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Abstract

Background: A number of potential therapeutic approaches for neurological disorders have failed to provide
convincing evidence of efficacy, prompting pharmaceutical and health companies to discontinue their involvement
in drug development. Limitations in the statistical analysis of complex endpoints have very likely had a negative

impact on the translational process.

Methods: We propose a transitional ordinal model with an autoregressive component to overcome previous
limitations in the analysis of Upper Extremity Motor Scores, a relevant endpoint in the field of Spinal Cord Injury.
Statistical power and clinical interpretation of estimated treatment effects of the proposed model were compared to
routinely employed approaches in a large simulation study of two-arm randomized clinical trials. A revisitation of a key
historical trial provides further comparison between the different analysis approaches.

Results: The proposed model outperformed all other approaches in virtually all simulation settings, achieving on
average 14 % higher statistical power than the respective second-best performing approach (range: -1 %, +34 %).
Only the transitional model allows treatment effect estimates to be interpreted as conditional odds ratios, providing

clear interpretation and visualization.

Conclusion: The proposed model takes into account the complex ordinal nature of the endpoint under
investigation and explicitly accounts for relevant prognostic factors such as lesion level and baseline information.
Superior statistical power, combined with clear clinical interpretation of estimated treatment effects and widespread
availability in commercial software, are strong arguments for clinicians and trial scientists to adopt, and further extend,

the proposed approach.

Keywords: Upper extremity motor scores, Summed overall score, Multivariate ordinal endpoints, Proportional odds
model, Statistical power, Spinal cord injury, Sygen®trial, Rasch models, Latent variable models

Background

Neurological research is responsible for the investigation
of many devastating disorders such as stroke, Alzheimer’s
and Parkinson’s diseases. In terms of health costs, brain-
related disorders are a greater socio-economic burden
than cancer, cardiovascular diseases and diabetes com-
bined [1], with yearly costs for the European society
estimated at almost 400 billion € [2].
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Despite several therapeutic approaches [3—6] based on
recent discoveries of cellular and molecular processes of
degeneration, but also spontaneous regeneration follow-
ing injury, pharmaceutical and health companies have
been withdrawing from neuroscience, as a number of
trials intended to show efficacy of treatments for neu-
rological disorders failed [7]. In the field of Spinal Cord
Injury (SCI), four decades after the first pharmacological
treatment of acute injuries [8], the promises of preclini-
cal discoveries have yet to be translated into a standard
treatment [9].

To streamline the translational process, the Interna-
tional Campaign for Cures of Spinal Cord Injury Paralysis
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(ICCP) appointed in 2007 an international panel with the
task to reviewing strengths and weaknesses of clinical
trials in spinal cord injury. Their recommendations for
the planning and conduction of future trials were con-
densed in a series of publications [10-13], which strongly
influenced the conception of clinical trials thereafter [14].

Nonetheless, the ICCP reviews [10—13] did not solicit
the application of the most appropriate and recent statis-
tical techniques available for the analysis of complex SCI
trial endpoints, and many clinical trials failed to do so
too [15-19].

In fact, virtually all routinely performed clinical assess-
ments in spinal cord injury are measured on ordinal
scales, which are characterized by an arbitrary numer-
ical score establishing a ranking of observations. The
difference between two following ranks is by no means
bound to be equivalent across the range of the scale,
preventing standard operations such as addition, and
making the use of statistical methods developed for
continuous endpoints inappropriate. Despite this, clini-
cal trials designed and powered for a primary ordinal
endpoint often resorted to adding several ordinal end-
points to form a single overall summed score, which is in
some cases subsequently collapsed to a binary outcome
[15-19]. These approaches have been shown to be inap-
propriate in a number of aspects [20], and practical con-
sequences such as biased parameter estimates, misleading
associations and loss of power are some of the known
consequences of assuming metric properties for ordinal
endpoints [21-23].

In this study, we propose for the first time in SCI a
transitional ordinal model with an autoregressive com-
ponent for testing for treatment effect on a multivariate
ordinal endpoint such as the Upper Extremity Motor
Scores (UEMS), while comparing it to current analy-
sis approaches in terms of statistical power and clinical
interpretation of treatment effect estimates.

Methods

The objective was to propose a new approach to the
analysis of complex ordinal endpoints in neurological
clinical trials, and provide statistical power comparisons
of procedures for treatment effect testing. Two-armed
Randomized Clinical Trials (RCT) with specific levels
of experimental conditions were generated and analysed.
Current approaches to the analysis of multivariate ordi-
nal endpoints such as the Upper Extremity Motor Scores
(UEMS) were compared to the proposed autoregressive
transitional ordinal model. The proposed approach mod-
els the transition, e.g. the change in UEMS distribution,
from trial baseline to trial end. The autoregressive term
of the model describes the anatomical structure of the
spinal cord by postulating a direct dependency between
contiguous segments.
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Data source and trial endpoint

The data utilized in this study was extracted from the
European Multicenter Study about Spinal Cord Injury
(EMSCI, ClinicalTrials.gov Identifier: NCT01571531,
www.emsci.org). EMSCI tracks the functional and neu-
rological recovery of patients during the first year after
spinal cord injury in a highly standardized manner. All
patients gave written informed consent. The ethical com-
mittee of the Canton of Zurich, Switzerland, has pre-
viously approved the EMSCI project, upon which this
project is based, and the approval is also valid for any
statistical analysis/re-analysis.

