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Abstract: Diketopyrrolo[3,4-c]pyrroles (DPP) are high-performance organic optoelectronic materials.
They have applications in solar cells, fluorescent probes, bioimaging, photodynamic/photothermal
therapy, and in many other areas. This article reports a convenient two-step synthesis of var-
ious DPP dyes from Pigment Red 254, an inexpensive commercial pigment. The synthesis in-
cludes a Suzuki–Miyaura cross-coupling reaction of a bis(4-chlorophenyl)DPP derivative with aryl
and hetaryl boronic acids under mild reaction conditions. The new dyes show large Stokes shifts
and high fluorescence quantum yields, important features for their potential use in technical and
biological applications.
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1. Introduction

3,6-Diaryl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-diones (also known as diketopyrrolopy-
rroles, DPP) are a class of brilliant and strongly fluorescent pigments and dyes. These
high-performance compounds gained wide attention in recent years due their outstanding
properties, namely large extinction coefficients, high fluorescent quantum yields, and envi-
ronment and heat stability, which make them excellent candidates for a range of technical
and biological applications [1]. In fact, DPP derivatives have applications in materials
technology, from paint pigments to dye-sensitized solar cells (DSSC) [2–6], organic solar
cells [7–13], organic electronics [14–17], fluorescent probes [18–23], materials for lithium-
ion batteries [24], for ionic charge storage [25], or for the removal of micropollutants
from water [26], etc. Besides that, the studies concerning their potential use in biologi-
cal applications, namely as antibacterial agents [27–29], in photodynamic/photothermal
therapy [30–38], or bioimaging/theranostics [39–43], have increased in recent years.

The DPP bicyclic system is usually generated from the reaction of aryl nitriles with
diethyl (or diisopropyl) succinate in the presence of a strong base, and frequently the
expected symmetrical DPP derivatives are obtained in low to moderate yields [44]. Other
approaches, developed for the synthesis of non-symmetrical DPP derivatives, require
precursors not easily available or long synthetic routes [1,45–47]. An attractive approach to
new DPPs involves the modification of adequately functionalized DPP derivatives. The
Suzuki–Miyaura, Stille, Sonogashira, and Heck coupling reactions using bromophenyl, bro-
mothienyl, and bromofuryl DPP derivatives have been extensively used for the preparation
of small DPP molecules and polymeric DPP-based materials [16,17,26,48–53]. Although
these are very versatile and efficient reactions, again, the required brominated derivatives
are expensive or not easily accessible. In this paper we report a simple procedure for the
synthesis of DPP derivatives bearing functional groups adequate for further transforma-
tions starting from an inexpensive commercial DPP pigment.
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2. Results and Discussion
2.1. Design and Synthesis

Pigment Red 254 (also known as Ferrari red) is an inexpensive commercial DPP
pigment. However, it has scarcely been used as precursor to other DPP derivatives and
the reported transformations are mainly N-alkylations [54–57]. Although it contains two
4-chlorophenyl groups that can be used to get access to other DPP derivatives by direct
substitution of the chlorine atoms, this approach has been rarely used [28,58–60]. Here we
report that this pigment can be successfully converted into other DPP derivatives, with
adequate functional groups for further transformations, by Suzuki–Miyaura cross-coupling
reaction with aryl and hetaryl boronic acids. This method is an excellent alternative to
the previously reported one that requires the synthesis of the corresponding diboronate
followed by reaction with iodoarenes, with both steps requiring Pd catalysis [28,60]. This
new route involves only one Pd catalyzed step, requires mild conditions, and provides the
new compounds in higher yields.

The synthetic procedures to obtain the DPP derivatives are summarized in
Scheme 1. The first step involved the N,N’-dialkylation of Pigment Red 254 with 1-
iodopentane as previously reported [28]. This step is essential to convert the pigment
(insoluble) into a dye (soluble), thus facilitating the following reactions and the purifica-
tion process of the resulting products. Dye 1, which is soluble in most common organic
solvents, was then used in Suzuki–Miyaura cross-coupling reactions with various boronic
acid derivatives affording dyes 2a–g in moderate to excellent yields (42–96%). This method
is compatible with the presence of a diversity of functional groups, namely formyl, acetyl,
amino, hydroxy, vinyl, and others not shown here, that may be used for further transforma-
tions as already shown by us [28]. Comparing the yield for compound 2a by the previous
method (42% overall yield from 1) [28] with the one reported here (80% yield), it is evident
that this new approach affords the expected DPP derivatives in much higher yields.

