
RESEARCH ARTICLE

Myeloid derived suppressor cells contribute

to the malignant progression of oral

squamous cell carcinoma

Xin Pang1☯, Hua-yang Fan1☯, Ya-ling Tang1, Sha-sha WangID
1, Ming-xin Cao1, Hao-

fan Wang1, Lu-ling Dai1, Ke Wang1, Xiang-hua Yu1, Jing-biao Wu1, Ya-Jie Tang2*, Xin-

hua Liang1*

1 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &

Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University,

Chengdu, Sichuan, China, 2 State Key Laboratory of Microbial Technology, Shandong University, Qingdao,

China

☯ These authors contributed equally to this work.

* yajietang@qq.com (YJT); lxh88866@scu.edu.cn (XHL)

Abstract

Purpose

The tumor-related myeloid derived suppressor cells (MDSCs), important immunosuppres-

sive cells in tumor microenvironment, play an important role in the cancer progression. This

study is aimed to investigate the crosstalk between MDSCs and oral squamous cell carci-

noma (OSCC) cells and their role in the malignant progression of OSCC.

Methods

Immunochemistry (IHC) was used to investigate the expression of CD33 in 200 OSCC, 36

premalignant. CD33+ MDSCs were sorted and enriched via magnetic-activated cell sorting

(MACS) from OSCC patients or health donor, and their phenotypes were identified by flow

cytometry. With a co-culture system of MDSCs and OSCC, the effects of MDSCs on OSCC

proliferation, apoptosis, migration invasion, epithelial-mesenchymal transition (EMT), and

vasculogenic mimicry formation (VM) formation were assessed, respectively. Besides,

peripheral blood mononuclear cells (PBMCs) from health donor were cultured with OSCC

supernatant, the level of MDSCs and expressions of Arginase (Arg-1) and inducible nitric

oxide synthase (iNOS) were measured.

Results

The number of MDSCs was increased in tumor tissues of OSCC patients, and was positively

related to the T stage, pathological grade, lymph node metastasis and poor prognosis.

Tumor-related MDSCs of the co-culture system promoted OSCC progression by contribut-

ing to cell proliferation, migration and invasion as well as inducing EMT and VM. In turn,

OSCC cells had potential to induce MDSCs differentiation from PBMCs and increase the

expression of Arg-1 and iNOS.
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Conclusion

These indicated that the crosstalk between MDSCs and tumor cells facilitated the malignant

progression of OSCC cells and the immune suppressive properties of MDSCs, which may

provide new insights into tumor treatment on targeting tumor-associated immunosuppres-

sive cells.

Introduction

Oral squamous cell carcinoma (OSCC), whose risk factors include alcohol use, tobacco expo-

sure, continued stimulation (areca chewing, for instance), and virus infection, is the most com-

mon malignancy among oral cancers [1–3]. The high invasiveness of tumor cells is responsible

for the tendency of recurrence and lymph node metastasis in OSCC [4]. Traditional therapeu-

tic approaches including surgery, chemotherapy and radiotherapy failed to improve its five-

year survival rate, which is about 50% or lower [5–7]. Thus, identifying new therapeutic targets

to inhibit the malignant progression and improve the overall survival (OS) of OSCC patients is

in the Spot-LIGHT of researches.

Immune microenvironment consists of a variety of immune cells which can cooperate

with each other to inhibit or in contrast be subverted to promote growth and progression of

tumor [8, 9]. Among these inmmune cells, myeloid derived suppressor cells (MDSCs), first

identified as natural suppressor cells in 1984, which are a heterogeneous group of immature

dendritic cells, granulocytes, macrophages, and bone marrow precursor cells, mainly create

an immunosuppressive microenvironment [10]. Although there is no uniform biomarkers,