To reflect the time frame of a possible future clinical
trial, we considered baseline (within 2 weeks after injury,
t = 1) and one follow-up (6 months after injury, ¢ =
2) examination. For this simulation study, we extracted
and utilized records of N=405 patients with a Motor
Level (ML) defined between spinal segments C5-T1 (see
Additional file 1 for details) and with available baseline
information.

The trial endpoint considered is the Upper Extremity
Motor Scores. UEMS represents a subset of the Interna-
tional Standards for Neurological Classification of Spinal
Cord Injury (ISNCSCI) [24] and describes the muscle con-
traction force for 10 key muscles on the arms and hands (5
on each body side), each one being rated on a 6-point ordi-
nal scale (0: total paralysis, through 5: active movement
against full resistance, see Additional file 1 for details).
Accordingly, Yi,.: is the muscle contraction score for
patient i (i = 1,...,n) and key muscle m (m =1, ...,10)
measured at time point ¢ (¢ = 1,2). Each key muscle
Yim: is therefore an ordinal variable with k = 6 levels
0 <1 < ... < 5,and UEMS is a multivariate ordi-
nal endpoint. The chosen endpoint is particularly relevant
in SCI. A change in total UEMS over trial period has
been employed repeatedly in clinical trials [15, 19] and
has been suggested to correlate with changes in activities
of daily living that rely on recovery of upper extremity
function [25].

RCT simulation
An autoregressive transitional ordinal model of the form:

logit [P(yi,m,Z = k)] = &j + Blev Xlev,im1 t Bbase Ybase,im,1

+ Bauto Yauto,i,m—1,2

(1)

was fitted on the EMSCI data. ; are the k — 1 = 5 inter-
cept parameters, Xjey is a 10-level nominal factor denoting
the combination of Motor Level and the distance from
the Motor Level to the key muscle m being analysed,
expressed as number of key muscles along the spine (ref-
erence: motor level: cervical C5, distance: -1 (first muscle
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below the level)), Ybase,im,1 is the ordered factor for base-
line motor score of key muscle m, and Yauto,im—1,2 is the
ordered factor for motor score of the key muscle just
above the one being analysed at ¢ = 2. The autoregres-
sive term of the model describes the anatomical structure
of the spinal cord, and postulates that the motor score of
a given key muscle depends on the Motor Score of the key
muscle just rostral to it. As a consequence, the observed
pattern of lower motor scores with increasing distance
from the ML is reproduced. In accordance with the above
description, Eq. 1 simulated and analysed only key mus-
cle score below the Motor Level. Motor scores ;2 for
key muscles at ML were multinomially sampled from cor-
responding observed EMSCI frequencies at Motor Level,
while motor scores y;,,2 for key muscles above the ML
were given the maximal score.

The parameter estimates recovered from the model
specified in Eq. 1 describe the spontaneous neurological
recovery for patients under standard of care and were sub-
sequently used to simulate participants in the control arm
of the trial. From the EMSCI data we also computed the
observed frequencies of Motor Level combinations for the
left and right body side at baseline. Given that patients
having both left and right ML at the lowest UEMS key
muscles T1 are very rare (3 % in our EMSCI sample) and
do not contribute to the analysis (no key muscles in the
UEMS below the ML), they were not included into the
simulation.

Equation 1 models the spontaneous neurological recov-
ery for patients under standard of care. We introduced
an additional parameter B representing a postulated
treatment effect, leading to an autoregressive transitional
ordinal model of the form:

logit [P()/i,m,Z = k)] =qj + Blev Xlev,i,m,1 + Bbase Ybase,iym,1
+ Bauto Yauto,iymn—1,2 + Burt Xrti1

(2)

As previously defined, «; are the k — 1 = 5 inter-
cept parameters, x,, is a 10-level nominal factor denoting
the combination of Motor Level and the distance from
the Motor Level to the key muscle m being analysed,
expressed as number of key muscles along the spine (ref-
erence: Motor Level: C5, distance: -1), Ybaseim,1 is the
ordered factor for baseline motor score of key muscle
M, Yauto,im—1,2 is ordered factor for motor score of the
key muscle just above the one being analysed at ¢ = 2,
and x¢ is an indicator for treatment arm with placebo as
reference.

The autoregressive term of the model describes the
anatomical structure of the spinal cord, and postulates
that the motor score of a given key muscle depends
on the motor score of the key muscle just rostral to it.
As a consequence, the observed pattern of lower motor
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scores with increasing distance from the ML is repro-
duced. Besides the postulated treatment effect B¢, which
is set to different values depending on the simulation set-
tings, all other parameters in Eq. 2 were kept equal to
the estimates recovered by fitting Eq. 1 to the EMSCI
data.

We thus simulated randomized clinical trials with two
treatment arms and specific levels of experimental condi-
tions. To cover possible SCI early phase as well as phase
I1I settings, we generated total trial sample sizes of 50, 75,
100, 125, 150, 175, 200 participants. To our knowledge,
there is to date no publication on the magnitude of possi-
ble treatment effects for UEMS which could have guided
us in defining more tailored scenarios. We therefore pos-
tulated a rather wide range of six possible treatment
effects (from no treatment effect (Bt = 0.0 = log(1))
to strong treatment effect (B¢ = 0.4055 = log(1l.5))
in 0.1 steps). A total of 42 scenarios resulted from sim-
ulating all possible combinations of the 7 trial sample
sizes and 6 possible treatment effects considered. Being
a proportional odds model, the exponentiated B+ can be
interpreted as conditional Odds Ratio (OR) between trial
arms, meaning that, conditional on all other prognostic
factors being equal, it specifies the ratio of the odds for a
key muscle to achieve a motor score of less than or equal
to k in the treatment arm divided by the same odds in
the control arm. OR is a statistically sensible and clinical
widely accepted way of quantifying effects of categorical
variables.

