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A B S T R A C T

The nuclear receptor Liver Receptor Homolog-1 (LRH-1, NR5A2) is a ligand-regulated transcription factor and
validated drug target for several human diseases. LRH-1 activation is regulated by small molecule ligands, which
bind to the ligand binding domain (LBD) within the full-length LRH-1. We recently identified 57 compounds that
bind LRH-1, and unexpectedly found these compounds regulated either the isolated LBD, or the full-length LRH-1
in cells, with little overlap. Here, we correlated compound binding energy from a single rigid-body scoring
function with full-length LRH-1 activity in cells. Although docking scores of the 57 hit compounds did not
correlate with LRH-1 regulation in wet lab assays, a subset of the compounds had large differences in binding
energy docked to the isolated LBD vs. full-length LRH-1, which we used to empirically derive a new metric of the
docking scores we call "ΔΔG". Initial regressions, correlations and contingency analyses all suggest compounds
with high ΔΔG values more frequently regulated LRH-1 in wet lab assays. We then docked all 57 compounds to
18 separate crystal structures of LRH-1 to obtain averaged ΔΔG values for each compound, which robustly and
reproducibly associated with full-length LRH-1 activity in cells. Network analyses on the 18 crystal structures of
LRH-1 suggest unique communication paths exist between the subsets of LRH-1 crystal structures that produced
high vs. low ΔΔG values, identifying a structural relationship between ΔΔG and the position of Helix 6, a pre-
viously established regulatory helix important for LRH-1 regulation. Together, these data suggest rigid-body
computational docking can be used to quickly calculate ΔΔG, which positively correlated with the ability of
these 57 hit compounds to regulate full-length LRH-1 in cell-based assays. We propose ΔΔG as a novel
computational tool that can be applied to LRH-1 drug screens to prioritize compounds for resource-intense
secondary screening.

1. Introduction

Prioritizing hit compounds identified from a primary compound
screen is important for drug development [1–6] as follow-up secondary
assays are resource-intensive, particularly cell-based assays of target
protein function [7,8]. Cell-based assays monitor compound activity in a
physiologically relevant environment, increasing confidence in results
[7,9–11] while retaining compatibility with higher-throughput
screening formats [12]. The choice of secondary assay must therefore
strike a balance between testing fewer, high-priority compounds in a
higher-confidence assay, or more compounds in a lower-confidence
assay, since resources not unlimited [13]. Computational docking has

been used to help prioritize compounds [14], which can improve the hit
rate from secondary assays [2–6,15]. However, little wet-lab data are
available validating direct relationships between docking scores and
functional regulation in cells [16–18], particularly for non-enzyme
allosterically-regulated target proteins [19,20]. Still, the speed, acces-
sibility and low cost of computational docking provides an attractive
way to prioritize compounds [21,22]. Thus, there is a need for docking
approaches that have been validated with wet-lab data, correlating
docking scores with compound activity in cell-based assays [2–4,23,24]
particularly for allosterically-regulated targets [5,20,22]. Here, we
discovered and validated one such approach, retrospectively correlating
published cell-based functional data [1] with new rigid-body docking of
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compounds to Liver Receptor Homolog-1 (LRH-1, NR5A2), an alloste-
rically regulated nuclear receptor and drug target for several human
diseases.
The nuclear receptor superfamily is a group of DNA-binding tran-

scription factors regulated by hydrophobic ligands such as cholesterol-
based steroids [25], fatty acids [26], heme-based metabolites [27] and
phospholipids [28,29]. LRH-1 (NR5A2) is a nuclear receptor expressed
ubiquitously in humans [30,31], but is particularly important for adult
function in the liver [32–37], pancreas [38,39] and gut [40–42]. A wide
variety of physiological studies have provided pre-clinical validation of
LRH-1 as a drug target in diabetes and non-alcoholic fatty liver disease
(NAFLD) [33,36], pancreatic cancer [43–45] and ulcerative colitis [42],
all diseases with unmet clinical need. Although there has been great
recent progress in the development of LRH-1 regulatory compounds [42,
46–49], no FDA-approved drugs currently target LRH-1, so there re-
mains need for novel approaches that can hasten LRH-1 drug
development.
Nuclear receptor ligands bind to a canonical cleft in the ligand

binding domain (LBD), which alters the conformation of the LBD, which
permits interaction with a variety of transcriptional co-regulator pro-
teins [50–52]. This principle applies to LRH-1 and the highly homolo-
gous SF-1 nuclear receptors, which are both regulated through this
canonical mechanism by several ligands, including natural phospho-
lipids [37,42,53–62] and synthetic small molecules [37,42,46–49,63,
64]. These regulatory ligands all bind LRH-1 with 1:1 stoichiometry, as
shown in many different crystal structures of human LRH-1 in the pro-
tein data bank (PDB). The allosteric mechanism of ligand-induced
interaction with coregulator proteins is utilized in LRH-1 drug
screening platforms such as AlphaScreen [65], in which compounds
induce a measured interaction between LRH-1 and a small peptide that
represents a transcriptional coregulator protein [66–68], such as TIF2
[69] or PGC1α [70]. These screens, however, can only identify com-
pounds that regulate LRH-1 through the canonical
coregulator-recruitment mechanism, and are not able to identify any
compounds that bind and regulate LRH-1 through non-canonical
mechanisms.
To address this, we executed an LRH-1 compound screen that iden-

tified 58 new compounds which simply bind directly to LRH-1 from the
2322 compound Spectrum Discovery library [1]. This FRET-based
screen measured the ability of each compound to compete with a
probe installed in the canonical ligand binding site of LRH-1, suggesting
these compounds also bind LRH-1 at the canonical ligand binding site.
The hit compounds were subjected to several secondary assays moni-
toring functional regulation of LRH-1, which showed 14 of the 58
compounds regulated either 1) the isolated LBD in a coregulator binding
assay or 2) full-length LRH-1 in a luciferase reporter assay driven by the
CYP8B1 promoter or 3) the CYP17A1 promoter, both established LRH-1
target promoters in cells. Surprisingly and against the standard dogma of
nuclear receptor regulation, there was almost no overlap in these com-
pounds. The compounds either regulated coregulator binding to the
LBD, or the compounds regulated full-length LRH-1 assays in cells, with
no overlap, even though these compounds were all identified based on
their ability to directly bind pure, recombinant LRH-1 [1].
Here, we examined the interaction of these compounds with LRH-1

by applying PyRx computational rigid docking [71] to predict relative
docked binding energies to a total of 19 structural models of LRH-1 (18
crystal structures of the isolated LBD and 1 integrative model of the
full-length LRH-1 [72]). We then correlated those docking results
retrospectively with published cell-based functional data from our pre-
vious study (439 total functional assay measurements) [1]. We found
that docking to the full-length model of LRH-1 [72] predicts different
binding positions for compounds active on full-length LRH-1, which
were closer to the entrance of the ligand binding pocket and Helix 6, an
important helix that helps mediate ligand activation of LRH-1 37,64,69,70,
73–75. The scores of compounds docked to full-length LRH-1 or the iso-
lated LBD did not correlate with LRH-1 regulation in wet lab assays,

however several compounds had large differences in docking scores
(ΔG) to the full-length vs. isolated LBD of LRH-1, an arbitrary metric we
call ΔΔG. We found ΔΔG positively associated with the ability of our set
of 58 hit compounds to regulate full-length LRH-1 in cell-based assays.
Network analyses suggest the position of Helix 6 as a structural element
that may contribute to the relationship between ΔΔG and
ligand-mediated LRH-1 regulation in cells, consistent with analyses by
independent groups [37,64,69,70,73–75]. The data presented here
suggest a role for Helix 6 in ligand-mediated regulation of LRH-1, similar
to other studies which have applied comparative crystallography, MD
simulations and network analyses [37,64,69,70,73–75]. The ΔΔG
metric can help prioritize hit compounds for expensive secondary
screening, which can hasten LRH-1 compound development. ΔΔG can
be rapidly generated even for large hit lists, as minimal resources are
required for rigid-body PyRx-based docking, highlighting practical
utility.