MDSCs are commonly been identified to express CD33 and CD11b, and do not express

HLA-DR and Lin in human [11–13]. MDSCs can inhibit immune reaction, mediate immune

escape, and reduce the effectiveness of tumor immunotherapy through producing soluble

factors [14, 15]. Arginase (Arg) derived by MDSCs consumes arginine and subverts T cell

signal transduction [14]. Interleukin-10 (IL-10) and transforming growth factor β (TGF-β)

secreting by MDSCs serve as critical immune regulators to inhibit T cell proliferation and

debilitate immune responses against tumors [16, 17]. Recent findings support that MDSCs

can also promote tumor progression by inducing angiogenesis, epithelial-mesenchymal

transition (EMT) [18, 19]. Although several studies have shown that MDSCs levels are

positively related to histological differentiation, nodal metastasis, and recurrence of OSCC

patients [20], the role and mechanism of MDSCs in the malignant progression of OSCC is

still unclear.

At present, more and more studies have proved the notion that the interreaction between

cancer cells and immune niche can regulate the progression of OSCC. However, there are few

studies focus on the crosstalk between MDSCs and tumor cells in the malignant progression

of OSCC [21]. Hence, in this study, we sorted CD33+ MDSCs from peripheral blood of OSCC

patients or healthy donors to established a co-culture system of MDSCs and OSCC cells and

determined the effect of MDSCs on proliferation, apoptosis, migration and invasion of OSCC

cells, as well as the expression levels of Arg-1 and inducible nitric oxide synthase (iNOS)

mRNAs by MDSCs from normal volunteers before and after cultured with the supernatant of

OSCC cells. Our study defined a close link between tumor-related MDSCs and the develop-

ment of OSCC and may validate novel ideas for tumor treatment by targeting tumor-associ-

ated immunosuppressive cells.

MDSCs promotes OSCC
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Materials and methods

Patient specimens and blood collection

For immunohistochemistry (IHC) analysis, 200 OSCC and 36 premalignant tissues were

obtained from the Department of Oral Pathology, West China Hospital of Stomatology, Sich-

uan University, between February 2010 and July 2013. None of the patients underwent any

types of preoperative (including chemotherapy, radiotherapy or immunotherapy) before sur-

gery. Simultaneously, the clinicopathologic information of patients was collected from the

clinical records and pathology reports, including age, gender, site, grade, clinic stage, lymph

node metastasis and recurrence.

All subjects gave their written informed consent for inclusion before they participated in

the study. The study was conducted in accordance with the Declaration of Helsinki, and West

China Hospital of Stomatology (Sichuan University) Ethics Committee approved the protocol

before study (No.WCHSIRB-ST-2012-097).

IHC

IHC was performed as described previously [22]. Briefly, the sections were incubated with 3%

hydrogen peroxide and serum for 20 min and 25 min, respectively, then were incubated over-

night at 4 ˚C with the primary antibody against CD33 (proteintech, China) at a dilution of

1:100. Following incubated secondary antibody, all sections were stained with DAB and coun-

terstained with hematoxylin. Then the immunostaining was evaluated with ImageJ2x 2.1.4.7.

MDSCs isolation and flow cytometry

Peripheral blood mononuclear cells (PBMCs) from blood samples were separated by Ficoll-

Hypaque density gradient centrifugation. And MDSCs were sorted from PBMCs by using

CD33 labeled magnetically selection monoclonal antibodies (Miltenyi Biotech, Germany).

PE mouse anti-human CD33, PE-Cy7 mouse anti-human CD11b, APC mouse anti-human

HLA-DR and FITC mouse anti-human LIN (BD Biosciences, USA) were applied to examine

the proportion of MDSCs by Flow Cytometry (Cytomic FC500, Beckman). WinMDI was used

to analyze samples.

Cell culture and treatment

Cal-27 and SCC-25 were obtained from State Key Laboratory of Oral Diseases, West China

Hospital of Stomatology (Sichuan University) and maintained in DMEM medium (HyClone,

USA) with 10% FBS at 37˚C with 5% CO2. Purified MDSCs from OSCC patients or healthy

donors were used for co-culturing with Cal-27 or SCC-25 for the following assays and healthy

donors PBMCs were cultured in complete RPMI 1640 medium with 10% FBS or Cal-27/SCC-

25-cell culture medium.

