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OBJECTIVE—To identify metabolic pathways that may underlie
susceptibility or resistance to high-fat diet–induced hepatic
steatosis.

RESEARCH DESIGN AND METHODS—We performed com-
parative transcriptomic analysis of the livers of A/J and C57Bl/6
mice, which are, respectively, resistant and susceptible to high-fat
diet–induced hepatosteatosis and obesity. Mice from both strains
were fed a normal chow or a high-fat diet for 2, 10, and 30 days,
and transcriptomic data were analyzed by time-dependent gene
set enrichment analysis. Biochemical analysis of mitochondrial
respiration was performed to confirm the transcriptomic analysis.

RESULTS—Time-dependent gene set enrichment analysis re-
vealed a rapid, transient, and coordinate upregulation of 13 ox-
idative phosphorylation genes after initiation of high-fat diet
feeding in the A/J, but not in the C57Bl/6, mouse livers. Bio-
chemical analysis using liver mitochondria from both strains of
mice confirmed a rapid increase by high-fat diet feeding of the
respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP
production was the same in both types of mitochondria, indi-
cating increased uncoupling of the A/J mitochondria.

CONCLUSIONS—Together with previous data showing increased
expression of mitochondrial b-oxidation genes in C57Bl/6 but not
A/J mouse livers, our present study suggests that an important
aspect of the adaptation of livers to high-fat diet feeding is to
increase the activity of the oxidative phosphorylation chain and
its uncoupling to dissipate the excess of incoming metabolic en-
ergy and to reduce the production of reactive oxygen species.
The flexibility in oxidative phosphorylation activity may thus par-
ticipate in the protection of A/J mouse livers against the ini-
tial damages induced by high-fat diet feeding that may lead to
hepatosteatosis. Diabetes 60:2216–2224, 2011

D
evelopment of hepatic steatosis results from an
impaired balance between hepatocyte fatty acid
uptake, catabolism, lipogenesis, and export in
the form of VLDL-associated triglycerides (1).

Fat accumulation in liver is often associated with insulin
resistance and can trigger the development of inflamma-
tion and fibrosis. Many mechanisms can deregulate the bal-
ance between the lipid metabolic pathways that normally

regulate hepatocyte lipid homeostasis. Some may be ini-
tiated locally by an altered inflammatory state of the liver
(2,3) but could also be secondary to obesity. Indeed, adi-
pose tissue expansion induces a local inflammatory re-
sponse that attracts circulating leukocytes and leads to the
production of cytokines by adipocytes and inflammatory
cells (3–5). This results in adipose tissue insulin resistance
and an increased release of free fatty acids, which together
with the secreted cytokines can induce insulin resistance
in muscle and liver. Deregulated liver metabolism or in-
flammatory pathways can also induce adipose tissue in-
flammation and whole body insulin resistance with increased
susceptibility to the development of the metabolic syn-
drome (3,6).

The comparative study of animal models with different
susceptibilities to develop fatty livers can provide in-
teresting clues about the metabolic pathways involved in
pathogenic processes (7). One important question, how-
ever, is at what stage of the pathogenic process should the
mice be studied. Often, comparison of gene expression
by microarray analysis is performed after several months
of high-fat diet (HFD) feeding when the disease is fully
established. Such an approach can describe the alterations
associated with the disease at the stage investigated. How-
ever, it may be more relevant to study the initial response
to the challenging conditions, as this may dictate the sub-
sequent changes in gene expression that cause the final
pathological phenotype.

In an earlier study, we compared the adaptation to HFD
feeding for 2, 10, and 30 days of A/J (AJ) and C57Bl/6J (B6)
mice (8). These mice are, respectively, resistant and sensi-
tive to steatohepatitis and obesity; the AJ mice also exhibit
a lower liver proinflammatory state than B6 mice. Tran-
script profiling showed that in the AJ mouse livers, both in
the basal state and after HFD feeding, there was a higher
expression of peroxisomal b-oxidation genes and of genes
encoding microsomal enzymes that favor the production
of 2-arachidonylglycerol (2-AG), an endocannabinoid that
limits cytokine production by Kupffer cells (8).