2. Results

Compounds which functionally regulated the isolated LBD, did not
regulate full-length LRH-1 in cells. We previously identified 58 compounds
that bind directly to the ligand binding domain (LBD) of LRH-1 (Fig. 1A)
using a FRET-based competition screen [1] (Fig. 1B). We then applied
three independent high-throughput assays to test these 58 compounds
for functional regulation of either the purified recombinant LBD in a
coregulator binding screen (98 independent assay measurements) or
full-length LRH-1 regulation in cells (341 independent assay measure-
ments), for a total 439 independently measured events of
compound-induced regulation of LRH-1 function [1] (Supplemental
Spreadsheet 1). Regulation of the LBD was determined by fluorescence
anisotropy (Fig. 1C), which measured compound-induced interaction
between the isolated LBD of LRH-1 and a peptide representing a known
transcriptional coregulator of LRH-1 [70]. Full-length LRH-1 regulation
in cells was determined by measuring compound-induced LRH-1 acti-
vation of a luciferase reporter gene, driven by one of two
well-established LRH-1 promoter DNA sequences (CYP8B1 or CYP17A1)
in HEK293T cells (Fig. 1D). We showed of the 58 compounds identified
to bind LRH-1, 14 compounds regulated LRH-1 function in at least one of
these three assays [1] (Dunnett’s corrected padj<0.05, Supplemental
Spreadsheet 2). Here, we applied principal component analysis (Fig. 1E)
of the equally scaled log2 fold-change data from all 439 wet lab assay
measurements, suggesting distinct patterns of regulation for the isolated
LBD vs. full-length LRH-1 assays, despite all compounds were shown to
directly bind to purified LRH-1 [1]. Contingency analyses suggest
compounds that significantly regulated the isolated LBD, less frequently
regulated full-length LRH-1 in cells (Fig. 1F, 90 % vs. 7 %, p < 0.0001 by
Fisher’s exact), and compounds that regulated full-length LRH-1 in cells
less frequently regulated the isolated LBD (Fig. 1G, 68 % vs. 8 %, p =

0.0005 by Fisher’s exact). Together these data suggest compounds that
regulated the isolated LBD did not regulate full-length LRH-1 in cells,
despite that all the compounds were identified based on their ability to
directly bind LRH-1 (Fig. 1B). We next used computational docking to
determine if there were any differences in the docking scores (docked
binding energies) of these compounds to the isolated LBD vs. full-length
models of LRH-1.

Rigid-body compound docking to full-length LRH-1 vs. the isolated LBD
yields divergent binding positions and binding energies. Our previous study
docked all 2322 compounds to a crystal structure of the isolated ligand
binding domain (LBD) of LRH-1 (PDB:6OQX), which showed no corre-
lation between the docking scores and regulation of LRH-1 [1]. Here, we
used the same PyRx rigid-body docking approach, but now examined
docking to the full-length LRH-1 model (PDB_DEV: 00000035, Fig. 2A,
Supplemental Spreadsheet 3). Importantly, the model of full-length
LRH-1 is a solution-based, integrated structure that was extensively
computationally optimized by Rosetta and several other approaches
[72]. We therefore expected ligand docking to this model to result in
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lower binding energies when compared to a crystallographically
restrained model of the isolated LBD. Indeed, we observed significantly
lower docked binding energies for compounds docked to full-length
LRH-1 vs. the isolated LBD (Fig. 2B). The docked positions of the com-
pounds were also different (Fig. 2C), specifically the 5 compounds that
regulated the isolated LBD (Fig. 1C) docked within the well-established,
canonical ligand binding site, deep in the core of the LRH-1 protein
(Fig. 2D). However, some of the 9 compounds that regulated full-length
LRH-1 in cells (Fig. 1D) docked to the full-length LRH-1 at the entrance
to the canonical ligand biding site, clustered around Helix 6 (Fig. 2E).
Our previous work suggests all 9 of these compounds (Fig. 2E) bind
directly to the isolated LRH-1 LBD, as well as regulate full-length LRH-1
function in cells [1]. Further, we determined saturable binding constants
for two compounds that docked at the entrance of the ligand binding site
near Helix 6, VU0243218 (IC50 =9.4 μM, 95 %CI 8.1–10.8 μM) and
VU0656021 (IC50 =27.0 μM, 95 %CI 16.1–171.5 μM), again suggesting

direct interactions of these compounds with the LRH-1 ligand binding
domain (Fig. 2E). Full transcriptomes induced by 10 μM VU0243218
showed selective regulation of endogenous ChIP-seq target genes of
LRH-1, and a specific chemical competitor of LRH-1 attenuated the gene
expression response of endogenous LRH-1 target genes to VU0243218
[1]. This level of validation could not be applied to all hit compounds
from the screen, however the data suggest these compounds indeed bind
and regulate LRH-1, despite docking at the entrance to the ligand
binding pocket. No crystal structures have been solved for any of these
recently identified LRH-1 compounds, thus the precise binding mode for
the compounds awaits those studies. These data suggest ligands that
bind and regulate the isolated LBD vs. full-length LRH-1 in cells have
different rigid-body docking to the isolated LBD vs. full-length models of
human LRH-1. Since these are the first computational ligand docking
studies to the full-length LRH-1 [72], we next sought to determine if
docked binding energy to full-length LRH-1 correlated with the ability of

Fig. 1. Compounds identified to bind LRH-1 LBD from a previous wet-lab screen regulated either the ligand-binding domain (LBD) or full-length LRH-1 in cells, with little
overlap. A. Previously published screening strategy highlighting B. primary screen that identified 58 compounds based on their ability to compete with a FRET probe
installed at the canonical ligand binding site of the isolated ligand binding domain (LBD) of human LRH-1. C. Schematic of isolated LBD assay that measured
compound-induced interaction between PGC1α coregulator peptide and the isolated LBD of LRH-1. D. Schematic of full-length LRH-1 luciferase reporters in
HEK293T cells using either the CYP17A1 or CYP8B1 promoters. E. Biplot of principal component analysis of all 439 wet-lab assayed events (assays from panels C-D)
induced by all 58 LRH-1 hit compounds, suggesting the isolated LBD assay vs. full-length LRH-1 assays do not cluster together. F. Contingency analysis of the
frequency of LRH-1 regulation induced by all compounds that regulated the isolated LBD assay (5 compounds, 40 assays), showing LBD-regulating compounds less
frequently regulated full-length LRH-1 in cells (90 % vs. 7 %, p < 0.0001 by Fisher’s exact test), regulation defined as padj< 0.05 Dunnett’s corrected and log2 fold
change at least ± 0.5. G. Contingency of LRH-1 regulation by the compounds that regulated full-length LRH-1 in cells (9 compounds, 53 assays), showing full-length
regulating compounds less frequently regulated the isolated LBD assay (68 % vs. 8 %, p = 0.0005 by Fisher’s exact). These data suggest that even though all these
compounds were identified based on their ability to bind the isolated LBD, compounds that regulated the isolated LBD did not regulate the full-length LRH-1 in cells
as frequently, and vice versa.
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compounds to regulate LRH-1.
Compound ΔΔG associates with the ability of compounds to regulate full-

length LRH-1 in cells. We previously established that the relative docking
scores of compounds to the isolated ligand binding domain of LRH-1
(PDB:6OQX) did not correlate with regulation of full-length LRH-1 in
cells [1]. However, given the different docking scores we observed
(Fig. 2B), we asked if docked binding energy to full-length LRH-1
associated with the ability of compounds to regulate full-length LRH-1 in
cells. Since the hit compounds both activated and inhibited LRH-1 in the
wet lab assays, the data contain both negative (inhibitory) and positive
(activating) log2 fold change values for each compound, compared to
DMSO controls (Supplemental Spreadsheet 1). Thus, we converted these
continuous variables to discrete variables by applying log2 fold change
cutoffs to define discrete “regulated events” vs. “not regulated events”
and treated each wet lab measurement of LRH-1 function (each well in
the high throughput assays) as an independent event. We analyzed the
continuous data (Fig. 6) and present these discrete analyses first. Plot-
ting the binding energy of each compound (ΔG) docked to either the
isolated LBD of LRH-1 (PDB:6OQX, Fig. 3A) or full-length LRH-1
(Fig. 3B) as a function of the discrete number of wet-lab events regulated
by each compound, and using a very inclusive cutoff for regulation
( ± 0.25 log2fold change vs. DMSO control) failed to show a correlation
by Spearman rank, or a non-zero slope of a linear regression by F-test, for