The 42 trial scenarios resulting from all combinations of
7 trial sample sizes and 6 possible treatment effects were
simulated in the following way:

1. Right and left Motor Levels for the hypothesized
number of trial participants were drawn from a
multinomial distribution with category probabilities
set to the corresponding observed EMSCI
frequencies.

2. Baseline UEMS for each trial participant were
sampled with replacement from all EMSCI patients
having the same left-right ML constellation.

3. Each simulated participant was randomly allocated
to either the control or the treatment arm with a 1:1
allocation scheme.

4. UEMS at six months for the key muscle at ML were
drawn from a multinomial distribution with category
probabilities set to the corresponding observed
EMSCI frequencies.

5. UEMS at six months below the ML were simulated
using the previously fitted model for spontaneous
recovery (Eq. 1) for participants in the control arm,
and the same model with the addition of a postulated
treatment effect (Eq. 2) for participants in the
treatment arm of the trial.
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6. Each one of the 42 trial scenarios was replicated 1000
times.

7. A battery of 6 different tests for treatment effect (see
below “Endpoint analysis approaches” Section) were
applied to each simulated trial.

8. The statistical power = P(reject Hp|H is true) was
estimated as the fraction of significant tests for
treatment effect at the nominal level 0.05 among the
1000 replications.

Endpoint analysis approaches
In neurology in general, and SCI in particular, very com-
mon approaches to the analysis of UEMS or similar end-

points are as the total sum of all motor scores Y}, =
10
m=1
Y = Zi,?zl Yimz2 — Yim,1. Accordingly, treatment effect
for UEMS was tested with:

Yimz2 or as difference between two time points

t-test: t-test for Y}, comparing mean total UEMS in the
two treatment groups.

t-test delta: t-test for Y;**, comparing the mean differ-
ence in total UEMS from baseline to the end of the
trial between the two treatment groups.

ANCOVA: Analysis of covariance for Y}, comparing
mean total UEMS in the two treatment groups with
baseline total UEMS Y} as controlling continuous
variable.

Even though not commonly done in SCI, we considered
necessary that the Motor Level should be incorporated
into the analysis of motor function. In fact, its impor-
tance has been reported before [26, 27]. We therefore
applied a conditional test of independence between out-
come and treatment arm which was stratified according
to the Motor Level of each trial participant. We pre-
dicted that this approach would perform better than the
previous, not stratified ones, and explored the possibil-
ity to utilise them as “ad hoc” approach for the analysis
of UEMS. Accordingly, treatment effect for UEMS was
tested with:

i-test: stratified independence test for Y7,, comparing
total UEMS in the two treatment groups.

i-test delta: stratified independence test for Y;*, com-
paring the difference in total UEMS from baseline
to the end of the trial between the two treatment
groups.

Both tests are implemented in the R add-on package coin
[28,29].

The last approach for the analysis of UEMS in a RCT is
a model that takes into account the ordinal nature of each
key muscle and explicitly incorporates baseline UEMS as
well as ML into the analysis:
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transitional: transitional ordinal model for Yj,, of the
form specified in Eq. 2, comparing the shift in motor
score probabilities associated with treatment.

The proposed model is a proportional odds model with an
autoregressive component. The latter takes into account
the spatial orientation of the key muscles along the spinal
cord by postulating a direct dependency of adjacent spinal
segments. As a consequence, the observed pattern of
lower Motor Scores with increasing distance from the ML
is reproduced. This model was fitted using function polr
from the R add-on package MASS [30, 31].

The parameter B¢, which quantifies the treatment
effect on the link scale, is the focus of the proposed model.
Its significance testing was based on a permutation test
[32, 33], where the distribution of the test statistics under
Hy (no treatment effect) was based on refitting the same
model 1000 times after randomly rearranging the labels
for arm allocation. This type of statistical significance test
does not rely on any distributional assumption. In addi-
tion, by permuting trial arm allocation at participant level,
we accounted for the hierarchical structure of the data
analysed, where multiple key muscles are measured on
the same participant. All computations were performed in
the R system for statistical computing [34], version 3.1.3.
The R code implementing the simulation study is available
online (doi: http://dx.doi.org/10.5281/zenod0.47600).

Revisiting a key SCl trial
As a practical application, we analysed a subset of the
data collected during a past clinical trial. The Sygen
°trial recruited N=760 SCI participants in 28 centres in
North-America in a 5-year period between 1992 and 1997
[17, 35, 36]. Sygen °is a naturally occurring compound in
cell membranes which has been associated with neuro-
protective and regenerative effects in a number of exper-
imental models and early-phase human trials. The trial is
an example where a promising therapeutic approach was
finally abandoned, as no significant treatment effect could
be assessed on the primary endpoint despite a consid-
erable final sample size (N=760). The primary endpoint
assessed the overall neurological status of a patient and
was defined as a dichotomization derived from an ordinal
scale (see [36] for the exact definition). The primary end-
point was analysed by means of logistic regression. Several
ancillary analyses were performed and mostly preferred
the treatment arm, even though the differences were not
always statistically significant. To our knowledge, no anal-
ysis performed at the level of motor scores of the upper
extremity key muscles UEMS as reported here have been
published.

