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Long noncoding RNA (lncRNA), a type of more than 200 nucleotides non-coding RNA, is
related to various complex diseases. To precisely identify the potential lncRNA–disease
association is important to understand the disease pathogenesis, to develop new drugs,
and to design individualized diagnosis and treatment methods for different human
diseases. Compared with the complexity and high cost of biological experiments,
computational methods can quickly and effectively predict potential lncRNA–disease
associations. Thus, it is a promising avenue to develop computational methods for
lncRNA-disease prediction. However, owing to the low prediction accuracy ofstate of
the art methods, it is vastly challenging to accurately and effectively identify lncRNA-
disease at present. This article proposed an integrated method called LPARP, which is
based on label-propagation algorithm and random projection to address the issue.
Specifically, the label-propagation algorithm is initially used to obtain the estimated
scores of lncRNA–disease associations, and then random projections are used to
accurately predict disease-related lncRNAs.The empirical experiments showed that
LAPRP achieved good prediction on three golddatasets, which is superior to existing
state-of-the-art prediction methods. It can also be used to predict isolated diseases and
new lncRNAs. Case studies of bladder cancer, esophageal squamous-cell carcinoma, and
colorectal cancer further prove the reliability of the method. The proposed LPARP
algorithm can predict the potential lncRNA–disease interactions stably and effectively
with fewer data. LPARP can be used as an effective and reliable tool for biomedical
research.

Keywords: disease similarity, lncRNA similarity, space projection, computational prediction model, label-
propagation algorithm

INTRODUCTION

Long noncoding RNAs (lncRNAs) are more than 200 nucleotides long and lacks protein-coding
RNAs (Peng et al., 2019). Studies have shown that lncRNAs are closely related to biological processes
such as chromatin modification, transcription, translation, splicing, and epigenetic regulation (Wang
and Chang, 2011; Wapinski and Chang, 2011; Song et al., 2014; Sun et al., 2017; Tian et al., 2021;
Peng et al., 2021). The abnormal function of lncRNAs can reportedly lead to abnormal cell behavior,
and lncRNAs are related to the occurrence and development of many human diseases. For example,
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Wang et al. [5] found that lncRNA PVT1 promotes the
progression of melanoma through endogenous sponge cell
miR-26b, and Cai et al. (2018) found that BCAR4 can activate
the GLI2 signaling pathway in prostate cancer. The specific
secondary structure of lncRNAs and its ability to control gene
expression also render it an ideal target for drug development
(Chen ZJ. et al., 2016; Tripathi et al., 2018; Xu et al., 2019). Our
current understanding of the role of lncRNAs in disease is far
from complete, so further understanding the relationship
between lncRNAs and diseases is significant. However,
experimentally identifying the association between lncRNAs
and diseases through biotechnology is expensive and laborious.
Increased attention is being paid to predicting the association
between lncRNAs and diseases by computational prediction
method.

Many researches predicted the associations between
lncRNAs and diseases based on known information about
lncRNA–disease associations, disease–disease similarity
information, and lncRNA–lncRNA similarity information.
Based on the hypothesis that similar diseases may be related
to lncRNAs with similar functions, many researches used
information such as lncRNA–disease association network,
disease-similarity network, and lncRNA similarity network
to realize the association prediction between lncRNAs and
diseases through random-walk algorithm. For example, Sun
et al. (2014) constructed a random-walk model RWRlncD
based on global network, but this method cannot be used to
predict isolated diseases (diseases without any lncRNA
associated with it). Chen X. et al. (2016) proposed an
improved prediction model with restart random-walk
algorithm (RWR), IRWRLDA. Yu et al. constructed a
prediction model based on double random walk (Yu et al.,
2017). Li et al. (2019c) developed an improved local random-
walk prediction model, LRWHLDA. Fan et al. (2019)
combined positive-point mutual information with multiple
heterogeneous information and then implemented RWR to
construct an lncRNA–disease correlation prediction model
IDHI–MIRW, Li et al. (2019b) constructed an lncRNA-
disease-associated prediction model, TCSRWRLD, by using
node information called as target convergence set combined
with random-walk algorithm, but the prediction accuracy of
these methods is not very high.

Chen (2015a) applied KATZ index to lncRNA–disease
association prediction, and this model can infer potential
lncRNAs without known related diseases. Ping et al. (2018)
used known lncRNA–disease associations to construct a binary
network and then predicted the lncRNA–disease association
based on its strict power-law distribution. According to the
path length in the lncRNA–disease heterogeneous network,
Xiao et al. (2018) predicted the probability of lncRNA–disease
association. Liu et al. (2019) constructed a weighted network
based on the resource-allocation strategy of unequal allocation
and unbiased consistency and then applied the label-propagation
algorithm to predict the lncRNA–disease association. However,
the prediction results of these methods may be biased toward
lncRNAs with more known related diseases and diseases with
more known related lncRNAs.