either the isolated LBD (p = 0.48) or full-length LRH-1 (p = 0.52). These
data suggest the relative docked binding energy of compounds to
full-length LRH-1 did not correlate with the ability of that compound to
regulate LRH-1 in the assays examined here. However, we noted some
compounds had large differences in binding energy to the isolated LBD
vs. full-length LRH-1, and those compounds appeared to more frequently
regulate full-length LRH-1 in the wet lab assays. Thus, we empirically
derived the heuristic ΔΔG metric, which is simply the absolute value of
the PyRx docking score (relative docked binding energy for each com-
pound) to the full-length LRH-1 (ΔGFL), less the absolute value of theΔG
for each compound binding to the isolated LBD of LRH-1 (ΔGLBD,
Fig. 3C). We plotted ΔΔG against the identical wet-lab functional data,
which showed a slight upward trend to the regression when the 6OQX
crystal structure was used to calculate ΔΔG6OQX, however the slope was
not significantly non-zero (Fig. 3D). We tested this further by docking to
a different crystal structure of the LBD (PDB:1YOK) to derive the ΔΔG
metric, which produced a significant Spearman rank correlation
(r = 0.291, * p = 0.014) and a slightly non-zero slope to a linear
regression (* p = 0.043 by F-test). We excluded one compound from
these analyses (VU0656093), as it was the only compound to produce
positive (unfavorable) binding energies docked to PDB:1YOK
(+15.3 kcal/mol), full-length LRH-1 (+26.6 kcal/mol), and PDB:6OQX
(+44.1 kcal/mol), more than 11-fold higher than the next highest

Fig. 2. The 58 hit compounds computationally docked to full-length LRH-1 and the isolated LBD differently. A. Schematic showing differences in isolated LBD vs. full length
LRH-1 used for PyRx rigid docking. B. Plot of docking scores (relative binding energies, kcal/mol) of the 58 hit compounds docked to the isolated LBD (PDB:6OQX,
teal) vs. full-length LRH-1 (PDB_DEV: 00000035, pink), showing lower binding energy of compounds to full-length LRH-1, * ** p = 0.0003 by two-tailed paired t-test.
C. Close up of the different docked positions of all 58 hit compounds docked to the isolated LBD (PDB:6OQX, teal) vs. full-length LRH-1 (pink), with the protein
removed for clarity. D. Docked positions in LRH-1 LBD (PDB:6OQX) of only the 5 hit compounds that regulated the isolated LBD, co-crystalized NCOA2 peptide
(gold) is shown for orientation. E. Docked positions of only the 9 hit compounds that regulated the full-length LRH-1 in cells, DNA oligo shown in gray, Zinc atoms
purple spheres, PGC1α peptide shown in gold. These data suggest compounds dock to the isolated LBD vs. full-length LRH-1 models slightly differently.

Z. Haratipour et al.



Computational and Structural Biotechnology Journal 23 (2024) 3065–3080

3069

binding energy compound (Supplemental Spreadsheet 3). Thus, this
compound was excluded and only 57 compounds were analyzed for the
remainder of this study. These initial data suggested a weak, but perhaps
non-zero association might exist between ΔΔG1YOK full-length LRH-1
regulation in cell-based assays. Since any computational approach that
could improve cell-based secondary screens would have great practical
value in larger LRH-1 drug screens in both large pharmaceutical com-
panies and within academia, we followed up on this initial observation.

Averaged ΔΔG across 18 crystal structures of LRH-1 associates with the
ability of a compound to regulate LRH-1 in all wet-lab assays. We docked
the 57 hit compounds to 18 crystal structures of the human LRH-1 ligand
binding domain (see methods for the list of all 18 structures from the
protein data bank, PDB) and calculated ΔΔG values for all 57 com-
pounds to each of the 18 structures of LRH-1, which generated a matrix
of 1026 ΔΔG values (Supplemental Sheet 4). We averaged the 18 ΔΔG

values for each compound (one ΔΔG value for each of the 18 crystal
structures) and plotted this “averaged ΔΔG” (referred to as ΔΔG for the
remainder of this manuscript) for each compound as a function of the
number of wet-lab events regulated by that compound. Spearman cor-
relations were statistically significant, and slopes of linear regressions
were non-zero at ± 0.25 L2FC (Fig. 4A), ± 0.5 L2FC (Fig. 4B) or
± 1.0 L2FC (Fig. 4C) cutoffs, again suggesting an association between
ΔΔG and the ability of a compound to regulate LRH-1 function in wet-lab
assays. Contingency analyses further suggested compounds with higher
ΔΔG values were significantly more likely to functionally regulate LRH-
1 (Fig. 5A-F). Specifically, compounds with a ΔΔG value higher than
1.0 kcal/mol regulated LRH-1 in 23 % of all wet lab measured events,
whereas compounds with ΔΔG below 1.0 kcal/mol regulated LRH-1 in
only 9 % of all wet lab events (Fig. 5A, p = 0.0001 by Fisher’s exact
test). Compounds in the highest 10th percentile of ΔΔG values regulated

Fig. 3. Relative binding energy (ΔG) of compounds docked to either the ligand binding domain or full-length LRH-1 did not associate with LRH-1 regulation in cells. A. Plot of
docked binding energy of 57 compounds to the isolated ligand binding domain (LBD, PDB:6OQX) vs. the number of wet lab assay events regulated by each compound
(full-length LRH-1 regulation of the CYP17A1 and CYP7B2 luciferase promoters), with each of the wells in the high-throughput assays treated as an individual event
(replicates not averaged) and regulation defined as meeting ± 0.25 log2 fold change cutoff vs. DMSO control. Solid line indicates linear regression for all points,
shaded area is 95 % confidence of regression, slope of the regression and F-test p value for non-zero slope indicated, with no correlation by Spearman rank cor-
relation. B. Identical as A, but plotting docked binding energy of compounds to full-length LRH-1 (PDB_DEV: 00000035). C. ΔΔG is an arbitrary metric based on the
difference in docked binding energy of a compound to the full-length LRH-1 (ΔGFL) vs. the isolated LBD (ΔGLBD). D. Plot of ΔΔG calculated using PDB:6OQX
(ΔΔG6OQX) vs. the number of wet lab assay events regulated by each compound (full-length LRH-1 regulated events from the CYP17A1 and CYP8B1 luciferase assays).
E. Identical as D, but ΔΔG calculated using docking scores to LRH-1 structure 1YOK (ΔΔG1YOK), showing slightly non-zero slope and significant one-tailed Spearman
correlation, calculated in Prism. These data suggest ΔΔG values of compounds could correlate with wet lab activity on LRH-1.
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LRH-1 in 30 % of wet lab events, while all remaining compounds
regulated LRH-1 in only 11 % of wet lab events (Fig. 5B, p = 0.0014).
Compounds in the highest quartile of ΔΔG values regulated LRH-1 in
24 % of wet lab events, all remaining compounds regulated LRH-1 in
only 9 % of wet lab events (Fig. 5C, p = 0.0002). The highest 3 quartiles
of ΔΔG values also selectively regulated LRH-1 in 16 % of wet lab
events, while all remaining compounds regulated LRH-1 in only 4 % of
wet lab events (Fig. 5B, p = 0.0014). This association was significant if a
more rigorous cutoff of ± 1.0 log2 fold change was used (Fig. 5E-F).
Together these data suggest that among these 57 hit compounds, com-
pounds with higher values of ΔΔG more frequently associated with
regulation of LRH-1 in the wet lab.

