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The lens is an avascular organ. It has a layer of epithe-
lial cells (ECs), an outer cortical zone of differentiating 
fiber cells (DF), and a central zone of mature fibers (MF), 
where a wide range of membrane proteins are cleaved and 
organelles are degraded. About 15% of the distance into the 
lens is the transition zone of DF to MF. A microcirculation 
involving aquaporin (AQP) water channels (AQP0, AQP1, 
and AQP5), gap junction (GJ) channels (Connexin [Cx] 43, 
46, and 50), and ion channels helps to nourish the lens and 
dispose of metabolic waste [1-5]. GJ channels constituted 
by Cx membrane proteins form cell–cell aqueous pores that 
allow the cell-to-cell passage of water, ions, metabolites, and 
second messengers [6,7]. Cx43 and Cx50 are present in the 
lens epithelial cells, whereas Cx46 and Cx50 are expressed 
in the fiber cells [8,9]. Microcirculation is a key physiological 
process in lens homeostasis.

Active oxidative metabolism occurs in the epithelial cells 
and the outer cortical region of the lens [10]. Since there is 
no intracellular protein turnover or replacement of lens cells, 
with age progression, the lens nucleus becomes vulnerable to 
oxidation by reactive oxygen species (ROS) and cataractogen-
esis [11-13]. Oxidative stress causes lens protein methionine 
oxidation, glycation, loss of sulfhydryl groups, thiolation, 
cross-linkage by non-disulfide bonds, and the formation of 
high molecular weight insoluble aggregates, all of which 
ultimately lead to cataract formation [14,15]. H2O2 is a major 
ROS that contributes to cataracts [16]. In the lens, it is mainly 
produced in the mitochondria and endoplasmic reticulum of 
ECs and DFs. H2O2 also passes from the aqueous and vitreous 
humors into peripheral lens cells [17-19]. It plays a paradoxical 
dual role. Under normal physiological conditions, low-level 
H2O2-induced redox signaling is needed for maintaining and 
modulating homeostatic functions. Supraphysiological levels 
cause oxidative distress in cells and evoke mechanisms of the 
inflammatory response, growth loss, and apoptosis [20,21]. 
The lipid phase of the membrane has a relatively low perme-
ability for H2O2 or H2O. Cells express AQPs to facilitate faster 
transmembrane diffusion of both [22-24].
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Purpose: Glutathione peroxidase 1 (GPX1) and catalase are expressed in the lens epithelial cells and cortical fiber cells, 
where they detoxify H2O2 to reduce oxidative stress, which is a major cause for cataractogenesis. We sought to find 
out, between these two enzymes, which is critical for transparency and homeostasis in the aging lens by investigating 
alterations in the lens’s refractive property, transparency, and gap junction coupling (GJC) resistance.
Methods: Wild-type (C57BL/6J), GPX1 knockout (GPX1−/−) and catalase knockout (CAT−/−) mice were used. Lens trans-
parency was quantified using dark-field images and ImageJ software. For optical aberration evaluation, each lens was 
placed over a copper electron microscopy specimen grid; the grid image was captured through the lens using a digital 
camera attached to a dark-field binocular microscope. Optical aberrations were assessed by the quality of the magnified 
gridlines. Microelectrode-based intact lens intracellular impedance was measured to determine GJC resistance.
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similar areas of age-matched CAT−/−  and WT lenses.
Conclusions: Changes in the refractive and physiological properties of the lens occurred before cataract formation in 
GPX1−/−  lenses but not in CAT−/−  lenses. GPX1 is more critical than catalase for lens transparency, optical quality, and 
homeostasis in the aging lens under normal physiological conditions. GPX1 could be a promising therapeutic target for 
developing potential strategies to reduce adverse oxidative stress and delay/treat/prevent age-related cataracts.
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Normally, the lens compensates for mild oxidant stress 
by increasing reduced Glutathione (GSH) and activating 
antioxidant enzymes such as superoxide dismutase (SOD), 
peroxiredoxins, catalase, and GPX1 [25-29]. Antioxidant 
enzyme activity decreases with age [30], leading to increased 
H2O2 levels in the lens cells. GPX1 is ubiquitously expressed 
in the cytosol and the mitochondrial matrix. It oxidizes GSH 
and reduces H2O2 to H2O. Catalase is localized in the peroxi-
somes of mammalian cells and helps to eliminate H2O2pro-
duced during fatty acid oxidation; it reduces two H2O2 to 
two H2O plus O2. High production of ROS during aging or 
a significant decrease in the ROS scavenging ability of the 
lens cause adverse oxidative stress and lead to cataracts [31]. 
H2O2 concentration in the aqueous humor is typically about 
0.03–0.07 mM; higher levels are seen in certain cataract 
patients [17,32].