CCK-8 assay

The proliferation of Cal-27 or SCC-25 co-cultured with MDSCs was evaluated by CCK-8

assays. Cal-27/SCC-25 cells were seeded in a 96-well plate at a density of 1×103 cell per well

and MDSCs were added at the ratio of 5:1, 1:1 and 1:5, respectively. The co-culture systems

were incubated at 37˚C with 5% CO2. After 6h, 24h, 48h and 72h, CCK-8 kit (Dojindo, Japan)

was used to measure the cell viability according to its protocol, and absorbance was measured

at 450nm.

MDSCs promotes OSCC
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Apoptosis assay

Cal-27 or SCC-25 cells which co-cultured with MDSCs were collected and then 300μL binding

buffer and 5μL Annexin V-FITC were added (BOSTER, China). After mixed and stained for

15 min in the dark, 5μL PI (BOSTER, China) was applied. Cells were analyzed using Flow

Cytometer.

Would healing assay

The OSCC cells were co-cultured with MDSCs for 24h, the wound across the diameter of each

plate was introduced and then cell migration was observed at 0h, 24h by microscopy. The

mean of migration was calculated.

Transwell invasion assay

Cal-27 or SCC-25 cells were seeded in the upper chamber of Transwell chamber (Millipore,

USA) and BD Matrigel in DMEM serum-free medium was coated. Then 100uL cell suspension

of MDSCs at concentrations of 1×105/ml derived from OSCC patients or healthy donors was

seeded and control group was given. The lower chambers were filled with 500μL medium

containing 20% FBS. Cells were incubated at 37˚C for 48h. After that, the Transwell chambers

were washed, fixed with 5% glutaraldehyde and stained with crystal violet staining solution.

Images were obtained with an inverted microscope (Olympus, Japan).

Real-time PCR

Real-time PCR was performed by TransZol Up Plus RNA Kit per manufacturer’s instructions.

Specific primers for Arg-1, iNOS, β-actin, Twist1, Snail, Slug were as follows: Arg-1 forward:

5’-CGCCAAGTCCAGAACCATAG-3’, reverse: 5’- TCCCCATAATCCTTCACATCAC-3’;

iNOS forward: 5’- GTGCCTCTATCTTAGCAGCC-3’, reverse: 5’- AGTCCCCTCATCAAA
GGTGG-3’; β-actin forward: 5’- AAACACCCCAGCCATGTACGT-3’, reverse: 5’- GTGG
TGGTGAAGCTGTAGC-3’; Twist1 forward: 5’- TGTCCGCGTCCCACTAGC-3’, reverse:

5’- TGTCCATTTTCTCCTTCTCTGG -3’; Snail forward: 5’- GACTACCGCTGCTC-
CATTCCA -3’, reverse: 5’- TCCTCTTCATCACTAATGGGGCTTT -3’; Slug forward:

5’- AGATGCATATTCGGACCCAC -3’, reverse: 5’- CCTCATGTTTGTGCAGGAGA -3’.

And 2−ΔΔCt method was applied for relative quantification.

Vasculogenic mimicry (VM) formation assay

Briefly, 24-well plates were coated with 500uL of Matrigel per well, which was allowed to gel at

37˚C for 1 h. OSCC cells and MDSCs were seeded on the Matrigel, and incubated in 5% CO2

at 37˚C for 48h. Capillary-like structure formation was captured by an inverted microscope

(Olympus, Japan).