Here, we reanalyzed these microarray data by perform-
ing time-dependent gene set enrichment analysis (GSEA).
We observed that the steatosis-resistant AJ mice displayed
a transient and coordinated upregulation of 13 oxidative
phosphorylation (OxPhos) genes, which was not observed in
the B6 mouse livers. Biochemical measurement of OxPhos
activity confirmed that HFD feeding increased mitochon-
drial respiration in AJ liver mitochondria but this was
uncoupled from ATP production. In contrast, in the livers
of B6 mice, no change in respiration rate or uncoupling
was observed. This indicates that the AJ mouse livers re-
spond to HFD feeding by an adaptive response of their
oxidative phosphorylation chain to increase energy dissi-
pation and reduce reactive oxygen species production.
Together with our previous study, the present one indicates
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that flexibility in the activation of several lipid metabolic
pathways as well as OxPhos activity contributes to the
resistance to HFD-induced liver metabolic deregulation.

RESEARCH DESIGN AND METHODS

Animals and diets. Diet-inducible obesity experiments were performed in B6
mice (Janvier, Les Oncins, France) and AJ mice (Jackson Laboratories, MD) as
follows. After 1 week acclimatization, 4–5-week-old male B6 or AJ mice were
fed with a normal chow (NC; Mouse/Rat elevage N°NAFAG 3436) or an HFD
(Research Diet N°D12331 composed of 58% fat, 26% carbohydrates, 16% pro-
teins) for 2, 10, and 30 days. After these different periods, mice were anes-
thetized by isoflurane inhalation and liver samples were collected, snap frozen
in liquid nitrogen, and stored at 280°C. Body weight, blood glucose levels, and
insulinemias were measured in some of these groups (Supplementary Fig. 1).
Experimental groups included six mice per strain/diet/time point. Mice were
housed at 12 h:12 h light:dark cycle. All animal studies were approved by the
Institutional Animal Use and Care Committee of the University of Utah and by
the Service Vétérinaire Cantonal from the Canton de Vaud.
RNA preparation, labeling, and hybridization on cDNA microarrays.

RNA from six different mice per group was extracted from liver samples us-
ing the guanidinium thiocyanate method (9) followed by further purification on
RNeasy columns (Qiagen, Hombrechtikon, Switzerland). RNA quality was
checked before and after amplification using a bioanalyzer 2100 (Agilent,
Basel, Switzerland). RNA samples were amplified from individual HFD-fed
mice (six per time point) using MessageAmp (Ambion, Rotkreuz, Switzerland).
Equal amounts of RNA from six mice fed for 2, 10, or 30 days on NC were
pooled and amplified. Two differently labeled fluorescent probes (amplified
individual RNA from liver of HFD mice labeled with Cy5 and amplified pools
of RNA from NC mice labeled with Cy3) were prepared by indirect labeling
according to published protocols (10). For each time point, individual Cy5-
labeled amplified RNA and Cy3-labeled amplified RNA pools were hybridized

on microarrays containing 17,664 spotted cDNAs (arrays were produced at
the DNA Array Facility, University of Lausanne). Six technical replicates
were performed, including three dye-swapping hybridizations. Scanning,
image, and quality control analyses were performed as previously published
(10). Data were expressed as log2 intensity ratios (log2[Cy5/Cy3] = M), nor-
malized using print tip locally weighted linear (Lowess) regression (both
within array and between array normalization was performed), and filtered
based on spot quality. All analyses were performed using R and Bioconductor
software (11).
Statistical analysis: gene filtering. A moderated F test was applied to
remove genes that were not regulated at any time point during the experiment
using the Limma package from Bioconductor (http://www.bioconductor.org).
Empirical P values were calculated following a 10,000-label permutation pro-
cedure. Genes with an adjusted P value, 0.05 were selected for GSEA analysis.
We applied GSEA to this expression matrix of filtered genes as described in the
next section.
Time-course GSEA method. See also Supplementary Fig. 1 for an illustration
of the method.
Defining “prototypes.” According to the design of our microarray experiment,
genes can be differentially expressed, at 2, 10, and 30 days between HFD and
NC samples. Gene expression can increase (M.0), not be modified (M = 0), or
decrease (M ,0) at each time point. At day 0 (T0), the expression value was
considered as 0 (ratio in log2). This led to 27 possibilities of theoretical gene
expression behavior termed as “prototypes” (Supplementary Fig. 1). Each
prototype was transformed into a vector with time point regulations coded as
+1 (upregulation), 0 (no regulation), or 21 (downregulation). The prototype
(0,0,0) was excluded.
Coding the gene expression matrix. From the gene expression matrix we
encoded the regulation of each gene at each time point as +1, 0, or 21 ac-
cording to overexpression, no regulation, or downregulation of HFD versus
NC samples respectively.
Correlation calculation. Pearson correlation between the ith prototype and
each/every gene from the expression matrix was calculated.