We revisited the trial by testing for treatment effect on
the UEMS with all six approaches outlined before (see
“Endpoint analysis approaches” Section). The proposed
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autoregressive transitional ordinal model (Eq. 2) can be
easily fitted as proportional odds model to the segment-
wise UEMS data in the long format. The autoregressive
component ¥;,,—1,2 can be incorporated by shifting the
six-month, muscle-wise UEMS entries so as to be aligned
to the key muscle y; ,,, 2 just caudal to them.

To reflect our simulation study, we selected participants
with a ML between C5 - C8 (T1 were discarded, because
there is no key muscle caudal to the ML on the UEMS),
and considered only patients treated with a low dosage
(the original trial had two treatment doses, the higher of
which was abandoned during the study). After patients
selection, we analysed a finale sample of N=284 par-
ticipants, 127 (45 %) of which in the control arm. This
analysis is intended to give an example of the applica-
tion of the proposed transitional ordinal model, but is not
intended and should not be taken as a definitive conclu-
sion about the value or outcome of the trial. Given the
strongly selected patients sample utilised, the different
endpoint analysed and the different scope of our analysis,
generalizations of this type cannot be drawn.

Results

RCT simulation

For the purpose of this study, we simulated 1000 times
each one of the 42 different combinations of trials size
and postulated treatment effect. Statistical power, which
is defined as the probability of rejecting the Hyp of no
treatment when there is in fact a treatment effect, was
estimated as the fraction of this 1000 iterations where
the test for treatment effect resulted significant at the
0.05 level. Table 1 reports the statistical power of all
treatment testing approaches for all simulated settings.
Figure 1 shows the statistical power of all six approaches
for the intermediate treatment effect simulated. Figure 2
displays graphically the statistical power of all treatment
testing approaches for all simulated settings. The nomi-
nal level 0.05 was maintained by all approaches when no
treatment effect was introduced in the simulation, mak-
ing further comparisons between different approaches
straightforward.

For the smallest treatment effect Byt = 0.0953 =
log(1.1), all six tests for treatment effect showed a
low power, never exceeding P(reject Ho|H; is true)
< 0.135. The transitional ordinal model was nonethe-
less superior to all other approaches in virtually every
trial size setting, its power point estimates averaging
2.3 % higher than the respective second best-performing
approach.

Already at the next higher treatment effect simulated
But = 0.1823 = log(1.2), the transitional ordinal model
showed roughly twice as much power as the second-best
performing approach, though it did not exceed P(reject
Hy|H is true) < 0.36. This held for all simulation settings

Page 50f 13

except the smallest sample size. Statistical power point
estimates for the transitional ordinal model were on
average 10.3 % higher than the respective second best-
performing approach.

In the settings with median simulated treatment effect
But = 0.2624 = log(1.3) shown in Fig. 1, the transi-
tional ordinal model was superior for all trial sizes. Power
point estimates for the proposed model were on average
19.4 % higher than the respective second best-performing
approach, with this difference in performance increasing
with increasing trial size.

With the simulated treatment effect of Byt = 0.3365 =
log(1.4), the transitional ordinal model had superior sta-
tistical power of 26.3 % on average, compared to the
respective second best-performing approach, with this
difference increasing with increasing trial size.

For the largest simulated treatment effect of By =
0.4055 = log(1.5), the transitional ordinal model had an
average superior statistical power of 27.9 %, compared to
the respective second best-performing approach. The dif-
ference in performance increased strongly up to trial size
N=100, but then declined with larger sizes.

Overall, despite a comparably poor performance of all
approaches for small simulated treatment effects, a stable
pattern in the ranking of performance emerged: the pro-
posed transitional ordinal approach provided best power
results in virtually all settings. ANCOVA was usually
the second-best approach, closely followed by the inde-
pendence test on the difference of UEMS from baseline
Y?*, the similarly performing t-test on the difference
of UEMS from baseline Y;* and the independence test
on the UEMS after six months Y}). The t-test on the
UEMS after six months Y;") performed worst in almost all
settings.

Revisiting a key SCl trial

We analysed a subset of the data collected during the
Sygen °trial [17, 35, 36]. To our knowledge, no analysis
on this data has been performed at the level of motor
scores of the upper extremity key muscles UEMS as
reported here. The results of the six analysis approaches
(see Endpoint analysis approaches section) are reported
here:

t-test: No significant difference in the estimated means
et = 30.370 and iy = 30.170 of UEMS at 6
months between trial arms: t(275)=0.130, p—value =
0.896.

t-test delta: No significant difference in the estimated
mean change fieg = 11.978 and jigy = 10.540 of
UEMS between trial arms: t(259)=1.239, p — value =
0.216.