Statistical analyses

All statistical analyses were performed by SPSS 13.0 (SPSS Inc., Chicago, IL, USA) Statistical

analysis was performed via two-tailed Student’s t-test or one-way ANOVA. A P-value < 0.05

was considered statistically significant.
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Results

MDSCs infiltration in OSCC tissues was associated with unfavorable

prognosis of OSCC patients

To determine the role of MDSCs in OSCC, a total of 200 OSCC patients (143 men and 57

women; mean age, 58 [19–84] years) and 36 premalignant lesions (27 men and 9 women;

mean age, 54 [14–65] years) were collected to perform IHC to analysis the expression of CD33

(a MDSCs marker). And no statistically significant difference was noted between two groups

in demographic feature. We found that CD33+ cells were heterogeneously distributed and

preferentially localized at the tumor stroma rather than the epithelium. The number of CD33+

cells in OSCC tissues was significantly higher than that in premalignant lesions (Fig 1A). The

infiltration of CD33+ cells was positively associated with T stage, pathological grade, lymph

node metastasis and poor prognosis. However, the MDSCs level was not related with the age,

sex, tumor site of patients (p> 0.05).

In 200 OSCC, Patients with high infiltration of CD33+ cells showed significantly shorter OS

(P< 0.0001; Fig 1B) than those with low infiltration. And in UALCAN and CHIPBase data-

bases, the expression of CD33 was also up-regulated in HNSCC cases compared with the nor-

mal mucous, and the expression of CD33 was associated with the pathological grade and the

prognosis of cases, which were similar to our present data (Fig 1C). These observations impli-

cated the unfavorable role of MDSCs infiltration in the prognosis for OSCC patients.

Tumor-associated MDSCs confer proliferative potential on OSCC cells

To assess whether tumor-associated MDSCs affected proliferation and apoptosis of OSCC

cells, CD33 magnetic activated cell sorting (MACS) was firstly used to isolate MDSCs from

peripheral blood of OSCC patients and healthy donors, respectively. And 84% purity of sorted

CD33+ CD11b+ Lin- HLA-DR- cells was obtained (Fig 2A).

Fig 1. MDSCs in OSCC tissues were associated with the poor prognosis of OSCC patients. A.

Immunohistochemical staining was use to examine the infiltration of CD33+ MDSCs. The data showed that the

infiltration of CD33+ cells in OSCC tissues was significant higher than in premalignant lesion. Representative figures

were shown. B. The overall survival curves in OSCC tissue with low or high infiltration of CD33+ cells. Survival curves

showed that high infiltration of CD33+ cells patients showed a lower survival rate than with low infiltration. P<0.0001.

C. The data about CD33 expression in HNSCC patients and the overall survival from database.

https://doi.org/10.1371/journal.pone.0229089.g001
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Then, MDSCs sorted from OSCC patients [MDSCs (O)] or healthy donors [MDSCs (H)]

were co-cultured with Cal-27 or SCC-25 cells for 24 to 72 hours, respectively. CCK8 assays

showed that Cal-27 and SCC-25 cells proliferation was increased after co-cultured with

MDSCs at the ratio of 5:1 for 48 or 72 hours (P<0.05). And the proliferation of OSCC cells

was strongly enhanced after co-cultured with OSCC-derived MDSCs but slightly increased

when treated with MDSCs from healthy donors (Fig 2B). However, the apoptosis of Cal-27

and SCC-25 cells did not differ significantly after co-cultured with MDSCs from OSCC

patients or healthy donors (Fig 2C). Therefore, our results showed tumor derived MDSCs

could enhance the proliferation of OSCC cells but had no effect on their apoptosis.

Tumor-associated MDSCs promoted migration and invasion on OSCC

cells

With the co-culture system, we next evaluated the role of MDSCs in the migratory ability of

Cal-27 and SCC-25 cells by wound healing assay. The data showed that there was a significant

increase of the migration of Cal-27 and SCC-25 cells after co-cultured with tumor-associated

MDSCs for 24 hours compared with MDSCs from healthy donors (P<0.05) (Fig 3A). Further,

Transwell invasion assay showed that the invasion of OSCC cells was significantly enhanced in

OSCC-MDSCs group compared with healthy donor-MDSCs group (P<0.05) (Fig 3B). There-

fore, our results demonstrated an obvious enhancement migration and invasion of OSCC cells

induced by tumor derived MDSCs.