Higher ΔΔG compounds associated with full-length LRH-1 regulation in
cells. We next asked if ΔΔG for each compound would associate with
regulation of full-length LRH-1 in cells. Indeed, plotting ΔΔG for each
compound as a function of only the full-length LRH-1 cell-based assay
data showed a significantly non-zero slope to the linear regression at all
cutoffs tested (Fig S2A). When ΔΔG was plotted as a function of only the
isolated LBD assays the slope of the linear regression failed to be
significantly non-zero at all cutoffs tested and was not significantly
correlated by Spearman (Fig S2B). Contingency analyses of the full-
length LRH-1 assays (Fig. 6) suggests compounds in the highest 10th
percentile of ΔΔG values regulated LRH-1 in 25 % of full-length LRH-1
cell-based assay events, all remaining compounds regulated full-length
LRH-1 in only 3 % of events (Fig. 6A, p < 0.0001). The increased fre-
quency of full-length LRH-1 regulation in cells held if more inclusive
cutoffs of ± 0.5 L2FC (p = 0.0001) or ± 0.25 L2FC (p < 0.0007) were
used (Fig. 6A). Compounds in the top quartile of ΔΔG values using the
more exclusive ± 1.0 L2FC cutoff again showed higher ΔΔG values
associated with more frequent regulation of full-length LRH-1 in cells
(Fig S3A, p = 0.0002), although more inclusive L2FC cutoffs of ± 0.5
and± 0.25 did not reach significance (Fig S3A). Compounds in the top 3
quartiles of ΔΔG values also more frequently regulated full-length LRH-1
in cells, regardless of L2FC cutoff applied (Fig S3B). We then tested if
simply the docking score (relative docked binding energy) to full-length
LRH-1 (ΔGFL) would associate with a compound’s ability to regulate
full-length LRH-1 in cells. Contingency analyses using the same full-
length LRH-1 cell-based assay data found no association between com-
pound binding energy to full-length LRH-1 (ΔGFL) and the ability of the

57 compounds to regulate LRH-1 in cells (Fig. 6B), regardless of L2FC
cutoff (Fig S4A) or how the compounds were grouped (Fig S4B). We also
confirmed the 57 compounds had no preference to regulate either the
isolated LBD or full-length LRH-1 assays in cells when the compounds
were considered together, e.g., the 57 compounds together regulated
6 % of isolated LBD assays and 6 % of all full-length LRH-1 assays in cells
(Fig S5). Together, these data suggest the group of compounds with
higher ΔΔG values more frequently regulated full-length LRH-1 in cells.

Applying continuous data suggests ΔΔG associates with the ability of
compounds to regulate full-length LRH-1 in cells. Our analyses up to this
point converted the positive and negative log2 fold change continuous
data to discrete variables that could be counted, for simplicity. We now
plotted the continuous values of ΔΔG for each compound as a function of
the absolute value of the log2 fold changes vs. DMSO control from each
of the three wet-lab assays, absolute values were used to account for the
equally scaled activation (positive L2FC) and repression (negative L2FC)
by various compounds in the wet lab assays. Spearman rank correlation
was significant for the isolated LBD coregulator peptide anisotropy assay
(r = 0.373, ** p = 0.0042) while the slope of linear regression failed to
be non-zero by F-test (p = 0.073, Fig. 7A). All assays on full-length LRH-
1 suggested a significant relationship in both the CYP17A1-luciferase
data (F-test, ** p = 0.0072, Spearman rank r = 0.252, * p = 0.291,
Fig. 7B) and the CYP8B1-luciferase data (F-test * p = 0.018, Spearman
r = 0.224, * p = 0.043, Fig. 7C). Analyzing all full-length LRH-1 assays
in cells showed a positive, non-zero slope to the linear regression (F-test
*** p = 0.0005) and a significant Spearman correlation (r = 0.399,
** p = 0.0010, Fig. 7D). The positive correlation is being driven by the
top 10 of 58 compounds with the highest ΔΔG values, of course during a
compound screen these “outlier” compounds with highest activity that
are of most interest. To determine if PyRx docking would generate
reproducible docking scores (ΔG), as well as ΔΔG values that repro-
ducibly correlate with the cell-based assays, we executed duplicate PyRx
docking runs to all 19 structures (Run 2) and directly compared these
two independent runs (Fig. 8). The duplicate runs produced indistin-
guishable binding scores (Fig. 8A), ΔΔG values (Fig. 8B) and correla-
tions with the continuous wet lab data for all cell-based assays (Fig. 8C-
E). These data suggest the PyRx docking scores and ΔΔG reproducibly
correlated with regulation of full-length LRH-1 in cell-based assays,
between two independent docking runs. We next began to explore these

Fig. 4. Linear regression of ΔΔG averaged across all 18 crystal structures of LRH-1 plotted vs. the number of compound-regulated LRH-1 assay events has a non-zero slope. A.
57 of 58 hit compounds (one compound excluded due to high positive binding energies docked to several LRH-1 models, see methods) were docked to 18 crystal
structures of the human LRH-1 LBD and ΔΔG values calculated, producing a matrix of 1102 ΔΔG values, provided in supplemental data. The average of the 18 ΔΔG
values (one value for each of the 18 crystal structures) for each of the 57 compounds were plotted as a function of the number of all LRH-1 wet-lab regulated events
induced by that compound, with regulation discretely defined as at least ± 0.25 Log2 fold change from DMSO control, B. ± 0.50 Log2FC or C. ± 1.0 Log2FC. For all
plots solid line indicates linear regression for all points, shaded area is 95 % confidence interval of regression, slope and p value from an F-test for a non-zero value of
the slope, r and p values for one-tailed Spearman correlation indicated. Spearman correlations were one-tailed as positive values of initial linear regressions suggested
a positive correlation, making a negative correlation unlikely. These data suggest compounds with high averaged ΔΔG might associate with LRH-1 activity.
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crystal structures more deeply to identify the structural feature being
sensed by rigid body docking.

High ΔΔG values were generated from small-molecule bound LRH-1 LBD
crystal structures. Previous work from other groups has established that
ligands can induce changes in LRH-1 crystal structures. These ligand-
induced differences in co-crystal structures might drive the association
of ΔΔG with full-length LRH-1 regulation, therefore the nature of the co-
crystalized ligands may indicate how ΔΔG correlates with full-length
LRH-1 activity. LRH-1 binds phospholipids, we compared 9 structures
in the protein data bank (PDB) of LRH-1 co-crystalized with phospho-
lipids (1YOK, 1YUC, 1ZDU, 3TX7, 4DOR, 4DOS, 4ONI, 4PLE and 4RWV)
to another 9 LRH-1 structures co-crystalized with synthetic small mol-
ecules (3PLZ, 4PLD, 5UNJ, 5L11, 5SYZ, 6OR1, 6VC2, 6OQX and 6OQY).
The ΔΔG values produced by these 18 crystal structures varied for each
compound, so we averaged the ΔΔG values for each crystal structure

across all 57 compounds, to produce an average ΔΔG value for each
crystal structure (ΔΔGXSTAL), permitting comparison of crystal struc-
tures, rather than comparing compounds. We immediately noted the 9
phospholipid-bound crystal structures all had lower ΔΔGXSTAL values
than the 9 small-molecule bound crystal structures (Fig. 9A), also
confirmed in pairwise comparison of the ΔΔGXSTAL values across the 18
structures (Fig. 9B), consistent with the small-molecule co-crystalized
structures producing smaller ligand binding pockets [64]. We next
tested if these differences were the source of the association between
compound ΔΔG values and full-length LRH-1 regulation by generating a
new term ΔΔG* (Fig. 9C), which is the averaged ΔG from the 9 small
molecule-bound structures, less the averaged ΔG from the 9
phospholipid-bound structures. Although the magnitude of ΔΔG* values
were higher than ΔΔG values (Fig S6A-B, p < 0.0001), the value of
ΔΔG* did not associate with regulation of full-length LRH-1 in cells,