FIG. 1. Schematic of our time-course GSEA method. “Prototypes” are created as theoretical gene expression behaviors across the HFD time
course. The prototype expression matrix is produced by coding each time point of a given prototype with a value of +1, 0, or 21. The gene ex-
pression matrix is the regulation of each gene at each time point, coded as +1, 0, or 21 according to overexpression, no regulation, or down-
regulation of HFD vs. NC samples, respectively. The correlation vector is generated by calculating the Pearson correlation between the i

th

prototype and all genes present in the expression matrix. Genes are then ordered based on their correlation values. GSEA is performed using
MSigDB gene sets. The procedure is repeated until all prototypes are tested. At the end of the procedure, a list of significant gene sets associated
with each prototype is obtained as output, which could be considered as biological function–associated clusters of genes.
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Gene ordering. Genes were then ordered based on correlation values. Genes
highly correlated or anticorrelated with the ith prototype were ranked at the top
and at the bottom of the gene list, respectively.
GSEA. On this list of ranked genes, we performed GSEA using the MSigDB
database as a source of gene sets (12,13). Since the gene sets contained human
gene identifiers, the genes in each gene set were translated into the corre-
sponding mouse gene symbol using the Homologene database at National Center
for Biotechnology Information. In brief, for each gene set, GSEA statistically
assesses whether the top or the bottom of the ranked list is enriched in genes
belonging to a particular gene set. In order to put more weight on genes highly
correlated or anticorrelated with the ith prototype and to obtain genes with
similar expression patterns, the “weight” parameter p, involved in the calculation
of the enrichment score, was set to 2. Estimation of enrichment score signifi-
cance for each gene set was obtained using a 1,000-label permutation procedure.
Output. The whole procedure was repeated until all prototypes were tested.
A list of significant gene sets associated with each prototype was obtained as
output. For these gene sets, genes corresponding to the leading edge subset (genes
that contribute to the maximum enrichment score) constitute the biological
function–associated clusters. Gene sets with a false discovery rate (FDR) ,0.25
(12) and a number of leading edge subset of genes 4 passed selection criteria.
Expression analysis of OxPhos genes. Log2 fold-change expression values
for OxPhos genes were extracted for HFD versus NC-fed AJ and B6 mice at
each time point (six mice per time point) using KEGG annotation (KEGG
pathway mmu00190). Mean centroid expression values were calculated by first
scaling the data to a mean of zero and unit SD across all samples, and then
calculating the average expression across all OxPhos genes for each sample (9).
Measurement of ATP and oxygen consumption in isolated liver

mitochondria. Mitochondrial oxygen consumption and ATP production
were measured using techniques described previously (14). Mitochondria were
isolated from livers of B6 and AJ mice after 0 or 10 days of HFD or NC, re-
spectively. Mice were killed by cervical dislocation. The livers were immedi-
ately placed in ice-cold STE buffer (250 mmol/L sucrose, 5 mmol/L Tris,
2 mmol/L EGTA at pH 7.4) and cut into small pieces. Samples were homog-
enized and mitochondria were isolated, using protocols previously described
by us (15). Rates of oxygen consumption by mitochondria were measured with
a FOXY-R-AF probe (Ocean Optics Inc, Dunedin, FL), using the substrates
0.02 mmol/L palmitoyl carnitine (PC) and 5 mmol/L malate, or 5 mmol/L
succinate and 0.01 mmol/L rotenone, as previously described (15). ATP

concentration was determined by a bioluminescence assay, based on the
luciferin/luciferase reaction, with the ATP assay kit (ThermoLabsystems,
Issy-les-Moulineaux, France).

RESULTS

OxPhos genes are coordinately upregulated in HFD-fed
AJ mice. To detect early transcriptional events associated
with, and possibly causing, the differential susceptibility of
AJ and B6 mice to the development of hepatic steatosis and
obesity, we compared global gene expression in the livers of
these mice fed NC or HFD for 2, 10, and 30 days. To identify
sets of coordinately regulated genes that might have escaped
our previous analysis (8), we reanalyzed our data using time-
series GSEA.