ANCOVA: No significant difference in the estimated
means of UEMS at 6 months between trial arms,



Table 1 Statistical power for all simulation settings. Point estimates, as well as Wilson confidence intervals are reported for all analysis approaches

Size Treatment OR T-test Cllower Clupper T-testdelta Cllower Clupper I-test Cllower Clupper I|-testdelta Cllower Clupper ANCOVA Cllower Clupper Transitional Cllower Clupper

50  0.0000 1.0 0.053 0.041 0.069 0.052 0.040 0.068 0.051 0.039 0.066 0.042 0.031 0.056 0.046 0.035 0.061 0.050 0.038 0.065
75 0.0000 1.0 0048 0.036 0.063 0.050 0.038 0.065 0.052 0.040 0.068 0.051 0.039 0.066 0.053 0.041 0.069 0.052 0.040 0.068
100 0.0000 1.0 0047 0.036 0.062 0.046 0.035 0.061 0.054 0.042 0.070 0.046 0.035 0.061 0.048 0.036 0.063 0.045 0.034  0.060
125 0.0000 1.0 0.049 0.037 0.064 0.052 0.040 0.068 0.040 0.030 0.054 0.056 0.043 0.072 0.056 0.043 0.072 0.057 0.044 0073
150 0.0000 1.0 0056 0.043 0.072 0.044 0.033 0.059 0.041 0.030 0.055 0.040 0.030 0.054 0.050 0.038 0.065 0.040 0.030 0.054
175 0.0000 1.0 0.050 0.038 0.065 0.050 0.038 0.065 0.043 0.032 0.057 0.053 0.041 0.069 0.042 0.031 0.056 0.047 0.036 0.062
200 0.0000 1.0 0051 0.039 0.066 0.052 0.040 0.068 0.046 0.035 0.061 0.053 0.041 0.069 0.056 0.043 0.072 0.048 0.036 0.063
50 0.0953 1.1 0057 0044 0073 0.060 0.047 0.076 0.063 0.050 0.080 0.052 0.040 0.068 0.062 0.049 0.079 0.049 0.037 0.064
75 0.0953 1.1 0055 0.042 0.071 0.056 0.043 0.072 0.051 0.039 0.066 0.069 0.055 0.086 0.049 0.037 0.064 0.086 0.070 0.105
100 0.0953 1.1 0057 0044 0073 0.071 0.057 0.089 0.061 0.048 0.078 0.071 0.057 0.089 0.071 0.057 0.089 0.106 0.088 0.127
125 0.0953 1.1 0074 0.059 0.092 0.068 0.054 0.085 0.082 0.067 0.101 0.075 0.060 0.093 0.081 0.066 0.100 0.094 0.077 0.114
150 0.0953 1.1 0063 0.050 0.080 0.070 0.056 0.088 0.062 0.049 0.079 0.075 0.060 0.093 0.078 0.063 0.096 0.116 0.098 0.137
175 0.0953 1.1 0066 0.052 0.083 0.071 0.057 0.089 0.069 0.055 0.086 0.079 0064 0097 0.073 0.058 0.091 0117 0.099 0.138
200 0.0953 1.1 0072 0.058 0.090 0.101 0.084 0.121 0.080 0.065 0.098 0.092 0.076 0.112 0.099 0.082 0.119 0.135 0.115 0.158
50 0.1823 1.2 0068 0.054  0.085 0.090 0.074 0.109 0.065 0.051 0.082 0.091 0.075 0.110 0.093 0.077 0.113 0.1m 0.093 0.132
75 01823 1.2 0096 0.079 0.116 0.095 0.078 0.115 0.106 0.088 0.127 0.100 0.083 0.120 0.107 0.089 0.128 0.164 0.142 0.188
100 0.1823 1.2 0106 0.088 0.127 0.098 0.081 0.118 0.112 0.094  0.133 0.099 0.082 0.119 0114 0.096 0.135 0.226 0.201 0.253
125 0.1823 1.2 0115 0.097 0.136 0.127 0.108 0.149 0.135 0.115 0.158 0.132 0.112 0.154 0.145 0.125 0.168 0.261 0.235 0.289
150 0.1823 1.2 0134 0114 0157 0.155 0.134 0.179 0.138 0.118 0.161 0.167 0.145 0.191 0171 0.149 0.196 0.298 0.270 0327
175 0.1823 1.2 0134 0114 0157 0.161 0.140 0.185 0.166 0.144  0.190 0177 0.155 0.202 0.182 0.159 0.207 0.331 0.303 0.361
200 0.1823 12 0.145 0.125 0.168 0.189 0.166 0214 0.175 0.153 0.200 0.191 0.168 0.217 0.215 0.191 0.242 0.360 0.331 0.390
50 02624 1.3 0.106 0.088 0.127 0.128 0.109 0.150 0.101 0.084  0.121 0.127 0.108 0.149 0.142 0.122 0.165 0.226 0.201 0.253
75 02624 1.3 0120 0.101 0.142 0.152 0.131 0.176 0.140 0.120 0.163 0.153 0.132 0.177 0.173 0.151 0.198 0.277 0.250 0.306
100 0.2624 1.3 0.145 0.125 0.168 0.208 0.184 0.234 0.178 0.156 0.203 0.200 0.176 0.226 0.234 0.209 0.261 0.383 0.353 0414
125 0.2624 1.3 0185 0.162 0.210 0.214 0.190 0.240 0.204 0.180 0.230 0.237 0.212 0.264 0.261 0.235 0.289 0474 0443 0.505
150 0.2624 1.3 0192 0.169 0218 0.248 0.222 0.276 0.236 0.211 0.263 0.269 0.242 0.297 0.265 0.239 0.293 0.528 0.497 0.559
175 0.2624 13 0229 0204 0256 0.275 0.248 0.303 0.257 0.231 0.285 0.299 0.271 0328 0.325 0.297 0.355 0.595 0.564 0625
200 0.2624 13 0280 0.253 0.309 0.329 0.301 0.359 0.321 0.293 0.351 0.367 0.338 0.397 0.392 0.362 0423 0.673 0.643 0.701
50 03365 14 0119 0.100 0.141 0.154 0.133 0.178 0.141 0121 0.164 0.153 0.132 0.177 0.161 0.140 0.185 0.303 0.275 0.332
75 03365 14 0.184 0.161 0.209 0.195 0.172 0.221 0.212 0.188 0.238 0.209 0.185 0.235 0.240 0.215 0.267 0410 0.380 0.441
100 0.3365 14 0221 0.19 0.248 0.253 0.227 0.281 0.260 0234  0.288 0.288 0.261 0.317 0.302 0.274 0.331 0.580 0.549 0610
125 0.3365 14 0290 0263 0.319 0.314 0.286 0.343 0.308 0.280 0.337 0.339 0.310 0.369 0.396 0.366 0427 0.692 0.663 0.720
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Table 1 Statistical power for all simulation settings. Point estimates, as well as Wilson confidence intervals are reported for all analysis approaches (Continued)