Fig 2. Tumor-associated MDSCs confer proliferative potential on OSCC cells. A. CD11b, CD33, Lin, HLA-DR

were used to identify the purity of MDSCs sorted from PBMCs with multiparametric flow cytometry analysis. B. CCK8

assay was used to examine the cell growth rates cells in control, MDSCs co-culture group, respectively. The data

showed that the cell growth rates of OSCC cells were significantly increased when co-cultured with MDSC from OSCC

patients, compared with the control and co-cultured with MDSCs from health donors. Error bars represent the

mean ± SD of triplicate experiments. � P<0.05. C. Flow cytometry showed cell apoptosis in control and MDSCs co-

culture group of Cal-27 and SCC-25. The data showed that there was no difference among three groups.

Representative figures of three independent experiments were shown.

https://doi.org/10.1371/journal.pone.0229089.g002
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Tumor-associated MDSCs induced EMT of OSCC cells

To investigate the role of MDSCs in inducing EMT of OSCC cells, we examined both epithelial

and mesenchymal markers by immunofluorescence staining (Fig 4A) and RT-PCR (Fig 4B

and 4C) in OSCC cells co-cultured with MDSCs from OSCC patients or healthy donors,

respectively. As we can see, compared with OSCC cells with healthy donor MDSCs, OSCC

cells with MDSCs from OSCC patients exhibited a significant down-regulation of E-cadherin

from cell-cell contacts; meanwhile the mesenchymal markers N-cadherin and Vimentin were

dramatically upregulated (Fig 4A–4C). We further examined the expression of other known

EMT-associated transcription factors. The data showed that the endogenous mRNA levels of

Twist1, Snail, Slug were elevated in response to stimulation of MDSCs from OSCC patients in

a variable extent (Fig 4B and 4C). Together, these results indicated that tumor-associated

MDSCs may be a novel inducer of EMT in Cal-27 and SCC-25 cells.

Tumor-associated MDSCs promoted VM formation of OSCC cells

VM formation in epithelial cancer is assumed to be associated with the EMT process, and the

regulators that contribute to EMT may also modulate VM formation [23]. Here, we wonder

Fig 3. Tumor-associated MDSCs promoted migration and invasion on OSCC cells. A. Migration assay examined

the cell migration ability in control and MDSCs co-culture group of Cal-27 and SCC-25, respectively. Representative

figures were shown. The migration ability of OSCC cells co-cultured with OSCC MDSCs was significantly enhanced

compared with the control or OSCC cells co-cultured with MDSCs from health donors. The mean was derived from

cell counts of 3 fields, and each experiment was repeated 3 times. Error bars represent the mean ± SD of triplicate

experiments. � P<0.05. B. Invasion assay examined the cell invasion ability in control and MDSCs co-culture group of

Cal-27 and SCC-25, respectively. Representative figures were shown. The invasion ability of OSCC cells co-cultured

with OSCC MDSCs was significantly increased compared with control or OSCC cells co-cultured with MDSCs from

health donors. The mean was derived from cell counts of 3 fields, and each experiment was repeated 3 times. Error

bars represent the mean ± SD of triplicate experiments. �P<0.05.

https://doi.org/10.1371/journal.pone.0229089.g003
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whether tumor-associated MDSCs could promote VM formation of OSCC cells. We used a

well-established in vitro 3-D culture model to investigate VM formation. Results showed that

after 48h, OSCC cells treated with tumor-associated MDSCs formed the typical vessel-like

structures; whereas MDSCs from healthy-donor could not (Fig 5A). In addition, compared

with OSCC cells with healthy-donor MDSCs, tumor-associated MDSCs increased the expres-

sion of vascular endothelial (VE)-cadherin of OSCC cells, which were characteristics of endo-

thelial cells (Fig 5B). These indicated that OSCC derived MDSCs might promote VM

formation of OSCC cells through induction of EMT.