Oxidative damage leads to reductions in lens GJ chan-
nels and compromise of the lens microcirculation [33-35], 
which are major factors in the homeostasis of the intracellular 
milieu. The purpose of the current study was to determine 
whether GPX1 and catalase antioxidant enzymes are equally 
relevant to homeostasis in the aging lens and whether there 
are detectable changes in the lens and gap junction coupling 
(GJC) due to the loss of GPX1 or catalase before cataract 
formation. We tested the lenses of GPX1 knockout (GPX1−/−) 
and catalase knockout (CAT−/−) mouse models at appropriate 
ages for optical aberrations, transparency, and GJC to eval-
uate the impact of the individual loss of these antioxidant 
enzymes on lens homeostasis and cataractogenesis.

METHODS

Animals: Wild-type (WT) C57BL/6J (C57; Jackson Labora-
tories, Bar Harbor, ME), GPX1−/− [36,37] and CAT−/−  [38] 
mice were used. Knockouts and controls were bred back for 
15–20 generations to bring them to C57BL/6J background. 
Animal procedures were performed according to the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision 
Research, the National Institutes of Health’s “Guide for the 
Care and Use of Laboratory Animals” (Bethesda, MD), and 
protocols approved by the Stony Brook University Animal 
Care and Use Committee.

Evaluation of lens transparency and aberration: Eight 
lenses from each mouse model were used for the study. Lens 
transparency was assessed as previously described [39,40]. In 
short, lenses of WT, GPX1−/−, and CAT−/−  mice were dissected 
out and kept in prewarmed (37 °C) mammalian physiological 
saline and imaged under the same magnification and lighting 
conditions; a Zeiss dark-field binocular microscope equipped 
with an Olympus digital camera was used for imaging. From 

the lens images, the transparency was quantified using the 
pixel brightness intensity (SigmaScan Pro 5.0 and SigmaPlot 
10 software programs). The higher the pixel brightness inten-
sity is, the lower the transparency becomes. Pixel brightness 
intensity data were translated into percentage transparency 
and shown as bar diagrams using an arbitrary unit. Qualita-
tive evaluation of aberrations in the lens was done using the 
dark-field optical grid focusing technique [40]. Each lens was 
placed on a copper electron microscope specimen grid with 
the anterior side facing the grid and imaged. The quality of 
the focused grid lines was used to assess light scatter and 
aberrations due to alterations in the refractive index gradient.

Lens impedance measurement: Lenses (12 months old) 
were dissected out from WT, GPX1−/−, and CAT−/−  mice and 
mounted as previously described [33,41-43]. For the study, 
six lenses were used for each mouse model. Impedance is 
a measure of GJC resistance. For impedance measurement, 
each lens was mounted in the perfusion chamber that was 
attached to a microscope stage and perfused with normal 
Tyrode’s solution. Microelectrodes filled with 3M KCl with 
initial resistances of 1.5 to 2 MΩ [44] were used for GJC 
resistance measurements. A wide-band stochastic current 
was injected into a microelectrode that was inserted into a 
central fiber cell. At a distance r (cm) from the center of a 
lens of radius a (cm), another microelectrode was inserted 
into a peripheral fiber cell to record the induced voltage. 
Using a fast Fourier analyzer (Hewlett Packard, Palo Alto, 
CA), the frequency domain impedance (induced voltage ÷ 
injected current) of the lens was recorded in real time. At high 
frequencies, the magnitude of the lens impedance asymptoti-
cally approaches to the series resistance (Rs). Rs(KΩ) is the 
resistance of all GJs between the point of voltage recording 
and the surface of the lens. It was measured at multiple depths 
into the lenses of WT, GPX1−/−, and CAT−/−  mice.