Scheme 1. Synthesis of DPP dyes 2a–g.

2.2. Structural and Photophysical Characterization

The structures of dyes 2a–g were unambiguously established from their 1H and 13C
NMR and mass spectra. Their absorption and emission spectra were also obtained (see
Supplementary Materials). As expected, the 1H NMR spectra of all compounds show the
resonance of the N-CH2 protons as a triplet at ca. 3.8 ppm and the signals of the remaining
protons of pentyl groups between 0.75–1.75 ppm. The signals of the p-substituted phenyl
rings linked to the DPP core appear as AB systems centered at ca. 7.9 ppm, and the signals of
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the protons of the peripheric aryl/hetaryl groups appear at slightly higher fields (between
6.75 and 7.75 ppm). In addition, for compounds 2a, 2b, and 2f, the 1H NMR spectra show
the diagnostic signals corresponding to the formyl and acetyl groups at 10.08, 2.66, and
9.71 ppm, respectively. The 13C NMR spectra of compounds 2a–g are also consistent with
the proposed structures, showing all the expected peaks. The mass spectra of compounds
2a–g show, in all cases, the protonated molecular ion [M + H]+ as the base peak.

The UV–Vis and fluorescence spectra of compounds 2a–g in DMF are shown in
Figure 1 and their photophysical properties are summarized in Table 1. Compared with
DPP 1 (λmax = 476 nm), the λmax for all dyes are bathochromically shifted, with the largest
shift observed for the furan derivative 2f. Stokes shifts for dyes 2 were typically in the range
of 68 and 73 nm, as observed for other 3,6-bis(biphenyl)DPP derivatives [49]. However,
due to the presence of strong electron withdrawing and donating groups, compounds 2a
and 2c show Stokes shifts of 83 and 54 nm, respectively. The fluorescence quantum yield
(ØF) for each dye is also shown in Table 1. Considering those values, dyes 2 can be divided
into two groups: those with electron withdrawing groups or heterocyclic rings (2a, 2b, 2f,
and 2g) have ØF in the range 0.8–0.9, while compounds 2c, 2d, and 2e, bearing electron
donating groups, have ØF near 0.4.

Figure 1. Normalized (A) absorption and (B) fluorescence spectra of 2a–g in DMF.
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Table 1. Spectroscopic data for compounds 2a–g a.

Compound λmax (nm)
Absorption ε (M–1 cm–1)

λmax (nm)
Emission

Stokes Shift
(nm)

ØF
(DMF)

2a [28] 492 22,265 575 83 0.87
2b 493 11,406 566 73 0.90
2c 498 14,107 552 54 0.40
2d 494 11,634 562 68 0.41
2e 493 33,694 563 70 0.39
2f 509 47,254 582 73 0.88
2g 489 35,735 560 71 0.81

a All measurements were obtained in DMF solutions (between 1 × 10−6 M and 5 × 10−5 M) of each compound.

As highlighted in the introduction, the use of DPP derivatives in a large diversity
of applications is being actively studied. In this context, considering the fluorescence
properties displayed by dyes 2, they, or their adequately functionalized derivatives, are
potentially useful compounds as molecular probes for bioimaging/theranostics.

3. Materials and Methods
3.1. Chemicals and Instrumentation

The reagents used in this work were purchased from Merck Life Science (Algés,
Portugal) and were used as received. The solvents were used as received or distilled and
dried by standard procedures. Analytical thin-layer chromatography (TLC) was carried
out on precoated sheets with silica gel (Merck 60, 0.2 mm thick). Preparative thin-layer
chromatography was carried out on 20 cm × 20 cm glass plates precoated with a layer
of silica gel 60 (0.5 mm thick) and activated in an oven at 100 ◦C for 12 h. 1H and 13C
NMR spectra were recorded on a Bruker Avance 300 or Bruker Avance 500. CDCl3 was
used as a solvent and tetramethylsilane (TMS) as an internal reference. The chemical
shifts are expressed in δ (ppm) and the coupling constants (J) in hertz (Hz). UV–Vis
spectra were recorded on a Shimadzu UV-2501PC spectrophotometer using DMF as the
solvent. The emission spectra were recorded with a Jasco FP-8300 spectrofluorometer using
DMF as the solvent. Mass spectra were recorded using a Micromass Q-TOF-2TM mass
spectrometer and CHCl3 as the solvent. Fluorescence quantum yields (ØF) were calculated
using fluorescein as a reference (ØF = 0.55 in DMF) [61]. Melting points were determined
with a Büchi B-540 apparatus.