OSCC cells induced MDSCs differentiation with immunesuppressive

phenotype from PBMCs

Studies have manifested that MDSCs can be recruited to tumor microenvironment to acceler-

ate tumor progression [24, 25]. To confirm whether OSCC cells induced PBMCs differentia-

tion into MDSCs and enhanced immunesuppression phenotype of MDSCs, we collected

PBMCs from healthy donors and cultured them with OSCC cells culture medium for 24

hours. The proportion of MDSCs was then quantified by flow cytometric analysis. As shown

in Fig 6A, a significant expansion of CD33+ CD11b+ Lin- HLA-DR- MDSCs was observed in

Fig 4. Tumor-associated MDSCs induced EMT of OSCC cells. A. Immunofluorescence staining showed the protein

expression of E-cadherin, N-cadherin and Vimentin in control and co-culture group of Cal-27 and SCC-25. The data

showed the protein levels of N-cadherin and Vimentn were up-regulated in OSCC cells co-cultured with OSCC

derived MDSCs. The change of E-cadherin expression was reverse. Representative figures were shown. B. RT-PCR

showed the mRNA expression of E-cadherin, N-cadherin, Vimentin, Twist1, Snail and Slug in control or co-culture

group of Cal-27 cells. The data showed that the mRNA expression of N-cadherin, Vimentin, Twist1, Snail and Slug was

enhanced in cells co-cultured with OSCC derived MDSCs. The change of E-cadherin expression was reverse. Each

experiment was repeated 3 times. Error bars represent the mean ± SD of triplicate experiments. � P<0.05. C. RT-PCR

showed the mRNA expression of E-cadherin, N-cadherin, Vimentin, Twist1, Snail, Slug in control or co-culture group

of SCC-25 cells. The data showed that the mRNA expression of N-cadherin, Vimentin, Twist1, Snail and Slug

increased in cells co-cultured with OSCC derived MDSCs. The change of E-cadherin expression was reverse. Each

experiment was repeated 3 times. Error bars represent the mean ± SD of triplicate experiments. � P<0.05.

https://doi.org/10.1371/journal.pone.0229089.g004
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PBMCs cultured with OSCC cells culture medium, compared with control group (P<0.05).

Then, we analyzed whether these OSCC-induced MDSCs obtained immunesuppressive abili-

ties. Strikingly, the mRNA expression of Arg-1 and iNOS was significantly increased in healthy

donor MDSCs cultured with Cal-27 or SCC-25 cells as determined by qRT-PCR (Fig 6B). Our

data confirmed Cal-27 and SCC-25 cells converted healthy donor-MDSCs to tumor-associated

MDSCs with immunesuppressive phenotype.

Discussion

It is worth noting that immune microenvironment has been implicated in the initiation and

progression of cancers. MDSCs facilitate immune evasion of tumor cells, as well as decrease

the efficacy of immunotherapy [26]. Here we investigated a crosstalk between tumor-related

MDSCs and OSCC cells. The data showed that the increased MDSCs level in tumor was obvi-

ously associated with the poor prognosis of OSCC patients. Tumor-associated MDSCs con-

ferred proliferative, migrative and invasive potential of OSCC cells, as well as induced EMT

and VM of OSCC cells. In addition, OSCC cells induced MDSCs differentiation with immune

suppressive phenotype from PBMCs and enhanced the secretion of Arg-1 and iNOS of

MDSCs. These findings provided insights into tumor treatment by reducing tumor-associated

immunosuppressive cells.