GSEA measures the extent to which members of a par-
ticular gene set are enriched in the top or bottom of a list of
ranked expression values (12,13). Here, in order to take into
account time-series data, we first created prototype profiles
representing different gene expression behaviors over the
three time points of our study and ranked the genes
according to their correlation with each of these profiles to
create gene lists (see Fig. 1 and RESEARCH DESIGN AND METHODS

for details). GSEA was then used to identify pathways that
were significantly enriched for genes in each of these gene
lists. Here, significant enrichment indicates that genes be-
longing to a particular pathway showed a similar expression
profile over the three time points of our study.

Using this method, we identified 16 out of a total of
522 gene sets that were enriched for gene expression
profiles from HFD-fed AJ mice, 8 of which are related to
mitochondrial metabolism (Fig. 2, indicated by asterisks).
Among these gene sets, three are related to electron

FIG. 2. Gene sets identified by time-course GSEA in HFD-fed AJ and B6 mice. Significantly enriched gene sets (FDR <0.25; Nle
3
4) from time-

course GSEA analysis of HFD-fed AJ and B6 mice. See Supplementary Table 1 for a description of the gene sets. The different columns of the table
correspond to the following: N, total number of genes present in the gene set; Nm, number of genes from the gene set present in the gene list; Nle,
number of genes that contribute to the maximum enrichment score (leading edge genes) for a given gene set; FDR, false discovery rate; Gene
expression pattern, color coding of the median expression of the leading edge genes (green, downregulation; gray, no regulation; red, upregula-
tion); Nb genes B6 vs. AJ >0, number of genes whose log2 expression level ratio between B6 and AJ mice (at basal level) is positive, meaning that
the mRNA level is higher in B6 than in AJ mice; Nb genes B6 vs. AJ <0, number of genes whose log2 expression level ratio between B6 and AJ mice
(at basal level) is negative, meaning that the mRNA level is higher in AJ than in B6 mice; Nb genes B6 vs. AJ = 0, number of genes whose log2
expression level ratio between B6 and AJ mice (at basal level) is 0, meaning that the mRNA level is the same between AJ and B6 mice.
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transport and oxidative phosphorylation (indicated by a box
in Fig. 2). In contrast, HFD-fed B6 mice showed a lower
number of enriched mitochondrial-related gene sets. For
these mice, out of a total of 12 enriched gene sets, only 3
are related to mitochondrial function, and none of these
are for oxidative phosphorylation or electron transport
(Fig. 2). For HFD-fed AJ mice, the gene expression profile
associated with the enriched mitochondrial gene sets is a
transient upregulation of expression at days 2 and 10 fol-
lowed by a downregulation at day 30 (Fig. 2). A list of all
gene sets significantly enriched in either AJ or B6 mice is
provided as Supplementary Table 2.

To investigate whether this effect was general across all
OxPhos genes, we identified all OxPhos genes present on
the cDNA array and measured the mean expression fold-
change in HFD versus NC for each mouse strain at each time
point (see RESEARCH DESIGN AND METHODS for details). Figure 3
is a plot of the mean fold-change of 64 OxPhos genes in
AJ versus B6 mice. Remarkably, the expression profile
of B6 mice is opposite that of AJ, showing coordinate

downregulation at day 10 compared with coordinate
upregulation at days 2 and 10 in AJ mice. Previous studies
have implicated peroxisome proliferator–activated recep-
tor g coactivator (PGC)-1a in the coordinate regulation
of OxPhos genes in human diabetes (13). Interestingly,
PGC-1a expression levels were transiently upregulated
in B6 mice at day 2 (Supplementary Fig. 1), but this was
not correlated with an induction of OxPhos genes in these
mice. In contrast, in AJ mice, OxPhos genes were in-
creased but no change in PGC-1a could be detected.
Postranslational modifications are known to regulate PGC-1a
activity (16) and may be responsible for the lack of
correlation between its mRNA level and OxPhos gene
expression.

In order to further confirm that the whole respiratory chain
was differentially regulated, we selected 13 of the most sig-
nificantly regulated OxPhos genes (Table 1) and categorized
them into the different respiratory complexes to which they
are associated. The results (Fig. 4) show that the affected
genes are associated with all respiratory chain complexes
except complex II, which was not present on the array.

