day-old plants at 4 h post-treatment with H2O or H2O2. (a) Global
immunodetection on isolated total proteins using indicated specific antibodies; (b) Schematic dispatch
of the promoter and 5′-UTR region in WRKY53 locus, showing the location of the two detection PCR
amplicons (I and II); (c) ChIP-PCR determination of relative enrichment of DNA at I and II of the
WRKY53 locus, shown as normalized ratios of ChIP/input to that of the H2O treatments (mock, in three
biological replicates). Individual data for three biological replicates normalized to their respective mock
treatments were plotted, with minimum to maximum bars and the medium points in red. Asterisks
indicate significant differences from mock using a paired Student’s t-test. * p < 0.05; ** p < 0.01.

4. Discussion

The idea that WHIRLY proteins might be associated with retrograde signaling had been suggested
for many years; however, strong evidence was still missing. In a previous study, we reported that
the WHY1 protein was phosphorylated by a CIPK14 kinase, shifting to its nuclear localization and
altering its cellular functionalities between plastids and the nucleus [20]. Here, we further revealed
that the dual-location of WHY1 protein was linked to a perturbation in H2O2 homeostasis and thus
might intervene as parts of a retrograde connection between plastids and the nucleus. The loss of
WHY1 enhanced H2O2 accumulation at 37 days post-germination and was associated with an early
senescence phenotype. In line with that, complementary expression of WHY1 driven by the native
promoter restored the mutant’s H2O2 level comparable to that of the WT. The rising production of
H2O2 during senescence could be suppressed by specific ectopic expression of the nuclear isoforms
of WHY1, but enhanced by the plastid isoforms (Figure 3). The underlying mechanism, however,
was still elusive from the current studies. Although we showed that WHY1 was able to bind to the
promoter of peroxidase gene PRX39 and repress its expression, and inhibited another peroxidase
gene (PRX33) via repressing its activator gene WRKY53 (Figure 5), whether both peroxidases were
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involved in WHY1-mediated process was yet questionable. Given the fact that the intracellular levels
of H2O2 were tightly controlled by a comprehensive inventory of both H2O2-generating systems and
antioxidant proteins [56], it was reasonable that PRX33 and PRX39 were not the only players for
cellular H2O2 homeostasis [49,57]. In addition, other pathways might also contribute to the regulatory
network during senescence, either acting independently or jointly with the WHY1 axis. Examples
of these include the salicylic acid and abscisic acid (ABA) pathways [53,58–60]. Interestingly, PRX33
protein was found among the H2O2-detoxifying proteins that had their expression levels altered, in
a light-responding way or an age-dependent manner, by the so-called plastid transcription active
chromosome (TAC) proteins. The plastid isoform of WHY1 was a component of the plastid TAC [28],
which contained a total of 35 nuclear- or plastid-encoded proteins. Furthermore, PRX33 protein was
reported by proteome analysis to be enriched in the why1why3 double mutants [61]. The homologous
WHY3 shared 78% and 82% amino acid identity and similarity with WHY1, respectively, and was
putatively dual-localized [17]. Although the real function of WHY3 was not yet clear, it was believed
that WHY3 worked synergistically as a cofactor of WHY1, and was involved in stabilizing photosystem
I and balancing ROS homeostasis [33,37,62]. In our experiments, the abnormal transcript levels by
ectopically expressed WHY1 isoforms (Figure 2) might affect the interactions between WHY1 and
WHY3, possibly at the mRNA level or the protein level. Of course, that would definitely require
further evaluation.

It is also worth to note that in our construct for pWHY1 overexpression, a nucleus exist sequence
was included at the C-terminal of WHY1, which might possibly lead to cytosol accumulation of WHY1
proteins and contributed in some ways to the observed phenotype.

On the other hand, an elevation of H2O2 level enhanced plastid accumulation of WHY1 and
decreased the nuclear isoform (Figure 6), leading to H3K9ac enrichment and RNAP II recruitment at
the WRKY53 promoter (Figure 7). This observation confirmed earlier results that pre-toxic H2O2 was
an important signal molecule during senescence [23,37] or in response to biotic and abiotic cues [36,63].
Thus, a shift of WHY1 proteins from the nucleus to plastids was a likely reflection of the cellular stresses
signaled by H2O2. Since the distribution of WHY1 to the nucleus depended on its phosphorylation
by CIPK14 kinase [20], it would be interesting to see how H2O2 interplays with the kinase network.
Furthermore, our immunodetection revealed that the purified nuclear isoform of WHY1 proteins
appeared as two bands on the western blot (~37 kDa and ~29 kDa, Figure 6b). This was similarly
observed in barley (unpublished, see also [18]), in which the large band was proposed as a modified
form under some unverified conditions. The ~29 kDa band met well with the predicted MW of the
full-length protein and was slightly larger than a plastid form with a truncated CTP signal sequence
(~24 kDa), therefore, it did not seem to be translocated from plastid to the nucleus, as proposed
previously [19]. Thus, it was more likely that the WHY1 protein had two separated isoforms for the
plastid and the nucleus, and both were subjected to different modifications in their compartments
under stress conditions.

In conclusion, by using a series of mutants and transgenic plants with targeted expression of
organelle isoforms of WHY1, we have demonstrated that the allocation of this dually located protein
between plastid and nucleus has disparate effects on plant senescence. The nuclear isoform of WHY1
is the authentic repressor of several senescence-associated genes, including WRKY53, WRKY33, SAG12,
SAG29, and SEN4, as well as two ROS-related peroxidase genes PRX39 and PRX33, the involvement of
which are not clear yet. A shift from nucleus to plastid isoform promotes H2O2 accumulation and
accelerates plant senescence. This shift may occur during natural aging or may be caused by elevated
H2O2, generated from diverse organelles during cellular metabolism or produced under abiotic/biotic
stresses. Thus, H2O2 serves as a potential feedback signal by altering the subcellular distribution of
WHY1 to enforce plant senescence and cell death (Figure 8).
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Figure 8 Figure 8. A working schema of the senescence pathway performed by the dually located WHY1
in combination with H2O2. The nuclear isoform of WHY1 is represented as both a large molecular
mass protein (L-band, bigger letters) and a small molecular mass protein (S-band, smaller letters).
The WHY1 has dual functions in plastids and the nucleus. Loss of WHY1 or shifting the proteins
to plastids increases H2O2 accumulation through an unknown pathway, resulting in a senescence
phenotype. Elevated H2O2 represses nuclear WHY1 accumulation, promoting H3K9ac enrichment and
RNAP II recruitment globally and specifically at the WRKY53 locus, and stimulating early senescence.
Thus, distribution of WHY1 organelle isoforms and the putative feedback of H2O2 form a circularly
integrated regulatory network during plant senescence in Arabidopsis. Plastid is shown as a green ovary,
nucleus as a grey ovary, lines for regulation, fat arrows for transfer or translocation, and broken lines
for uncertainty.
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