Early evidence supported that MDSCs level was associated with clinical stage and distant

metastasis in many human cancers including HNSCC, and surgical excision of tumors could

decrease the concentration of peripheral blood MDSCs [27–30, 29]. Hence, we addressed the

number of infiltrated MDSCs by IHC in OSCC tissues and found that MDSCs were increased

Fig 5. Tumor-associated MDSCs promoted VM of OSCC cells. A. Tube-like structure formation on Matrigel in Cal-

27 and SCC-25 cells. OSCC cells co-cultured with OSCC derived MDSCs showed a stronger ability of VM formation

compared with the control and cells co-cultured with health MDSCs. B. Immunofluorescence staining and RT-PCR

assessed the effect of MDSCs on VE-cadherin protein and mRNA expression in OSCC cell lines, respectively. The data

showed that OSCC derived MDSCs enhanced the level of VE-cadherin in SACC cells in both protein and mRNA

levels. Error bars represent the mean ± SD of triplicate experiments. � P<0.05.

https://doi.org/10.1371/journal.pone.0229089.g005
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significantly in tumor stroma that was near to OSCC cells. Consistently, researches showed

MDSCs were significantly increased in the stroma of renal cell carcinoma and glioblastoma

multiforme as assayed by flow cytometry [31–33]. And Horikawa et al. [34] also identified an

increased MDSCs infiltration in ovarian cancer which was inversely correlated with intratu-

mor CD8+ T cell numbers and inferior overall survival (OS). Further, zhang et al. [35] con-

ducted a meta-analysis with eight studies contained 442 solid cancer patients, and found

MDSCs were associated with poor OS, disease-free survival (DFS) and progression-free sur-

vival (PFS). Thereby, we hypothesized that a crosstalk between OSCC cells and MDSCs may

accelerate the malignant progression of OSCC.

To address the relationship between OSCC and MDSCs, we firstly analyzed the role of

MDSCs in the development of OSCC. Here, our data revealed that OSCC associated MDSCs

could facilitate OSCC progression by directly enhancing the proliferation, migration and inva-

sion of OSCC cells, whereas the apoptotic ability of OSCC cells was not affected. Similarly,

Fig 6. OSCC cells induced MDSCs differentiation with immunesuppressive phenotype from PBMCs. A. CD11b,

CD33, Lin, HLA-DR were used to identify the purity of MDSCs sorted from PBMCs with multiparametric flow

cytometry analysis. The data showed that OSCC increased the rate of MDSCs in PBMCs after co-cultured 24h.

Representative figures of three independent experiments were shown. B. RT-PCR was applied to examine the mRNA

expression of Arg-1 and iNOS in MDSC. The data showed that the mRNA expression of Arg-1 and iNOS increased in

MDSC after co-cultured with OSCC. Each experiment was repeated 3 times. Error bars represent the mean ± SD of

triplicate experiments. � P<0.05.

https://doi.org/10.1371/journal.pone.0229089.g006
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Toh et al. [36] showed that granulocytic MDSCs stimulated melanomas cells proliferation in a

dose-dependent manner in vitro. It has also been demonstrated that MDSCs directly enhanced

B16 melanoma cell proliferation by mTOR signaling. Also, MDSCs depletion resulted in a

decrease the of cancer cells proliferation in a murine model of melanoma as revealed with

IHC. [37]. Zhao et al. [38] found the stimulatory effects of lal−/− Ly6G+ MDSCs on B16 mela-

noma cell migration after co-cultured 24h. In mammary carcinomas, Gr-1+ CD11b+ MDSCs

were recruited to the invasive front of tumor, and the invasion ability of mammary carcinomas

cell line, 4T1, displayed a significant increase after co-cultured with MDSCs overnight [39].

These indicated that MDSCs could promote the progression of tumor by directly stimulating

OSCC cells proliferation, migration and invasion apart from suppression of immune

surveillance.