Collectively, our data suggest that resistance to HFD-
induced hepatosteatosis in AJ mice is associated with a
transient adaptation of mitochondrial oxidative phosphor-
ylation activity, possibly increasing mitochondrial respi-
ration.
Increased mitochondrial respiration and uncoupling
in AJ mouse livers. To test the hypothesis that mito-
chondrial respiration is different between B6 and AJ mice,
oxygen consumption and ATP production were measured
using liver mitochondria at baseline (day 0) and after 10
days of NC diet or HFD when OxPhos gene expression
levels are maximally induced in the AJ mouse livers.
Measurements were made using either succinate as sub-
strate in the presence of rotenone (SR substrate) or PC.

Data in Fig. 5 show basal respiration (state 2), maximal
ADP-stimulated respiration (state 3), and uncoupled res-
piration (stage 4) for measurements performed with suc-
cinate/rotenone. After 10 days of NC diet, all measurements
show a significant increase in oxygen consumption in
mitochondria from AJ as compared with B6 mouse livers.
This strain difference is amplified when the mice are fed an
HFD, with B6 mitochondria showing a tendency for a de-
crease, whereas AJ mitochondria show a significant increase
in oxygen consumption.

FIG. 3. Coordinated upregulation of OxPhos genes in HFD-fed AJ mice.
Mean fold-change over time for 64 OxPhos genes in HFD-fed AJ mice
(△) compared with B6 mice (●). The y-axis is the mean centroid
OxPhos fold-change averaged over six mice per time point. Gene ex-
pression measurements were at 0, 2, 10, and 30 days.

TABLE 1
Electron transport genes identified by time-course GSEA

Gene symbol Name MGI identifier Correlation

Cycs cytochrome c, somatic MGI:88578 20.29
Atp5k ATP synthase, H+ transporting, mitochondrial F1F0 complex, subunit e MGI:106636 20.36
Uqcrh ubiquinol-cytochrome c reductase hinge protein MGI:1913826 20.47
Atp5j2 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F2 MGI:1927558 20.48
ATP5 L ATP synthase, H+ transporting, mitochondrial F0 complex, subunit g MGI:1351597 20.52
Cox4i1 cytochrome c oxidase subunit IV isoform 1 MGI:88473 20.56
Ndufa8 NADH dehydrogenase (ubiquinone) 1 a subcomplex, 8 MGI:1915625 20.59
Cyc1 cytochrome c-1 MGI:1913695 20.7
Uqcrb ubiquinol-cytochrome c reductase binding protein MGI:1914780 20.73
Cox7c cytochrome c oxidase, subunit VIIc MGI:103226 20.77
Cox6a1 cytochrome c oxidase, subunit VI a, polypeptide 1 MGI:103099 20.8
Cox6c cytochrome c oxidase, subunit VIc MGI:104614 20.84
Ndufc1 NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1 MGI:1913627 20.95

The Pearson correlation value for each gene with the prototype expression profile (see Fig. 1) is shown. Gene names and Mouse Genome
Informatics (MGI) accession numbers are from MGI.
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Parallel measurements of ATP synthesis rates showed
no difference between B6 and AJ mitochondria at any time
point. In contrast, there was a progressive reduction in the
ATP to oxygen ratio in AJ mouse liver mitochondria that
becomes significantly different from that of B6 mito-
chondria after 10 days of NC and even more important
after 10 days of HFD feeding. This further indicates in-
creased uncoupling of AJ mitochondria. In keeping with the
restricted expression of uncoupling protein-2 in Kupffer cells
(17), we could not detect any increase in liver uncoupling
protein-2 expression, as assessed by quantitative RT-PCR
analysis (not shown).

When PC was used as a substrate, the same relative
increase in oxygen consumption in mitochondria from
AJ, as compared with B6 mice was observed after 10 days
of NC or HFD feeding. Similarly, the ATP production
was identical in all mitochondrial preparations but the

AJ mitochondria also showed progressive uncoupling
(Fig. 6).

Together the above data indicated an identical capacity
for ATP production by liver mitochondria of both strains
of mice in each feeding condition. However, mitochondria
of AJ mice show an age-dependent, HFD-induced increase
in uncoupling. This adaptation of the oxidative phosphor-
ylation chain provides a means to increase energy expen-
diture in the liver of AJ mice.