3.2. Synthesis
General Procedure for the Suzuki–Miyaura Cross-Coupling Reactions

To a suspension of K3PO4 (4 equiv.) in degassed THF (20.0 mL), DPP 1 (80 mg,
0.161 mmol), the corresponding boronic acid (0.644 mmol, 4 equiv.) and catalytic amounts of
Pd2(Pdba)3 (5 mol%) and SPhos (10 mol%) were added. The resulting mixture was refluxed
overnight under a nitrogen atmosphere. It was then cooled down to room temperature
and the solvent was removed under reduced pressure. The products were purified by
preparative TLC using mixtures of dichloromethane/hexane or ethyl acetate/hexane
as eluents. For the synthesis of 2d, Pd(OAc)2 was used as a catalyst and butan-1-ol as
a solvent.

4′,4′′′-(3,6-Dioxo-2,5-dipentyl-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis([1,1′

-biphenyl]-4-carbaldehyde) (2a): 82 mg, 80% yield; mp: 177.4–179.2 ◦C; 1H NMR (300 Hz,
CDCl3) δ (ppm), 10.08 (s, 2H), 8.01–7.94 (m, 8H), 7.83–7.79 (m, 8H), 3.81 (t, J = 7.6 Hz, 4H),
1.70–1.62 (m, 4H), 1.28–1.22 (m, 8H), 0.83 (t, J = 6.7 Hz, 6H); 13C NMR (CDCl3, 75 MHz) δ
(ppm) 191.8, 162.8, 147.9, 145.8, 142.3, 135.8, 130.5, 129.4, 128.2, 127.9, 127.8, 110.2, 42.1, 29.3,
28.9, 22.2, 13.9; MS (ESI+) m/z: 637.4 ([M + H]+, 100%).

3,6-Bis(4′-acetyl-[1,1′-biphenyl]-4-yl)-2,5-dipentyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione
(2b): 82 mg, 77% yield; mp: 279.8–280.4 ◦C; 1H NMR (CDCl3, 300 MHz), δ (ppm): 8.08 (d, J
= 8 Hz, 4H), 7.97 (d, J = 9 Hz, 4H), 7.83–7.75 (m, 8H) 3.82 (t, J = 7.5 Hz, 4H), 2.66 (s, 6H),
1.69–1.64 (m, 4H), 1.30–1.25 (m, 8H), 0.85 (t, J = 7 Hz, 6H); 13C NMR (CDCl3, 75 MHz) δ
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(ppm) 197.7, 162.8, 147.9, 144.4, 142.5, 136.5, 129.1, 129.0, 127.9, 127.5, 110.2, 42.1, 29.3, 28.9,
26.8, 22.2, 13.9; MS (ESI+) m/z: 665.6 ([M + H]+, 100%).

3,6-Bis(3′-amino-[1,1′-biphenyl]-4-yl)-2,5-dipentyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione
(2c): 41 mg, 42% yield; mp: 233.5–235.1 ◦C; 1H NMR (CDCl3, 300 MHz), δ (ppm):
7.90 (d, J = 8.6 Hz, 4H), 7.72 (d, J = 8.6 Hz, 4H), 7.26 (t, J = 8 Hz, 2H), 7.04 (ddd, J = 8, 2 and
1 Hz, 2H), 6.95 (t, J = 2 Hz, 2H), 6.72 (ddd, J = 8, 2, and 1 Hz, 2H), 3.80 (t, J = 7.5 Hz, 4H),
1.70–1.63 (m, 4H), 1.29–1.24 (m, 8H), 0.83 (t, J = 7.0 Hz, 6H); 13C NMR (CDCl3 + (CD3)2CO,
75 MHz), δ (ppm): 162.6, 149.4, 141.1, 130.2, 129.7, 127.5, 116.2, 115.1, 113.4, 41.8, 29.3, 29.1,
22.3, 13.8; MS (ESI+) m/z: 611.4 ([M + H]+, 100%).