Fig. 5. Compounds with high ΔΔG values more frequently regulated LRH-1 in wet lab assays. Contingency analyses of the frequency of LRH-1 regulation induced by all 57
compounds in all 439 wet lab assayed events (y-axis), with each well in the high-throughput assays treated as an individual event. Since compounds both inhibited
and activated LRH-1, regulation in each well was defined as meeting the indicated Log2 fold change cutoff (L2FC) compared to DMSO control. Pink section of bars is
the number of events that met the L2FC cutoff (percentages indicate percentage of regulated events), white section of bars is the number of events that did not meet
L2FC cutoff. A. Contingency analysis of the frequency of LRH-1 regulation in all 439 assays, comparing compounds with ΔΔG values lower than 1.0 (ΔΔG<1.0) vs.
higher than 1.0 (ΔΔG>1.0), showing compounds with higher ΔΔG values more frequently regulated LRH-1 (16 % vs. 7 %) by Fisher’s exact test (p = 0.0001). B.
Contingency comparing compounds with ΔΔG values in the top 10th percentile (Top 10 %) of all 57 ΔΔG values vs. all other compounds (Remainder), showing
compounds with higher ΔΔG values more frequently regulated LRH-1 (30 % vs. 11 %, p = 0.0014 by Fisher’s exact). C. Contingency showing compounds in the
highest quartile (Top 25 %) of ΔΔG values more frequently regulated LRH-1 (p = 0.0265 by Fisher’s exact). D. Contingency showing compounds in the highest 3
quartiles (Top 75 %) of ΔΔG values more frequently regulated LRH-1 (p = 0.0004). E. Contingency showing compounds in the Top 25 % of ΔΔG values more
frequently regulated LRH-1 at a more exclusive L2FC cutoff ( ± 1.0 L2FC, p = 0.0012). F. Contingency showing compounds in the Top 75 % of ΔΔG values more
frequently regulated LRH-1 at a more exclusive ± 1.0 L2FC cutoff (p = 0.0007). These data suggest ΔΔG positively associated with the ability of compounds to regulate
LRH-1 in the wet lab assays we measured.
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regardless of how the data were analyzed (Fig. 9D, Fig S6C). We found
ΔΔG values calculated only from the small molecule-bound crystal
structures correlated slightly better with LRH-1 regulation in cells than
ΔΔG values calculated from only the phospholipid-bound structures of
LRH-1 (Fig S7A-C). These data suggest crystal structures that produced
the highest ΔΔG values were co-crystalized with synthetic small mole-
cules, while phospholipid-bound structures produced lower ΔΔG values.
To identify differences in these two classes of crystal structures, we next
applied network analyses.

High ΔΔGXSTAL structures have unique network properties. Several pre-
vious studies have used networking approaches to better understand
how activating LRH-1 ligands are allosterically paired with transcrip-
tional coregulators [69,70]. To identify any properties of the commu-
nication networks within the crystal structures that produced the
highest ΔΔGXSTAL values, we performed network analyses on the same
18 structures of LRH-1. We assigned an eigenvector centrality value to
each amino acid in each of the 18 structures using RING (3.0) [76]
(Supplemental Spreadsheet 5). Eigenvector centrality reflects the

connectedness of an amino acid with other amino acids in the 3D
structure [77]. We then assigned averaged eigenvector centrality across
all amino acids in each secondary structural element of the LRH-1 LBD
(12 alpha helices, 6 connecting loops and 2 beta sheets, see methods for
amino acid numbering, Supplemental Spreadsheet 6), and applied
principal component analysis to analyze this multi-dimensional data.
Variance in the top principal component (PC1) formed two clear clus-
ters: 1) low ΔΔGXSTAL structures bound by phospholipids and 2) high
ΔΔGXSTAL structures bound by synthetic small molecules (Fig. 10A). We
then examined edges between nodes in the network (Supplemental
Spreadsheet 7) that were unique to each of these two groups of crystal
structures (Supplemental Spreadsheet 8), which showed clear differ-
ences between the low vs. high ΔΔGXSTAL structures (Fig. 10B). Super-
position of the 18 crystal structures shows that in the nine highest
ΔΔGXSTAL structures (Fig. 10C, red structures), Helix 6 is in a position
that constricts the entrance to the ligand binding pocket (Fig. 10D), also
suggested by the position of Helix 3 closer to Helix 6 (Fig. 10E). In the
nine lowest ΔΔGXSTAL structures Helix 6 is in the opposite position,

Fig. 6. Compounds with high ΔΔG values more frequently regulate of full-length LRH-1 in cells. A. Contingency analysis of the frequency of full-length LRH-1 regulation in
cells induced by compounds in the top 10th percentile (Top 10 %) of all 57 ΔΔG values vs. all other compounds (Remainder), examining only the 341 full-length
LRH-1 assayed events in cells (isolated LBD assay results were excluded), percentages indicate the percentage of regulated (pink) events within that group of
compounds, at indicated L2FC cutoffs ( ± 1.0, ± 0.5, or ± 0.25 L2FC). These data suggest high ΔΔG values associated with a compound’s ability to regulate full-
length LRH-1 in cells, also supported by further analyses in supplemental data. B. The same contingency analysis as in A, but replacing ΔΔG with the simple
binding energy to full-length LRH-1, comparing compounds in the top 10th percentile of lowest docked binding energies (top 10 % or the best 10 % binding energies)
to full-length LRH-1 vs. all other compounds (Remainder), suggesting compounds with lower binding energies did not more frequently regulate full-length LRH-1 in
cells, at all L2FC cutoffs tested, also supported by further analyses in supplemental data. These data suggest compounds with higher ΔΔG values more frequently regulated
full-length LRH-1 in cells.
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opened at the entrance to the ligand binding pocket (Fig. 10C-E). Pre-
vious network studies based on molecular dynamics simulations of the
ligand binding domain have also suggested the position of Helix 6 as an
important determinant of LRH-1 conformations that associate with
ligand regulation [70]. The data presented here now suggest the position
of Helix 6 correlates with ΔΔG values, and ΔΔG correlates with
full-length LRH-1 activity in cell-based assays. The data here suggest
ΔΔG has utility in prioritizing hit compounds from screening campaigns
for follow-up screening in full-length LRH-1 cell-based assays.

3. Discussion

Prioritizing hit compounds from a large screen is often a necessary
experimental constraint [1–6] as secondary assays in living cells can be
very resource-intensive [7,8,13]. Therefore, in terms of drug screening,
the few “outlier” compounds with the most biological activity are of the
highest biomedical interest. Identifying these high activity “outlier”
compounds could be arguing is the purest goal of drug screening. Here,
we present a computational heuristic (ΔΔG) with utility for prioritizing
LRH-1 compounds for secondary assays in cells. We validated the ΔΔG
metric retrospectively by using a total of 439 orthogonal functional as-
says. We also present data suggesting the more direct metric of docked
binding energy to LRH-1 did not correlate with the ability of compounds
to regulate full length LRH-1 in cells. This study identifies and validates
a link between in silico docking score and LRH-1 function in cell-based
high throughput functional assays. Binding constants determined in
the wet lab have been linked to LRH-1 regulatory activity for several, but
not all individual compounds [42,49], however these approaches are

resource-intensive. We propose ΔΔG could be applied to prioritize hits
from large primary compound screens targeting LRH-1.
Although it is difficult for the computational data presented here to

definitively establish how ΔΔG associates with LRH-1 regulation, we
found three lines of evidence suggesting a connection with the position
of Helix 6 at the entrance to the LRH-1 ligand binding pocket. First, the
docked positions of high ΔΔG compounds clustered around the entrance
to the ligand binding pocket at Helix 6 (Fig. 2), suggesting changes to the
position of Helix 6 might be responsible for altered compound docking
and higher ΔΔG values. Second, our network analyses suggested the
crystal structures that generated the highest ΔΔGXSTAL values had more
edges connecting Helix 6 to Helix 3. Third, the entrance to the ligand
binding pocket in high ΔΔGXSTAL structures was in a more closed posi-
tion. Here we must mention that comparing crystal structures from non-
identical space groups must be interpreted with caution. Perhaps most
importantly, convincing work from the Ortlund lab at Emory and now
the Okafor lab at Penn State [75] have used extensive MD simulations,
network analyses and direct comparisons of different ligand-bound
structures of LRH-1 to independently suggest an important role for
Helix 6 in ligand-regulated activation of LRH-1 [37,64,69,70,73–75],
linking the mobility of residues at the entrance to the ligand binding
pocket near Helix 6 to synthetic small molecule-induced LRH-1 activity
[74]. The volume of the ligand-binding pocket is smaller in structures
bound to synthetic small molecules vs. phospholipids [64], consistent
with the docking studies presented here, as well as hydrogen-deuterium
exchange data [37,64,70,74], MD simulations [64,69,70,73–75] and
other network analyses [69,74]. Together, these studies support a role
for Helix 6 is an important element in translating ligand binding events