Size Treatment OR T-test Cllower Clupper T-testdelta Cllower Clupper I-test Cllower Clupper I|-testdelta Cllower Clupper ANCOVA Cllower Clupper Transitional Cllower Clupper
150 0.3365 14 0309 0281 0338 0376 0.347 0.406 0.374 0.345 0.404 0.404 0374 0435 0.442 0411 0473 0.736 0.708 0.762
175 03365 14 0329 0301 0.359 0399 0.369 0430 0.396 0.366 0427 0434 0404 0.465 0.463 0432 0494 0.800 0.774 0.824
200 0.3365 14 0407 0377 0438 0.464 0433 0495 0445 0414 0476 0.495 0464 0526 0536 0.505 0.567 0.857 0.834 0.877
50 04055 1.5 0.162 0.140 0.186 0.178 0.156 0.203 0.196 0.173 0.222 0.190 0.167 0215 0210 0.186 0.236 0.392 0.362 0423
75 04055 1.5 0238 0213 0265 0.263 0237 0291 0281 0254 0310 0.291 0264 0320 0318 0290 0348 0.592 0.561 0.622
100 04055 1.5 0302 0274 0331 0.354 0325 0384 0366 0337  039% 0.390 0360 0421 0.392 0362 0423 0.737 0709 0763
125 04055 1.5 0368 0339 0398 0443 0412 0474 0420 0390 0451 0467 0436 0498 0515 0484 0546 0.825 0800  0.847
150 0.4055 15 0397 0367 0428 0.509 0478 0.540 0467 0436 0.498 0.546 0515 0577 0.583 0.552 0.613 0.891 0.870 0.909
175 04055 15 0495 0464 0.526 0.559 0.528 0.589 0.567 0.536 0.597 0.597 0.566 0.627 0.648 0.618 0.677 0.919 0.900 0.934
200 0.4055 15 0530 0499 0.561 0616 0.585 0.646 0.598 0.567 0.628 0.669 0.639 0.697 0.706 0.677 0.733 0.967 0.954 0976
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Fig. 1 Comparison of statistical power for the median treatment
effect. The statistical power of all six approaches for treatment effect
testing are plotted against total trial size (1:1 randomization) for the
median simulated treatment effect By = 0.2624 = log(1.3)

controlling for baseline UEMS: But = —1.165, p—
value = 0.307.
i-test: No significant dependency between UEMS at 6
months and treatment arm: Z=0.553, p—value =0.58.
i-test delta: No significant dependency between change
in UEMS and treatment arm: Z=1.525, p — value =

0.127.
transitional: No significant shift in motor score probabil-
ities associated with treatment arm: Byt = —0.197,

p — value = 0.207.

Summarizing, all six approached did not show signifi-
cant results at the nominal level 0.05, but they all showed
a tendency to less positive outcomes for patients in the
treatment arm. This analysis is intended to give an exam-
ple of the application for the proposed transitional ordinal
model, but is not intended and should not be taken as a
definitive conclusion about the value or outcome of the
trial.

Discussion

The aim of this simulation study was to compare several
approaches of testing for treatment effect in two-armed
RCT in a neurological setting. We therefore simulated
clinical trials with cervical SCI participants with specific
levels of experimental conditions and tested for treatment
effect with six different approaches. Routinely employed
analysis approaches not only rely on strong assumptions
about the properties of the endpoints being analysed, but
were also outperformed in virtually all settings by the the
proposed autoregressive transitional ordinal model for the
analysis of UEMS.
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Adding ordinal endpoints to form a single overall score is
generally not valid

Common approaches to the analysis of UEMS and similar
neurological endpoints are as the total sum of all motor
scores YL*2 = Zi,?zl Yimpo or as difference between two
time points Y;** = Z;?:l Yimoz — Yim1-

Whether it is appropriate to combine a set of ordinal
variables to generate a total score is usually not checked
in neurology [37]. It should nonetheless be a require-
ment, as there are at least two strong assumptions related
to the analysis of summed motor scores as a metric
endpoint: unidimensionality and equal differences. Uni-
dimensionality refers to the property of several scores to
measure a single, common patient’s characteristic. While
there is some preliminary evidence that unidimension-
ality holds for UEMS [38], the opposite was reported
for both the Functional Independence Measure FIM [39],
the Spinal Cord Independence Measure SCIM [40], a
situation which is very likely to be found in functional
endpoints and Patients Reported Outcomes PRO. Equal
differences imply that a unit change in motor scores rep-
resent exactly the same clinical change, independently of
where the change took place on the scale (e.g. a change
from O to 1 is assumed to be of the same magnitude as
a change from 3 to 4 in motor scores), or of which key
muscle are considered (the previous example is assumed
to hold even when the changes took place on different
key muscles, say e.g. one proximal and one distal from the
lesion level).