Statistical analysis: The Student t test using SigmaPlot 10 
software (SPSS Inc., Chicago, IL) was used to assess signifi-
cance. Error bars represent standard deviations. P values 
<0.05 were considered significant.

RESULTS

Lens optical aberrations and transparency: Two-month-
old lenses from WT, GPX1−/−, and CAT−/−  were tested for 
optical quality. Dark-field images are shown in Figure 1A 
(upper panel). The same lenses were photographed over 
a metal grid to assess the quality of the focused grid lines 
(Figure 1A, lower panel). There was no significant light 
scattering; all three lenses of different genotypes magnified 
the grid lines with a positive barrel distortion aberration, 
which is typical of a wild-type young lens. In this type of 
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aberration, the straight lines bend outward from the image 
center due to the spherical nature of the lens. Quantification 
representation by bar graphs (Figure 1B) shows that there 
was no statistically significant difference in lens transparency 
among the three genotypes (p>0.05) at two months of age. 
Twelve-month-old GPX1−/−  and CAT−/−  mouse lenses were 
tested for transparency and focusing ability and compared 
with age-matched WT lenses to determine which of these two 
enzymes is critical for protecting the lens from developing 
age-related optical aberrations, opacity, and cataract. There 
was increased light scattering and abnormal optical distortion 
aberration in GPX1−/−  lenses (as revealed by the distorted 
grid lines), but not in CAT−/− lenses when compared to the 
WT (Figure 2A ; compare lower panel copper grid-focusing 
images). The quantification of lens transparency shown 
in Figure 2A revealed a statistically significant (p<0.05) 
increase in opacity in GPX1−/−  lenses compared to the WT 
lenses; the values for the CAT−/−  lenses were similar to those 
for the WT (Figure 2B).

A more thorough analysis of the GPX1−/−  lens showed 
three zones (Figure 2C) of aberration; Zone I in the cortex 
showed a barrel distortion aberration (positive radial distor-
tion) as in the WT lenses (Figure 2C). Zone II at the nuclear 
area showed an abnormal barrel distortion as evident from 
the highly distorted grid lines, compared to the matching 

area of the WT. The lenses exhibited a tendency toward 
transitioning to a pincushion distortion aberration (negative 
radial distortion) in the nuclear region. A new area, Zone III, 
was established between Zones I and II at the cortico-nuclear 
junction with a greater barrel distortion aberration than that 
of cortical Zone I.

We studied the changes in lens refractive properties and 
opacity from 9 to 24 months. Representative lens images at 
9, 12, 16, and 24 months are shown in Figure 3A . Abnormal 
distortion aberration began at 9 months of age in the 
GPX1−/−  lenses. At 12 months of age, the area corresponding 
to Zone II (see Figure 2C for the zones) of the lens nucleus 
showed increased abnormal aberrations compared to the 
corresponding zone of the 9-month-old GPX1−/−  lenses. The 
abnormal aberration zones progressively increased in size as 
the lenses aged (compare Figure 3A, 12 - and 16-month-old 
GPX1−/−  lenses) and developed into mature cataracts (Figure 
3A, 24 -month-old lens), occupying almost the entire lens 
area in GPX1−/−  in comparison to age-matched WT lenses. 
Like the 12-month-old lenses of CAT−/−  (Figure 2A), the 
24-month-old lenses were comparable only to those of the 
WT (data not shown). The quantification of lens transparency 
showed statistically significant (p<0.001) early onset and 
rapid progression in the severity of cataracts in the GPX1−/−  
lenses (Figure 3B) compared to the WT.