Fig. 7. Continuous values of full-length LRH-1 assays positively associate with ΔΔG. Previous analyses converted assay data from the 57 compounds to discrete values
since the compounds induced both positive (activation) and negative (repression) log2 fold changes to LRH-1 regulation. Here we plotted ΔΔG values as a function of
the continuous absolute values of the log2 fold change (compared to DMSO control) induced by each compound in each indicated assay: A. the co-regulator peptide
binding assay using the isolated LBD, B. the full-length LRH-1 assay in HEK cells using CYP17A1-luciferase reporter or C. the full-length LRH-1 assay in HEK cells
using the CYP8B1-luciferase reporter or D. all full-length LRH-1 luciferase assays in HEK cells combined. For all plots, solid line indicates linear regression, shaded
area is 95 % confidence interval, slope and p value indicated from F-test for non-zero value of the slope, and the one-tailed Spearman r and p values also indicated,
calculated in Prism. These data suggest a positive association exists between ΔΔG of a compound and the ability of that compound to regulate LRH-1.
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from the binding pocket to the transcriptional coregulator [69,70]. Our
analyses of cell-based data are consistent with those findings, however it
will be important to apply structural biology to determine how high vs.
low ΔΔG compounds regulate the dynamics of Helix 6 in future analyses.
The structures generating the highest ΔΔG values were co-crystalized

with synthetic small molecules, while the phospholipid-bound struc-
tures produced the lowest ΔΔG values. The full-length LRH-1 structure is
a computational model based on a phospholipid-bound LBD crystal
structure (PDB:1YOK). We therefore hypothesized it might be this
phospholipid-bound starting point in the full-length modeling that
produced high ΔΔG values. Calculating ΔΔG* using the average binding
energies of each compound to the phospholipid-bound vs. synthetic
small molecule-bound LBD crystal structures produced ΔΔG* values that
did not associate with any regulation of full-length LRH-1 in cells.
However, since ΔΔG values calculated from all 18 structures together
and the small-molecule structures only gave similar correlations (Fig

S7A-B), we would suggest future researchers use all 18 structures to
calculate ΔΔG when prioritizing compounds from their screens. Should
docking resources become limiting, we would suggest eliminating the
phospholipid-bound structures, as these ΔΔG values were not as
robustly correlated with cellular LRH-1 activity (Fig S7C). It therefore
remains unclear what aspects of rigid docking to the full-length LRH-1
results in the association between ΔΔG and full-length LRH-1 regulation
in cells, but we will speculate on two potential hypotheses. The first is
rather trivial, simply that the modeled position of Helix 6 in full-length
LRH-1 is somewhat "between" the position of Helix 6 in the high vs. low
ΔΔGXSTAL structures, and that this position imparts the ability of the full-
length model to uniquely “sense” or “block” interactions between
compounds and LRH-1. The second is highly speculative but worth
mentioning. The published model of full-length LRH-1 does not position
Helix 6 in the interface between the LBD and the DNA-binding domain
(DBD). However, while developing the full-length LRH-1 model [72], a

Fig. 8. Duplicate PyRx docking runs produced reproducible docking scores (ΔG), ΔΔG values and correlations with LRH-1 regulation. A. Comparison of PyRx docking scores
(ΔG values) from duplicate runs (Run 1 vs. Run 2) were compared, showing no significant difference by paired t-tests of each of the 57 compounds, each point
represents the averaged ΔG from 18 crystal structures of LRH-1. B. Comparison of ΔΔG values from duplicate PyRx runs (Run 1 vs. Run 2), again showing no
difference in ΔΔG by paired t-tests, suggesting duplicate PyRx runs produced reproducible ΔΔG values, each point represents averaged ΔΔG across 18 crystal
structures of LRH-1 for each compound. C. ΔΔG values from Run 1 and Run 2 plotted as a function of the absolute value of the log2 fold change (compared to DMSO
control) of LRH-1 regulation induced by each compound in the CYP17A1 cell-based activity assay, showing significant correlation by non-zero linear regression slope
and by one-tailed Spearman correlation. D. Same as in C. but ΔΔG plotted as a function of CYP8B1 cell-based assays, again showing a significant correlation. E. Same
as in C, but ΔΔG plotted as a function of both cell-based assays combined. Spearman was one-tailed, all statistics were calculated in Prism. These data suggest duplicate
PyRx docking runs of the 57 compounds to 18 crystal structures of LRH-1 produced reproducible ΔG and ΔΔG values, which correlated with LRH-1 activity in cell-based assays.
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lower-energy model was produced by Rosetta, in which Helix 6 was
directly in the LBD-DBD interface, as were residues at the entrance to the
ligand binding pocket, referred to as “Model 2”. Although Model 2 was
supported by chemical crosslinking experiments, Model 2 was tested
using mutants of LRH-1 (I415Q and S418D) which did not affect
full-length LRH-1 luciferase activity [72], suggesting Model 2 was not
functionally relevant, at least in the assays used to test the model. Still, it
remains formally possible that in other cellular contexts that remain
untested, that Helix 6 could exist in the interface between the LBD and
DBD in particular conformational states of full-length LRH-1. Accord-
ingly, the high ΔΔG compounds might simply bind LRH-1 at the
entrance to the ligand binding pocket near Helix 6 (Fig. 2E), directly in
the LBD-DBD interface predicted by Model 2. Supporting this hypothe-
sis, compounds that operate in this way would be expected to bind the

isolated LBD (Fig. 1B) [1] and regulate full-length LRH-1 (Fig. 1G) but
would not be expected to regulate the isolated LBD (Fig. 1F). A total of 9
compounds of the 57 examined here meet those criteria (Supplemental
Spreadsheet 2) and will be of great interest to determine co-crystal
structures. More wet-lab study will be needed to establish the role of
Helix 6 in full-length LRH-1 structural regulation. It will also be inter-
esting to determine if ΔΔG might translate to other nuclear receptors,
particularly Steroidogenic Factor-1 (SF-1, NR5A1), a close homolog of
LRH-1. There is no experimentally validated structure of full-length
SF-1, and only one crystal structure of SF-1 bound to a synthetic small
molecule (PDB:8DAF) [78]. Since small molecule-bound structures of
LRH-1 generated higher ΔΔG values gave more power to the LRH-1
analyses, we would hypothesize that the lack of SF-1 structures bound
to small molecules may statistically weaken ΔΔG analyses of SF-1.

Fig. 9. Crystal structures that produced the highest ΔΔG values (ΔΔGXSTAL) were bound to small molecules. Since the value of ΔΔG generated from small molecule-bound
structures appeared higher than ΔΔG generated from phospholipid-bound structures, we generated a new value called ΔΔGXSTAL which is the average of all 57 ΔΔG
values (one ΔΔG value for each of 57 compounds), for each of the 18 crystal structures of LRH-1. A. ΔΔGXSTAL for small molecule-bound structures was significantly
higher than ΔΔGXSTAL for phospholipid-bound structures (t-test, p < 0.0001, each point represents ΔΔGXSTAL for one of 18 crystal structures). B. Pairwise comparison
of all 18 ΔΔGXSTAL values listed by PDB code, suggesting small molecule vs. phospholipid-bound structures generated different ΔΔGXSTAL values. C. To test if higher
ΔΔG values from small molecule-bound structures is the source of the association between ΔΔG and full-length LRH-1 regulation in cells, we determined ΔΔG* ,
defined as the difference between the average ΔG for each compound bound to the 9 small molecule-bound structures (ΔGSmall Molecule) less the average ΔG bound to
the 9 phospholipid-bound structures (ΔGPhospholipid). D. Contingency showing compounds in the highest 10th percentile of ΔΔG* values did not more frequently
regulate LRH-1, regardless of L2FC cutoff by Fisher’s exact test, also supported by further analyses in supplemental data, p values calculated in Prism. These data
suggest ΔΔG might reflect a structural aspect of small-molecule bound crystal structures of LRH-1.
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One limitation of this study is the small size of the compound library
(only 57 compounds from a 2322 compound library), as it remains
possible that in larger (or smaller) screens the ΔΔG metric would not
associate with compound activity on full-length LRH-1 in cells. The 57
hit compounds were identified to directly bind LRH-1 from the Dis-
covery Spectrum Library, which is a library of 2322 synthetic com-
pounds and natural products. Lipinski parameters for these 57
compounds are provided (Supplemental Spreadsheet 1), the 57 com-
pounds had an average mass of 340 ± 189 at. mass units; an average of
3.1 ± 2.6 hydrogen bond donors; an average of 5.5 ± 4.0 hydrogen
bond acceptors; average molar refractivity of 66.1 ± 42.5. The small
size of the primary screen permitted application of several independent,
orthogonal secondary assays, a clear strength of this study. Executing
more compound screens using different library sizes with follow-up
secondary assays in cells would be a very resource-intensive task and