The widely used method of adding up several ordi-
nal endpoints to form a single overall score is therefore
generally not valid with regard to the two assumptions
exemplified above, and has been repeatedly reported
in neurological and related physical functioning settings
[39-44]. From a practical point of view, biased parameter
estimates, as well as misleading associations and loss of
power are some of the known consequences of assuming
metric property for ordinal endpoints [21-23]. There is
therefore a compelling need to embrace statistical models
specifically designed for the analysis of complex ordinal
endpoints.

RCT simulation

The proposed autoregressive transitional ordinal model
is the first attempt in SCI to model and analyse a com-
plex endpoint with a regression model which reflects
its ordinal nature and takes into account important
prognostic factors. The proposed model for the anal-
ysis of UEMS in cervical SCI patients outperformed
all other approaches in virtually all settings. The sensi-
bly lower statistical power achieved by commonly used
approaches, in addition to their implicit assumptions,
indicate that their use as default analysis methods in not
justified.
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Fig. 2 Contour plots of statistical power for all simulation settings. The statistical power of all testing approaches is represented using loess smooth
approximation. Contour curves visualize combinations of trial size and treatment effect with equivalent statistical power, which is reported as
numerical value. The colour key differentiates regions of low statistical power (violet) from regions of high statistical power (blue)

Contrary to our expectations, a stratification of
the t-test based on the Motor Level did not pro-
vide a discernible improvement in statistical power
(Table 1). In fact, even though blocked independence
tests showed a slightly higher power than their corre-
sponding t-tests (Fig. 2), the gain in power was not
such that their application as “ad hoc” solution resulted
substantiated.

In terms of clinical interpretation of treatment effect
estimates, we note that by applying the proposed model,
the exponentiated treatment effect estimate Et; can be
interpreted as the conditional odds ratio between the
treatment and control trial arms, which is a common and
accepted way of quantifying treatment effect in the clini-
cal setting. Even when the proportional odds assumption
is not fully met, it still provides an interpretable parame-
ter that summarizes the treatment effect over all levels of
the outcome [23]. In addition, the transitional model pro-
vides motor score probabilities for each combination of
prognostic variables, making the direct comparison and

visual representation of treated and untreated participants
straightforward (see Fig. 3).

On the contrary, clear interpretation of the results pro-
duced by common approaches is precluded by summed
scores of suppositional metric endpoints, providing lit-
tle insight for trial scientists and clinicians. Importantly,
small and possibly localized treatment effects, which are
a hallmark of many neurological disorders, can be disen-
tangled using ordinal approaches for motor scores, but
become lost in the analysis of summed total scores.

Finally, our simulation showed (Table 1) that a statistical
power of 80 %, which is a common goal for clinical trials
planners, is reached by the ordinal model only for large
trial size and large postulated treatment effects. As a total
trial size of N=200 seems to currently represent the prac-
tical upper limit for conducting SCI trials, the statistical
detection of an existing treatment effect seems to rely on
a rather strong effect. Further improvements of the ordi-
nal model will likely result in lowered requirements for
treatment detection.
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Fig. 3 Visualization of median treatment effect Byr = 0.2624 = log(1.3). In contrast to all other analysis approaches, the transitional ordinal model
allows to graphically represent shifts in motor score distributions for any constellation of relevant prognostic factors, permitting a much more
detailed investigation of treatment effect. As illustrative example, represented is the distribution of motor score probabilities for participants in the
control (left panel) and treatment arm (right panel). Lower scores became less, while higher score became more probable in the treatment arm. The
treatment effect Byt = 0.2624 = log(1.3) corresponds to an Odds Ratio of OR=1.3.The specific constellation of prognostics factor represented refers
to a C8 key muscle, with a Motor Level C5 (xjo,=C5.-3), a baseline motor score of ypase,m,1 = 1, and an autoregressive component yauto,im—1, = 3 for

Revisiting a key SCl trial

To provide a concrete application of our approach, we
analysed a subset of participants of the Sygen® trial
[17, 35, 36]. Many ancillary analyses in the original publi-
cation were based on t-test and ANCOVA approaches and
favoured the treatment group over placebo [17]. In par-
ticular, treated participants showed a faster initial recov-
ery than control subjects, who nonetheless caught up at
slightly later time points.

On the subsample of patients we considered, no one
of the six approaches was significant at the conventional
nominal level 0.05. Nonetheless, all approaches showed
a tendency towards negative effect of treatment on the
UEMS, meaning that treated patient showed on average a
slightly worse recovery than patients in the control arm.
Especially for the ordinal approach, the results imply that
the odds of participants in the treatment group of achiev-
ing up to a given motor score were only eft = 0.82 times
the odds of a participant with similar characteristics in
the control arm, indicating a worse recovery for treated
patients.

The negative estimate of treatment effect in cervical par-
ticipants is rather unexpected. The observed unbalance
toward more severe lesions in the treatment arm may
explain at least in part these results, which nonetheless
might be examined more closely to rule out potentially
unintended detrimental effects. Nevertheless, we retain
that generalizations of our results to the overall validity of
the trial and its compound cannot be drawn.