DISCUSSION

Time-dependent gene set enrichment analysis revealed
a coordinate increase of 13 OxPhos genes, belonging to
respiration complexes I, III, IV, and V, in the livers of
HFD-fed AJ but not B6 mice. Biochemical analysis con-
firmed higher mitochondrial respiration rates in the livers

FIG. 4. Individual expression pattern of leading edge genes of the OxPhos gene set during HFD time course in AJ and B6 mice. The genes are
classified according to the respiratory chain complex to which they belong: AJ (solid line) and B6 (dotted line). M values correspond to log2
intensity ratios (HFD/NC for each time point).
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of AJ mice as well as marked uncoupling of mitochon-
drial respiration. These data demonstrate flexibility in the
expression of the OxPhos genes in AJ mice in response
to an acute increase in energy intake. This response may
protect against the initial deleterious effect of HFD feeding
by increasing energy dissipation and reducing reactive ox-
ygen species production. It is part of a global protective
response of the AJ mouse livers to HFD, which involves
several lipid metabolic pathways, as previously described (8).

GSEA results are usually difficult to confirm by direct
quantitative analysis of gene expression because this sta-
tistical technique searches for groups of genes that belong
to a given biological pathway and whose expression is
coordinately regulated even though each individual gene
may not be statistically differentially regulated between
two conditions. Therefore, we did not attempt to confirm
changes in mRNA expression by quantitative methods, but
instead we measured mitochondrial respiration and ATP
synthesis in mitochondria prepared from the livers of NC
or HFD-fed AJ and B6 mice. Consistent with the GSEA

analysis, we detected an increase in mitochondrial respi-
ration in livers of AJ mice fed an HFD for 10 days.

A number of recent studies found a coordinately de-
creased expression of OxPhos genes in muscles (18–20),
livers, and fat (21–23) of diabetic patients, leading to the
suggestion that a reduced oxidative phosphorylation ca-
pacity can favor diabetes development. In contrast, in one
study (24), an increase in OxPhos gene expression was
observed in the livers of obese patients with type 2 di-
abetes and this was correlated with increased measures
of insulin resistance and diabetes. Thus, it is unclear
whether changes in OxPhos gene expression cause dis-
ease progression or are a compensatory response to the
diseased state. Studies in mice with muscle or liver-
specific inactivation of the apoptosis-inducing factor (AIF)
gene, which reduces OxPhos activity as found in human
patients, showed increased insulin sensitivity and resis-
tance to diet-induced obesity (23). The proposed expla-
nation for this unanticipated observation is that reduced
ATP production, as well as increased intracellular AMP

FIG. 5. Mitochondrial respiration using succinate as a substrate (SR). B6 (open bars) and AJ (filled bars) mouse liver mitochondria were com-
pared at baseline (d = 0) or after 10 days of NC (D10 NC) or HFD feeding (D10 HFD). State 2, respiration in the absence of ADP; state 3, ADP
(1 nmol/L)-stimulated respiration; state 4, oligomycin (1 mg/mL)-inhibited respiration; RC, respiratory control ratio (state 3/state 4); ATP, ATP
synthesis rate in state 3; ATP/O, ATP produced per oxygen consumed; mgdw, milligrams of dry weight. Values are shown as mean 6 SD, n = 6. *P <
0.05; **P < 0.01; ***P < 0.001.
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levels, stimulates glucose utilization and fatty acid oxida-
tion, thereby favoring nutrient absorption and catabolism.
In both cases, however, it is difficult to assess the contri-
bution of reduced OxPhos genes in the susceptibility to
obesity or diabetes. Indeed, in the human studies, analysis
has been performed at a single time point in the disease
history of each patient and thus a possible causative role
cannot be assessed. In the AIF knockout mice, the changes
in OxPhos gene expression are induced early in the life of
the animal and may induce unidentified compensatory
mechanisms.