outside the scope here. The secondary screens in our previous paper
were limited to only the hit compounds identified, we did not perform
secondary screening on all 2322 compounds, as resources are not un-
limited. That our analyses found correlations in the data suggests similar
associations might hold in larger screens, which can improve ongoing
LRH-1 compound screening and development efforts. Another limitation
of this study is that the correlation observed may not hold if a different
docking program were used. Further, the compounds studied here only
induced effect sizes in biological wet lab assays that were relatively
small, those effects all significantly differed from DMSO controls, sug-
gesting small but significant modulatory roles for this set of compounds.
That ΔΔG associated with the biological activity of this set of marginal
regulators of LRH-1 further highlights the potential power of the ΔΔG
metric. However, we acknowledge that it remains possible that ΔΔG
may not associate with the activity of “better” LRH-1 compounds, which

Fig. 10. The position of Helix 6 associates with higher ΔΔGXSTAL values. The ΔΔGXSTAL is the averaged ΔΔG value of 57 compounds for each crystal structure (indicated
in this figure simply as ΔΔG). A. Principal Component Analysis of eigenvector centrality values assigned to each secondary structural element (12 Helices, 3 loops
and 1 beta strand) in all 18 crystal structures of LRH-1. PCA shows clustering of structures with low ΔΔGXSTAL values co-crystalized with phospholipids vs. structures
with high ΔΔGXSTAL values co-crystalized with small molecules, see methods for network analysis details, ΔΔGXSTAL values indicated. B. Edges between network
nodes that were unique to the low ΔΔGXSTAL structures (blue, left) or the high ΔΔGXSTAL structures (red, right) were mapped onto PDB:6OQX. Note that among many
differences, one difference in the high ΔΔGXSTAL structures is the presence of more edges between Helix 6 and Helix 3 at the entrance to the ligand binding pocket,
indicated with dashed circle and arrows. C. Superposition of all 9 low ΔΔGXSTAL structures bound by phospholipids (blue) and all 9 high ΔΔGXSTAL structures bound
by small molecules (red), less ordered loop regions were removed for clarity. Examination of the superposition showed the largest change in position was associated
with Helix 6. D. Closeup of boxed region in panel C., showing change in Helix 6 position in the low ΔΔGXSTAL vs. high ΔΔGXSTAL structures. E. End-on alternative view
of Helix 6, showing the position of Helix 6 favoring closer proximity to Helix 3 in the high ΔΔGXSTAL structures. These data suggest that positions of Helix 6 which close
the entrance to the ligand binding pocket associate with higher values of ΔΔG.
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induce larger effect sizes in biological assays. Regardless of how ΔΔG
associates with cell-based LRH-1 activity, the utility of ΔΔG in priori-
tizing hits from wet lab drug screens remains.
This study introduces a new metric called ΔΔG, derived from the

rigid docking scores of compounds docked to 19 different structural
models of LRH-1, which positively correlates with the ability of 57
compounds to regulate full-length LRH-1 in cell-based assays. The
docking scores themselves did not have any association with full-length
LRH-1 activity in cells. Network analyses suggest a closed position of
Helix 6 at the mouth of the ligand binding pocket associates with the
highest ΔΔGXSTAL structures, also observed in other computational
studies of LRH-1 [70]. This observation provides a potential explanation
as to how ΔΔG associates with compound activity on LRH-1, which
awaits further testing using wet lab structural biology. This study pro-
vides a new computational tool that can aid in the prioritization of hit
compounds for follow-up secondary screens in LRH-1 drug development
efforts, while further supporting an important role for Helix 6 in
ligand-regulation of full-length LRH-1.

4. Methods

4.1. Materials

All new data in this manuscript is computational, all wet lab assay
data were previously published [1], with the most relevant data pro-
vided as Supplemental Spreadsheets with this manuscript for conve-
nience. Rigid body docking was executed with PyRx (Version 0.8) using
Autodock Vina [79], run on a single Dell Precision 5820 machine
running Ubuntu Linux 20.04 on an Intel Xeon 8-core, 3.9 GHz processor.
Structures were visualized and figures generated using Schrodinger
PyMOL (Version 2.4.2) and UCSF ChimeraX (Version 1.6.1), protein
structure networks were generated using RING (Version 3.0) mapped
onto structures by UCSF ChimeraX, eigenvector centrality was calcu-
lated using python library NetworkX (Version 3.1) and data were pro-
cessed in Microsoft Excel (Version 16.74).

4.2. Statistical analyses

Principal component analyses used equally scaled data for all vari-
ables analyzed (log2 fold change compared to DMSO control) and par-
allel analysis with 1000 simulations and selected the 2 components
shown in biplots in Fig. 1 and Figure 11 were calculated in GraphPad
Prism (Version 10.0.0), the matrices for the PCA in Fig. 1E is provided as
Supplemental Spreadsheet 1, and for Figure 11A the PCA matrix is
provided in Supplemental Spreadsheet 6. Fisher’s exact tests of contin-
gency were two-sided for all analyses also calculated in Prism. Spearman
rank correlation r values were approximated, all Spearman p values
were one-tailed as the slope of initial linear regressions were positive
making negative correlations unlikely. Linear regressions, slopes and F-
tests for non-zero slopes were also calculated in Prism, regressions were
performed without constraint on x-axis intersection. Pairwise compari-
son of ΔΔGXSTAL values used a Euclidean distance matrix calculated by
Heatmapper.ca, paired t-test was two-tailed and calculated in Prism, all
analysis files are available upon request. The statistical tests are listed in
figure legend, “ns” represents any p value that is not significant (tests
null) for indicated test, “ *p” represents any p-value less than 0.05, “
* *p” represents any p-value less than 0.01, “ * **p” represents any p-
value less than 0.005, “ * ** *p” represents any p-value less 0.0001. All
analysis files are available on request.

4.3. Exclusion of VU0656093

Although 58 compounds were identified in the previously published
compound screen, only 57 compounds were analyzed for the majority of
this study. We excluded one compound (VU0656093) based on the PyRx
docking to human LRH-1 ligand binding domain crystal structure

PDB:6OQX from our previously published data [1], as PyRx docking
resulted in an extraordinarily high positive binding energy
(+44.9 kcal/mol) to 6OQX. In this study, VU0656093 was also the only
compound to produce positive values for the docked binding energy to
the LBD structure 1YOK (+15.3 kcal/mol) and the full-length LRH-1
model (+26.6 kcal/mol). PyRx relative docked binding energies for
VU0656093 are included in Supplemental Spreadsheet 3 associated with
this manuscript for completeness.