Are summed overall scores not “good enough” ?

In our application, all six approaches presented delivered
comparable results, namely statistically non-significant
negative trends for participants in the treatment arm. One
may therefore wonder what the added value of an ordinal
approach like the proposed transitional ordinal model is.
Briefly, routinely employed approaches based on summed
overall scores imply:

e Unmet assumptions: adding ordinal endpoints to
form a single overall score requires equal differences
across all ordinal scales as well as unidimensionality.
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Both assumptions are usually not further investigated
[37], but the first can be rejected on medical reasons
only, while the latter does not hold for several SCI
endpoints (e.g. FIM [39], SCIM [40]).

e Flawed inference and estimation: known practical
consequences of assuming metric property for
ordinal endpoints are biased parameter estimates and
misleading associations [21-23].

® Reduced statistical power: small and possibly localised
effects are expected to be the hallmark of spinal cord
injury rehabilitation strategies. The simulation
reported provide evidence for a much lower capacity
of approaches based on summed scores to detect
existing treatment effects. Lower power also
translates in higher requirement for trial participants.

e Unclear interpretation of treatment effect: a clear
interpretation of treatment effect estimates as
conditional OR, which can be visualised for each key
muscle separately (see Fig. 3), is not possible for
summed scores.

e Limited future extensions: future refinement of
routinely employed approaches are strongly limited
by the underlying, inappropriate analysis approach.
Instead, ordinal approaches, which are based on a
regression framework, easily accommodates for
extensions (e.g. further prognostic factors,
interactions, localised effects).

Concluding, from a theoretical point of view, routinely
employed approaches have little scientific validity and
have been replaced by more rigorous approaches. Even
more importantly, they are also potentially misleading on
practical terms. Our flexible model represents therefore
an improved and pragmatic solution to the analysis of this
type of complex ordinal endpoints.

Brain Injury: similar issues, similar solutions

We observe that most of the discussion points we raised
link to the report by the International Mission on Prog-
nosis and Clinical Trial Design in Traumatic Brain Injury
TBI [45]. TBI is a related clinical field which faced very
similar challenges, mainly related to the heterogeneity of
the patient population, and had a similar history of clinical
testing as SCI.

In fact, TBI also experienced a disappointing progres-
sion of clinical testing of treatment interventions in spite
of extremely promising pre-clinical data and early phase
trials. Maas et al. [45] reported that a key difficulty has
been the inherent heterogeneity TBI subjects, and that the
observed development was due, at least to some extent, to
limitations in the trial designs and analyses. Both aspects
have also been reported as hallmarks of SCI research.

Summarizing, The TBI Mission solicited the TBI com-
munity to [45]:
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e provide details of the major baseline prognostic
characteristics

e broaden inclusion criteria as much as is it compatible
with the current understanding of the mechanisms of
action of the intervention

e incorporate pre-specified covariate adjustment into
the statistical analysis

e use an ordinal approach for the statistical analysis

A part from the first recommendation, which is mainly
concerned with the way clinical studies are reported, the
following three points regard the planning and especially
the analysis of clinical trials in TBI, and are implemented
in this publication. Selection of patients is based only on
the initial Motor Level, which relates to the understand-
ing of motor function. The proposed model (see Eq. 2)
both include the most relevant covariates adjustment,
namely baseline motor scores as well as motor lesion, and
uses and ordinal approach for ordinal data based on the
proportional odds model.

Latent variable models: an improved, readily available
framework

More generally speaking, the statistical foundations of
regression models for ordinal endpoints were developed
more than 4 decades ago [46-48], and have ever since
undergone a steady development. There is a huge body of
literature pertaining to the analysis of ordinal variables,
including Item Response Theory IRT and mixed-effects
models for ordinal variables [49]. Despite this develop-
ment, most clinical trials in neurology still rely on sur-
passed approaches [44], corroborating the negative trend
of methodological errors related to the analysis of ordinal
scales in medical research [50].

The proposed transitional ordinal model (Eq. 2) is an
extension of the well known proportional odds model
(e.g. [51]). The latter can be seen as an important spe-
cial case within the IRT framework, and is closely related
to the Rasch model [46]. All these statistical models are
generally referred to as latent variable models, because
they find application in situations where a set of ordi-
nal variables are seen as indicators of a latent variable.
This latent variable is the main interest of the analysis,
and, although it cannot be measured directly, it can be
inferred from the available ordinal variables. The latent
variable approach seems both appropriate and appealing
for applications in the clinical setting, and the transitional
ordinal model proposed draws a concrete link from SCI to
latent variable models. Further extensions of our approach
can be tailored to the analysis of other endpoints such
as functional assessments and PROs. In fact, the analy-
sis of PRO, and the related trial powering based on Rasch
models has recently received much attention [52, 53].
We believe that the transition from currently employed
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analysis approaches to more sophisticated models within
the readily available framework of latent variable mod-
els would represent a great scientific progression for the
planning and analysis of complex neurological endpoints.

Conclusion

We propose an autoregressive transitional ordinal model
for the analysis of a specific SCI endpoint which takes
into account the complex ordinal nature of the endpoint
under investigation and explicitly accounts for relevant
prognostic factors. Superior statistical power in virtually
all settings, combined with a clear clinical interpretation
of treatment effect and widespread availability on com-
mercial softwares, are strong arguments for clinicians and
trial scientists to adopt, and further refine, the proposed
approach.
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