Figure 1. Lens transparency evaluation and quantification. A: Comparison of lens transparency in 2-month-old WT, GPX1−/−, and CAT−/−  
mice. The lower panel shows the focusing of a metal grid by the lenses. B: Quantification of pixel brightness intensity to assess transparency 
in WT, GPX1−/−, and CAT−/−  mouse lenses. The higher the pixel brightness intensity is, the lower the lens transparency. There is no statisti-
cally significant difference in transparency in the lenses of the GPX1−/−  and CAT−/−  mice compared to the WT lenses. Eight lenses were 
used for each mouse model. Error bars represent standard deviations.<Fig_Large></Fig_Large>
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Figure 2. Knockout of GPX1, not 
catalase, causes alterations in lens 
transparency and refractive proper-
ties. A: Comparison of lens trans-
parency and grid focusing ability 
of 12-month-old lenses of WT, 
GPX1−/−  and CAT−/−  mice. GPX1−/−  
mouse lenses showed considerable 
loss of transparency compared to 
WT and CAT−/−  (Upper Panel). Of 
note is the abnormal optical distor-
tion aberration with the formation 
of three zones in the GPX1−/−  lens 
in contrast to the CAT−/− lens, which 
resembles the WT lens (Lower 
Panel). There is no significant 
difference in 12-month-old WT, 
GPX1−/−  and CAT−/−  lens diam-
eters (2 mm). B: Quantification of 
pixel brightness intensity to assess 
lens transparency. The higher 
the pixel brightness intensity, the 
lower would be the lens transpar-
ency. Loss of lens transparency is 
statistically significant in (p<0.001) 
GPX1−/−  and not in CAT−/−  (p>0.05) 
compared to the WT. C: Dark-
field image, grid focusing and 
schematics (not drawn to scale) 
of the three-zone formation in 
GPX1−/−  (12- month-old lenses; 
lens diameter 2 mm). Eight lenses 
were used for each mouse model. 
Error bars represent standard 
deviations.<Fig_Med></Fig_Med>
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Impedance (GJC resistance): We investigated the status 
of intracellular homeostasis by examining 12-month-old 
WT, GPX1−/−, and CAT−/−  mouse lenses for GJC resistance 
(Figure 4), which is a major component of the microcircu-
latory system. The higher the resistance is, the lower the 
GJC becomes. Twelve-month-old GPX1−/−  lenses showed 
decreased GJC (p<0.001) compared to age-matched WT; 
however, 12-month-old CAT−/−  lenses showed no statistically 
significant changes in GJC compared to WT lenses (Figure 
4). Table 1 compares the coupling conductance values per unit 
area of cell-to-cell contact for specific regions in the lens in 
WT and GPX1−/−  or in WT and CAT−/−. DF and MF zones 

showed a statistically significant loss of GJC (p<0.001) in 
GPX1−/−  but not in CAT−/−  compared to the matching zones 
in WT.

DISCUSSION

Although GPX1 and catalase in mouse lenses have been 
studied by several investigators [37,45-48], the impact of 
these enzymes on lens microcirculation, and whether they 
play comparable roles in the prevention of age-related cata-
racts, is largely unknown. Several GPX antioxidant enzymes 
are present in mammalian cells. Ex vivo studies show that 