Our present study reveals a different aspect of OxPhos
gene-regulated expression: its capacity to be rapidly and
transiently increased in response to HFD feeding in mice
that are protected against hepatic steatosis and obesity.
This is also associated with increased mitochondrial un-
coupling, which probably reduces the production of su-
peroxide anions generated by electrons leaking from the
OxPhos chain (25–27) and which can induce oxidative
damage in the liver of AJ mice. In this context, results from
our recent study (8) indicated that upon HFD feeding,

expression of mitochondrial b-oxidation genes was in-
creased in B6 but not AJ mouse livers. Thus, in response to
fatty acid overload, more reduced nucleotides may be pro-
duced and channeled to the OxPhos chain in B6 mouse
livers, but in the absence of an increased capacity to gen-
erate ATP or to uncouple mitochondria, this must further
favor reactive oxygen species production (28). Together,
our observations suggest that upon initiation of HFD, the
B6 mouse livers are prone to induction of ROS damage,
whereas reduced efficiency of ATP generation in AJ mouse
livers helps to utilize the excess of substrates while bal-
ancing ATP supply with cellular energy requirements (29,30).

Adaptation of mice to HFD proceeds in different phases
with considerable up- or downregulation of many genes
in the first days of HFD, followed by a slow return of
many genes to their basal levels of expression, with some
gene expression levels remaining permanently modified
(10,31–33). In our previous study of AJ and B6 mouse liver
adaptation to an HFD, we identified a rapid and coordi-
nate increase in the expression of 10 peroxisomal genes,
a microsomal elongase (Elovl5), and two microsomal

FIG. 6. Mitochondrial respiratory parameters using the substrate PC. B6 (open bars) and AJ (filled bars) mice were compared at baseline (d = 0)
or after 10 days of NC (D10 NC) or HFD feeding (D10 HFD). State 2, respiration in the absence of ADP; state 3, ADP (1 nmol/L)-stimulated
respiration; state 4, oligomycin (1 mg/mL)-inhibited respiration; RC, respiratory control ratio (state 3/state 4); ATP, ATP synthesis rate in state 3;
ATP/O, ATP produced per oxygen consumed; mgdw, milligrams of dry weight. Values are shown as mean 6 SD, n = 6. *P < 0.05; **P < 0.01; ***P <
0.001.
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desaturases (Fads1 and Fads2) (8). This was associated
with increased peroxisomal b-oxidation activity and in-
creased production of the cannabinoid receptor agonist
2-AG, whose production from n-6 unsaturated fatty acids
is favored by the action of the microsomal enzymes.
Thus, in AJ mouse livers, there is a rapid adaptation of
several metabolic pathways to HFD: 1) increased per-
oxisomal b-oxidation; 2) increased n-3 and n-6 fatty acid
detoxification by desaturation and conversion to bioactive,
protective lipids such as 2-AG; and, as shown in the cur-
rent study, 3) increased OxPhos and mitochondrial un-
coupling. Collectively, these observations indicate that
resistance to HFD-induced hepatic steatosis in AJ mouse
livers and possible protection against obesity develop-
ment is favored by the rapid adaptation of multiple met-
abolic pathways that protect the liver against a toxic lipid
overload.

The participation of several pathways in resistance
against diet-induced hepatosteatosis and obesity is con-
sistent with analysis of mouse chromosome substitution
lines that showed that AJ chromosomal loci able to pro-
tect B6 mice against diet-induced obesity were present in
at least 17 different chromosomes (34). Whether any of the
pathways mentioned above has a dominant role in the
development of hepatosteatosis and obesity is not clear.
Studies with mice engineered to change the expression
level or activity of any of these pathways could shed light
on this question. Nevertheless, these studies suggest that
the ability of an organ to rapidly adapt to changes in nu-
trient availability is an important aspect of the protective
response to a metabolic stress and clearly show that this
response is genetically encoded, although epigenetic pro-
gramming may also be involved (10,32,33). These studies
also suggest that the ability to regulate gene expression
may be as important as changes in protein structure and/
or function in determining the susceptibility to meta-
bolic diseases. This proposal is clearly in agreement with
genome-wide association studies that usually find disease
susceptibility variants in noncoding regions, which may
impact gene transcription activity (35). This is also remi-
niscent of the metabolic inflexibility hypothesis that pro-
poses that a key defect in obesity and type 2 diabetes is a
reduced capacity to switch from the use of glucose to lipid
as oxidative substrates during the fed to postabsorptive
phase (36,37). Thus, long-term development of metabolic
diseases may be associated with failure to acutely adapt
metabolic pathways to a change in nutrient availability.
Thus, we propose that the concept of metabolic flexibility
be extended to include the capacity of organs, such as
livers, to rapidly adapt their metabolic pathways to prevent
transient generation of damaging metabolites that, over
time, can accumulate to create pathological conditions.
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