Interestingly, we also indicated that OSCC associated MDSCs accelerated malignant pro-

gression of OSCC by enhancing EMT essential for epithelial tumor metastasis. In accordance

with our results, researches have demonstrated that CXCR2+ MDSCs were predominately

expanded and recruited in breast cancer and could boost EMT of breast cancer cells depen-

dently on IL-6/STAT3 signaling [40]. And the elimination of MDSCs diminished tumor

metastasis in breast carcinoma model [41]. Further, studies also demonstrated that MDSCs

induced EMT through secreting EGF, TGF-β1, and HGF. Once MDSCs were depleted, the

expression of S100A4 and Vimentin which downregulated the expression of E-cadherin and

promoted EMT would be decreased in a murine melanoma model [36]. EMT has been proved

to contribute to the VM which is described as a process that aggressive tumor cells mimic the

endothelial cells to form microvascular tubes and has been reported to promote progression of

cancer [42]. Our previous work found that the VEGFA induced VM formation through regu-

lating EMT to fuel the migration and invasion of salivary adenoid cystic carcinoma [43].

Recently, several studies have revealed that immune cells are involved in the VM. Rong et al.

[44] showed that tumor-associated macrophages (TAMs) could were capable of driving forma-

tion of VM in glioblastoma multiforme via COX-2 dependent manner. Similarly, in glioma,

CD163+ TAMs induce the VM by enhancing the secretion of IL-6 via PKC pathway [45].

However, at present, there is still lake of study on the role of MDSCs in the VM formation of

tumor. In this study, we identified that OSCC derived MDSCs facilitated the VM formation of

OSCC cells. Together with our data, we concluded that cancer related MDSCs could promote

OSCC malignant progression by inducing EMT and VM formation.

Thus, our findings identified that MDSCs played a critical role in the malignant in the pro-

gression of OSCC, subsequently, the effect of OSCC cells on MDSCs has also been explored.

We showed that OSCC cells induced MDSCs differentiation from PBMCs of healthy donors.

In line with our data, Karakasheva et al. [46] found a significantly increased level of CD38+

monocytic MDSCs in PBMCs of colorectal cancer patients compared with healthy donors.

Lechner et al. [47] assessed the ability of over 100 human tumor cell lines to induce MDSCs

from PBMCs of healthy donor via co-culture, and found CD33+ MDSCs be induced by all

types of cell lines including cells from head and neck squamous cell carcinomas, but exception

of those derived from breast cancer.

The Arg-1 and iNOS were the crucial immunosuppressive mediators in immunesuppres-

sion induced by MDSCs. The activity of Arg-1 and iNOS cause the decomposition of arginine,

which leads to T cell cycle arrest in G0-G1, and finally leads to T cells anergy [48]. Zhang et al.

[49] identified that HLA-DR- CD33+ CD11b+ MDSCs from NK/T cell lymphoma patients

expressed higher levels of Arg-1 and iNOS compared with the levels of MDSCs from healthy

donors and strongly inhibited the CD4+ T cell proliferation but slightly suppressed CD8+ T

cell proliferation. Namdar et al. [50] showed that Foxp3 vaccination suppressed MDSCs activ-

ity via a significant decrease of Arg-1 and iNOS to reduction of melanoma growth in a murine
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model. Cao et al. [51] demonstrated that L-Arg supplementation significantly inhibited tumor

growth by reduction of MDSCs, and enhanced innate and adaptive immune responses in mel-

anoma mice model. Hence, we tested the expression of iNOS and Arg-1 in PBMCs after co-

cultures with OSCC, and found OSCC could enhance the levels of iNOS and Arg-1, providing

evidence that tumor cells could educate the immune cells to immunosuppressive phenotype.

Conclusions

Overall, our study demonstrated that MDSCs, the most potent inhibitors of T cells responses

historically, were closely associated with the malignant progression of OSCC by promoting the

proliferation, migration, invasion, and EMT as well as VM formation. And in turn, OSCC cells

could also promote MDSCs increment and enhance immune suppressive function of MDSCs.

These findings hinted that targeting MDSCs might a new manner to therapy OSCC.
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