Figure 3. Lens transparency as 
a function of age. A: Dark-field 
images comparing lens transpar-
ency in WT and GPX1−/−  mice at 
9, 12, 16 and 24 months (M) of 
age. Lens refractive alterations 
as aberrations started around 9 
months of age and continued. As 
age progressed, loss of lens trans-
parency increased and manifested 
as mature cataracts in GPX1−/−, 
signifying the role of GPX1 for 
lens transparency. The increase 
in the loss of lens transparency is 
statistically significant compared to 
the age-related loss of lens transpar-
ency in the WT type. B: Quantifi-
cation of pixel brightness intensity 
to assess lens t ransparency. 
The higher the pixel brightness 
intensity, the lower would be the 
lens transparency. At each point, 
GPX1−/−  mouse lenses showed a 
significant (p<0.01) increase in the 
severity of cataracts compared to 
WT lenses. Eight lenses were used 
for each mouse model. Error bars 
represent standard deviations.
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GPX1 and catalase together contribute to only a small frac-
tion of the H2O2 degradation; GSH contributes significantly 
higher levels of non-enzymatic H2O2 degradation [46]. In 
the current study, we tested the role of GPX1 and catalase in 
age-related cataractogenesis under normal aging conditions. 
GPX1−/−  mouse lenses at two months of age did not develop 
cataracts; however, older GPX1−/−  lenses, not CAT−/−  lenses, 
developed age-related cataracts faster than the WT lenses.

Contradictory reports exist regarding the development of 
cataracts in GPX1−/−  mice. Previous investigations on both 
GPX1−/−  [47] and CAT−/−  [38] used young mice of about eight-
to-ten-weeks old and did not find any lens abnormalities; older 

GPX1−/−  (age: 15 months [37]; 26 months [49]) developed 
mature lens cataracts. In our previous study, two-month-old 
GPX1−/−  mice did not show significant differences in lens 
transparency, size, resting voltage, membrane conductance, 
or fiber cell membrane water permeability compared to 
those of age-matched WT; however, GPX1−/−  lenses showed 
a significant reduction in GJC and the normal circulation of 
Ca2+ and Na+ [33]. We assume this phenomenon continues 
as age progresses, manifesting as cataracts at later stages, 
as we observed in the current study. An important finding 
of the present investigation was the recording of the pres-
ence of abnormal optical aberrations as a prelude to cataract 

Figure 4. Impedance analyses of 
WT, GPX1−/−, and CAT−/−  lenses. 
Twelve-month-old GPX1−/−  lenses, 
not CAT−/−  lenses, showed a 
significant decrease in GJC. Series 
resistance (Rs) of lenses from WT 
(n=6) GPX1−/−  (n=6), and CAT−/−  
(n=6) mice as a function of distance 
from lens center (r/a), where r (cm) 
is actual distance and a (cm) is 
lens radius. The higher the Rs is, 
the lower the GJC conductance. 
Lenses of GPX1−/−  mice showed a 
significant (p<0.001) increase in Rs; 
hence, the decrease in conductance 
in both DF and MF was comparable 
to the resistance in similar areas in 
WT. DF: differentiating fiber cells; 
MF: mature fibers.

Table 1. Twelve-month-old wild-type, GPX1−/−  and CAT−/−  lens fiber cell 
gap junction coupling conductances. regional values of resistivity and 

normalized coupling conductance of WT, GPX1−/−  AND CAT−/−.

Genotype Zone Ri, KΩ-cm Gi, S/cm2 Gi(WT)/Gi(KO)
Wild Type DF 10.3 0.32 -
Wild Type MF 13 0.26 -
GPX1−/− DF 14.3 0.23 1.4*
GPX1−/− MF 37.6 0.09 2.9*
CAT−/− DF 9.6 0.35 0.9
CAT−/− MF 15.4 0.22 1.2

Ri, resistivity; Gi, conductance; DF, differentiating fiber cells; MF, mature fibers; WT, wild-type. (* 
p<0.05).
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development in GPX1−/−  lenses. Optical aberrations began 
around nine months of age and progressed to form different 
zones (Figure 2A, Figure 3A). Although the development of 
cataracts by GPX1−/−  lenses has been reported by several 
investigators, the current study is the first to observe and 
record the presence of abnormal optical distortion aberrations 
that appear as a prelude to cataract formation.