4.4. Overview of published wet lab data

The 58 hit compounds were identified in a previous publication to
directly bind the isolated LBD of LRH-1, using a FRET-based high-
throughput screen [1]. Briefly, the 2322 compound Discovery Spectrum
Collection library was used in that FRET screen, the 58 compounds were
identified to decrease FRET between a fluorophore-labeled phospholipid
probe installed in LRH-1 at the canonical ligand binding site and the
fluorophore-labeled LRH-1 LBD protein, as FRET donor and acceptor
respectively. The design of the screen suggests the identified hit com-
pounds compete with the phospholipid probe for binding to the ca-
nonical ligand binding site in LRH-1, however no structures of the 58 hit
compounds co-crystalized with LRH-1 have demonstrated this un-
equivocally. Binding constants to LRH-1 were not determined for most
hit compounds from the screen, but a handful of binding constants were
determined to validate the screen, including two high ΔΔG compounds
relevant to the current study, VU0243218 (IC50 =9.4 μM [95 %CI
8.1–10.8 μM] for binding to the isolated LRH-1 LBD) and VU0656021
(IC50 =27.0 μM [95 %CI 16.1–171.5 μM] for binding to the isolated
LRH-1 LBD). Both these compounds are high ΔΔG compounds that had
fully saturable binding curves that could only be fit to a one-site binding
model, strongly suggesting a direct, stoichiometric interaction of at
these two compounds with the LRH-1 ligand binding domain, despite
docking outside the canonical ligand binding pocket of LRH-1
(PDB:6OQX). The 58 hit compounds were subjected to secondary
functional screens: 1) 10 μM compound-induced interaction between
recombinantly expressed and purified LRH-1 LBD and a
fluorophore-labeled peptide (representing the transcriptional coac-
tivator PGC1α) by fluorescence anisotropy. 2) 10 μM
compound-induced luciferase expression of a CYP8B1-promoter driven
reporter in HEK293T cells expressing full-length human LRH-1 by
transient co-transfection. Importantly, control luciferase reactions in the
absence of co-transfected LRH-1 were used for normalization, so only
the compound-regulated luciferase signal dependent upon LRH-1
co-transfection was analyzed. 3) 10 μM compound-induced luciferase
expression of a CYP17A1-promoter driven reporter in HEK293T cells
expressing full-length human LRH-1 by transient co-transfection, using
the same control methods as above. Results from the previously pub-
lished assays are available associated with this manuscript in Supple-
mental Spreadsheet 1, for complete technical details on all the methods
and data see DOI: 10.1021/acschembio.2c00805.

4.5. PyRx computational docking

PyRx [79] rigid body computational docking was used, the 58 hit
compounds were first docked to 6OQX PDB structure of human LRH-1
ligand-binding domain (LBD) [1], then docked to the integrated struc-
tural model of full-length human LRH-1 (PDB_DEV: 00000035), then
PDB 1YOK as another crystal structure of human LRH-1 LBD, followed
by the remaining 16 crystal structures analyzed in this study for a total of
18 human LRH-1 LBD crystal structures used for PyRx docking, listed
here (PDB: 6OQX, 6VC2, 6OR1, 6OQY, 5UNJ, 5SYZ, 5L11, 4RWV, 4PLE,
4PLD, 4ONI, 4DOR, 4DOS, 3TX7, 3PLZ, 1ZDU, 1YUC, 1YOK), plus the
integrated structural model of full-length LRH-1 (PDB_DEV: 00000035).
The full-length LRH-1 structure is based on in-solution biophysical re-
straints applied to Rosetta-based computational docking, in which the
ligand binding domain was computationally optimized, which was then
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validated using genetics, biochemistry and solution structural analyses
[72] but is not a crystal structure. For PyRx ligand docking, all proteins
were prepared for docking by removing all co-crystallized ligands, ions,
and water molecules. The 2D ligand structures in SDF format were
converted to 3D using OpenBabel [80] and energy-minimized using a
universal force field with 200 steps, saved in PDBQT format, all ligands
are available in Supplemental_Zip_File_1.zip available on the publisher’s
website or by contact the corresponding author. Size and position of the
grid box, search space, and scoring function were set in PyRx [71], the
docking grid box size was X:25 Å, Y:25.2 Å, Z:25 Å centered on the ca-
nonical ligand binding site in human LRH-1. PyRx generated nine
docked poses for each ligand with a corresponding docking score
(relative docked binding energy, kcal/mol), pose associated with the
lowest energy docking score was used for analyses. Output files were
saved in PDBQT format, all docked poses were visualized using molec-
ular graphics software PyMOL [81] or UCSF ChimeraX [82]. Docking
scores are provided in Supplemental Spreadsheet 3, PDB files for all
docked poses are available upon request and are included in the Sup-
plemental_Zip_File_1.zip.

4.6. Protein structure networks

Connectivity within sets of LRH-1 crystal structures were evaluated
using protein structure networks (PSN) generated using RING 3.0 [76].
Identical parameters were selected for all 18 structures (PDB: 6OQX,
6VC2, 6OR1, 6OQY, 5UNJ, 5SYZ, 5L11, 4RWV, 4PLE, 4PLD, 4ONI,
4DOR, 4DOS, 3TX7, 3PLZ, 1ZDU, 1YUC, 1YOK), using a relaxed model
that returns one edge between two amino acid nodes. Protein structure
networks in RING were set to include the closest nodes using relaxed
distance thresholds, a single edge, with water molecules excluded and
distance parameters set to 5.5 Å for hydrogen bonds, 5 Å for ionic in-
teractions, 0.8 Å for Van der Waals, 7 Å for π-π stacking, 7 Å for π-cation
interactions and 3 Å for disulfide bonds. Protein structure networks
were generated using edge files by creating an adjacency list from Nodes
a and b, each representing the two structures being pairwise compared
(a,b), and the edges mapped between the C-alpha atom coordinates from
each PDB file. The network edges were imposed on protein structures for
visualization by mapping pseudo bond structures in UCSF ChimeraX
[82], the NetworkX Python package was used to generate the graph
objects [76,82].

4.7. Eigenvector centrality and principal components analysis

Protein structure networks generated by RING 3.0 [76] were used in
eigenvector centrality (EC) analysis using python library NetworkX to
yield an EC value for each amino acid node in the network for 18 LRH-1
crystal structures from the PDB (PDB: 6OQX, 6VC2, 6OR1, 6OQY, 5UNJ,
5SYZ, 5L11, 4RWV, 4PLE, 4PLD, 4ONI, 4DOR, 4DOS, 3TX7, 3PLZ,
1ZDU, 1YUC, 1YOK), the same 18 crystal structures used throughout
this study. EC values are reported in Supplemental Spreadsheet 5. EC
values at amino acid nodes were averaged within the standard second-
ary structural elements of the LRH-1 LBD, each element assigned a label
according to the standard 12-helix ligand binding domain as Helix 1
(300− 310), Helix 2(314− 330), Loop 2(331− 339), Helix 3(340− 362),
Helix 4(365− 369), Helix 5(370− 397), Loop 4(398− 401), Helix 6
(413− 418), Helix 7(421− 442), Helix 8(444− 457), Loop 8(458− 465),
Helix 9(466− 489), Loop 9(490− 493), Helix 10(494− 501), Helix 11
(502− 523), Loop 10(524− 529), and Helix 12(530− 538). For each of
these 17 secondary structural elements, the EC values of all amino acid
nodes in the element were averaged, averaged EC values for each sec-
ondary structural element in LRH-1 were used as 17 features for prin-
cipal component analyses. PCA used 1000 simulations, executed in
GraphPad Prism (Version 10.0.0). Eigenvector centrality (EC) is a metric
of how strongly the centrality score of a node in a network is influenced
by its connections to other central nodes. The largest eigenvalue of the
adjacency matrix scales the magnitude of the associated eigenvector and

satisfies the equation Av= λv, where A is the network adjacency matrix
and λ is the largest eigenvalue of the adjacency matrix. This implies that
for a network of size j, the eigenvector value for a given vertex vi is such
that vi = λ-1

∑
jAij vj. In other words, the eigenvector value vi is the sum

of the eigenvector values of its first-degree neighbors scaled by the
largest eigenvalue.

4.8. Identifying unique network edges

To identify edges unique to each cluster in the principal component
analysis, all unique edges for structures with high ΔΔG values were
grouped together in Excel (PDB: 3PLX, 4IS8, 4PLD, 5I11, 5SYZ, 5UNJ,
6OQX, 6OQY, 6OR1, 6VC2) and all unique edges for structures with low
ΔΔG values grouped together (PDB: 1YOK, 1YUC, 1ZDU, 3TX7, 4DOR,
4DOS, 4ONI, 4PLE, 4RWV). Common edges between the two groups
were identified and removed in Excel, edges outside the intersection for
each cluster were mapped onto PDB:6OQX by mapping pseudo bond
structures using UCSF ChimeraX [82].
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