3,6-Bis(4′-hydroxy-[1,1′-biphenyl]-4-yl)-2,5-dipentyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-
dione (2d): (61 mg, 62% yield); mp: 316.7–317.2 ◦C (crystalized from CH2Cl2/MeOH);
1H NMR (DMSO, 300 MHz), δ (ppm): 9.81 (s, 2H), 7.92 (d, J = 8.5 Hz, 4H), 7.83 (d, J = 8.5
Hz, 4H), 7.65 (d, J = 8.6 Hz, 4H), 6.9 (d, J = 8.6 Hz, 2H), 3.77 (t, J = 7.5 Hz, 4H), 1.51–1.43 (m,
4H), 1.20–1.13 (m, 8H), 0.78 (t, J = 7 Hz, 6H); 13C NMR (DMSO, 75 MHz), δ (ppm): 162.1,
158.5, 147.9, 143.1, 129.9, 129.7, 128.5, 126.5, 126.1, 116.4, 109.1, 41.4, 28.8, 28.7, 21.9, 14.2; MS
(ESI+) m/z: 643.5 ([M + H]+, 100%).

2,5-Dipentyl-3,6-bis(4′-vinyl-[1,1′-biphenyl]-4-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione
(2e): 98 mg, 96% yield; mp: 233.4–235.1 ◦C; 1H NMR (CDCl3, 300 MHz), δ (ppm): 7.93 (d,
J = 9 Hz, 4H), 7.78 (d, J = 9 Hz, 4H), 7.64 (d, J = 9 Hz, 4H), 7.53 (d, J = 9 Hz, 4H), 6.83–6.73
(m, 2H), 5.83 (d, J = 12 Hz, 2H), 5.32 (d, J = 12 Hz, 2H), 3.82 (t, J = 7.5 Hz, 4H), 1.72–1.63 (m,
4H), 1.31–1.25 (m, 8H), 0.85 (t, J = 7 Hz, 6H); 13C NMR (CDCl3, 75 MHz), δ (ppm): 162.9,
148.1, 143.2, 139.3, 137.4, 136.3, 129.3, 127.3, 127.1, 126.9, 114.5, 109.9, 42.1, 29.3, 28.9, 22.2,
13.9; MS (ESI+) m/z: 633.6 ([M + H]+, 100%).

5,5′-((3,6-Dioxo-2,5-dipentyl-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis(4,1-
phenylene))bis(furan-2-carbaldehyde) (2f): 63 mg, 63% yield; mp: 233.4–235.1 ◦C. 1H
NMR (CDCl3, 300 MHz), δ (ppm): 9.71 (s, 2H), 8.0 (d, J = 9 Hz, 4H), 7.95 (d, J = 9 Hz, 4H),
7.36 (d, J = 3 Hz, 2H), 6.98 (d, J = 6 Hz, 2H), 3.79 (t, J = 7.5 Hz, 4H), 1.66–1.61 (m, 4H),
1.28–1.24 (m, 8H), 0.85 (t, J = 6.9 Hz, 6H); 13C NMR (CDCl3, 75 MHz), δ (ppm): 177.5, 162.6,
158.0, 152.5, 147.6, 141.2, 131.2, 129.3, 128.9, 125.6, 109.3, 42.2, 29.7, 28.9, 22.2, 13.9; MS (ESI+)
m/z: 617.5 ([M + H]+, 100%).

2,5-Dipentyl-3,6-bis(4-(thiophen-2-yl)phenyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (2g):
70 mg, 73% yield; mp: 170.3–172.1 ◦C. 1H NMR (CDCl3, 300 MHz), δ (ppm): 7.90 (d,
J = 9 Hz, 4H), 7.77 (d, J = 9 Hz, 4H), 7.58–7.60 (m, 2H), 7.47–7.42 (m, 4H), 3.81 (t, J = 7.5 Hz,
4H), 1.69–1.61 (m, 4H), 1.30–1.24 (m, 8H), 0.85 (t, J = 7.5 Hz, 6H); 13C NMR (CDCl3,
75 MHz), δ (ppm): 162.9, 147.9, 141.3, 138.4, 137.2, 129.9, 126.8, 126.1, 121.8, 109.9, 42.1, 29.3,
28.9, 22.2, 13.9; MS (ESI+) m/z: 593.4 ([M + H]+, 100%).

4. Conclusions

Pigment Red 254 was used as starting material to prepare, in two steps only, adequately
functionalized DPP derivatives. The resulting compounds bear a range of functional groups
that may be used for further transformations, namely for the introduction of functional units
with specific physical/electronic properties or biological functions. The seven compounds
reported here show large Stokes shifts and high fluorescence quantum yields, important
features for their potential application in various fields.

Supplementary Materials: The following are available online: 1H and 13C NMR spectra, and
absorption and emission spectra.
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