When examined with a slit lamp, Reddy et al. [37] found 
that the GPX1−/−  lens cortex was normal and only the lens 
nucleus showed light scattering. Ultra-structural examination 
of the lens nucleus using a transmission electron microscope 
showed an age-dependent increase in the distortion of fiber 
membranes and swelling of inter-fiber space at the apex of 
GPX1−/−  fiber cells compared to the matching-areas in the 
WT lenses. Fiber cell membrane distortions were observed as 
early as three weeks in the lens nucleus of GPX1−/−  [37]. The 
abnormal optical distortion aberration and zone formation we 
observed in the GPX1−/−  lenses represent a unique pheno-
type, different from the global light scattering in the nucleus. 
The abnormal optical aberration was observed in the cortex 
around nine months of age in all the mice (54) examined. The 
current study reports a phenotypic change in GPX1−/−  lenses 
with the development of abnormal distortion aberration, zone 
formation, and cataract development compared to the WT. 
GPX1−/−  is a suitable model to study the etiology, progres-
sion, and impacts of age-related cataracts. The occurrence 
of abnormal optical aberrations can be used as a marker 
in drug-treatment studies to determine effective doses for 
preventing cataract formation and for early diagnosis of the 
onset of age-related cataracts in humans.

Antioxidant mechanisms are significantly reduced in 
the lens nucleus, making this area susceptible to oxidative 
damage [50,51]. Oxidative damage due to reactive free radi-
cals and/or H2O2 may be the major factor(s) in age-related 
lens cataract development [17,29,52,53]. The time-dependent 
accumulation of such damage, particularly in central fiber 
cells, could cause severe impairment to lens functions. 
Jara et al. [54] noted that cataract development in a Cx46 
mutant (Cx46fs380) may not be due to the loss of intercel-
lular passage of GSH to the nucleus but possibly due to 
impaired microcirculation. It is reasonable to assume that 
loss of GJC, which occurs more in the MF than in the DF, 
is due to oxidative damage, which accrues with time. The 
loss of homeostasis in GPX1−/−  could be due to reduced GJC 
resulting in a defective microcirculation. We did not find any 
adverse effects due to the loss of catalase even in older lenses 
under normal conditions. Unlike the loss of GPX1, the loss 
of other H2O2 degrading enzymes such as catalase (current 
study) and peroxiredoxins (Prdxs), especially Prdx6 [55,56], 

did not induce lens cataracts, suggesting GPX1 is critical 
to prevent cataractogenesis. Based on the ex vivo studies, 
catalase is more important for the decomposition of H2O2 at 
higher concentrations [46,57]. Giblin et al. [28] reported that 
for low concentrations of H2O2-induced damage, GPX1 is the 
primary source of protection in mammalian cells.

We noticed that the GPX1−/−  lens phenotype and reduc-
tion in GJC were comparable to those in the lenses of a 
transgenic mouse model (AQP0ΔC/ΔC [39,40,58], which 
express only end-cleaved AQP0. Why is this so? Is there 
accelerated C-terminal end-cleavage of AQP0 due to the 
accumulation of H2O2 and functional alteration in GPX1−/−  
lenses? It is important to investigate the mechanistic and 
molecular mechanism(s) involved in causing GPX1−/−  lenses 
to develop abnormal distortion aberrations and lose transpar-
ency, similar to that in AQP0ΔC/ΔC lenses. That is one of our 
future research goals.

Overall, our data suggest that between the two anti-
oxidant enzymes studied, GPX1 is critical for preventing 
age-related lens abnormal optical distortion aberrations and 
cataract development under normal conditions; catalase may 
not play as significant a role as GPX1 protecting the lenses 
from oxidative damage under normal physiological condi-
tions. The appearance of abnormal optical aberrations can be 
used as a morphological marker to assess treatment efficacies 
for early intervention. Our data suggest that GPX1 could be a 
potential therapeutic target to reduce adverse oxidative stress 
and delay/treat/prevent age-related cataracts.
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