With the rapid development of machine-learning technology,
many researches used machine-learning methods to predict
potential lncRNA–disease associations and miRNA-disease-
associated prediction (Liang et al., 2019). For example, Yu
et al. (2018); Yu et al. (2019) proposed two prediction models
based on the Naïve Bayes classifier to infer potential
lncRNA–disease associations. Guo et al. (2019b) used
autoencoder neural network and Rotating Forest to predict the
associations between lncRNAs and diseases. Liang et al. (2021)
identified cancer subtype by using graph autoencoders. Chen
et al. (2018); Chen X. et al. (2019) predicted miRNA-disease
association by using the decision-tree model. Zhao et al. (2019)
predicted miRNA-disease association by using adaptive boosting.
Chen et al. (2017a) predicted miRNA-disease association by using
support vector machine combined with k-nearest neighbor
method. In this type of machine-learning prediction model,
the main disadvantage is that negative samples are required as
a training set. Given that negative samples are usually difficult to
obtain, their prediction performance is significantly affected.
Many semi-supervised methods are attracting attention. Xuan
Z. et al. (2019). developed a probabilistic matrix-factorization
model based on semi-supervised learning methods to identify
potential associations between lncRNAs and diseases. Laplacian
regularized least squares obtained wide application in the area of
bioinformatics (Shen et al., 2021). By fusing the semantic
similarity and cosine similarity of disease, lncRNA expression
similarity, and cosine similarity. Lan et al. (2020) denoised
lncRNA feature information and disease feature information
with an automatic encoder. They then predicted lncRNA-
disease association by using matrix-decomposition algorithm.
Xie et al. (2019) predicted the association between lncRNAs
and diseases by Laplacian regularized least squares. Chen et al.
(Chen and Yan, 2013) developed a model LRLSLDA that uses
Laplacian regularized least squares to identify the associations
between lncRNAs and diseases. Later, on the basis of LRLSLDA,
Chen et al. (2015) proposed a new lncRNA–disease association
prediction model, LRLSLDA–LNCSIM. Huang et al. (2016) used
the topological feature of a directed acyclic graph of disease-
similarity network to propose another improved model
ILNCSIM. None of these semi-supervised methods require
negative samples to train the model, but the problem of how
to select parameters more reasonably has not been resolved.

In recent years, deep learning has attracted increased attention
from artificial intelligence communities (Lihong et al., 2021; Zhou
et al., 2021a; Lihong et al. (2021) and Zhou et al. (2021b) developed
two deep learning-based models, deep Learning framework with
Dual-net Neural Architecture and multiple-layer deep model based
on gradient boosting decision trees, to predict possible lncRNA-
protein interactions. Xuan et al. proposed a series of lncRNA–disease
association prediction models based on convolutional neural
networks, including CNNLDA (Xuan et al., 2019a), GCNLDA
(Xuan et al., 2019c), CNNDLP (Xuan et al., 2019d), and
LDAPred (Xuan et al., 2019b). Wu et al. (2020) also predicted
the potential association between lncRNA and disease by using a
graph-convolutional network. Lan et al. (2021) denoised
heterogeneous data through principal component analysis. They
then extracted features by graph-attention network, ultimately
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predicting the potential association between lncRNA and disease by
usingmultilayer perceptron. These methods have good performance
in lncRNA–disease association prediction, but the parameters of
these models are relatively difficult to determine.

Various biological information from different sources can help
us understand the relationships between lncRNAs and diseases
more comprehensively (Chen et al., 2017b; Fu et al., 2018) (Peng
et al., 2017). For example, Liu et al. (2014) integrated the human
lncRNA expression profile, human gene-expression profile, and
other data to predict lncRNA–disease association. This method
can achieve lncRNA–disease association prediction without
knowing lncRNA–disease association. Chen Q. et al. (2019)
used support-vector machine (SVM) to implement
lncRNA–disease association prediction by integrating
lncRNA–gene interaction, lncRNA–disease association, and
disease semantic similarity. Lu et al. (2018) integrated known
lncRNA–disease interactions, disease–gene interactions, and
gene–gene interactions and used the inductive matrix-
completion method to identify the associations between
lncRNAs and diseases. Ding et al. (2018) combined
gene–disease and lncRNA–disease association information and
established a lncRNA–disease association prediction model,
TPGLD, based on a lncRNA–disease–gene tripartite network.
Wang Y. et al. (2019) pre-set weights for various association
matrices between genes, lncRNAs, and diseases, decomposed
these matrices into low-rank matrices, and developed a
weighted-matrix decomposition lncRNA–disease association
prediction model WMFLDA. Chen (2015b) predicted
lncRNA–disease association through the integration of
lncRNA–miRNA interaction and miRNA–disease correlation.
Zhang et al. (2019) developed a prediction model based on
DeepWalk through the integration of miRNA–disease,
lncRNA–disease, and miRNA–lncRNA correlation. Zhou et al.
(2015) realized the random-walk algorithm on the heterogeneous
network composed of the known lncRNA–disease-related
network, miRNA-related lncRNA crosstalk network, and
disease-similarity network and proposed a prediction model,
RWRHLD. Wang et al. (2016) used the known
lncRNA–miRNA crosstalk to develop a sequence-based
lncRNA–disease association prediction model, LncDisease.
However, owing to the high false negatives and positives in
the prediction of miRNA–lncRNA interaction, the
performance of LncDisease is limited.

Zhao et al. (2015) integrated genome, transcriptome, and rule
set data and then used the naïve Bayesian classifier to predict the
lncRNA–cancer association. Lan et al. (2016) integrated
information such as lncRNA sequence information,
disease–gene associations, and GO annotations and identified
new lncRNA–disease associations through bagging SVM. Fu et al.
(2018) used different biological data sources of lncRNAs,
miRNAs, genes, disease, and drugs for prediction, decomposed
the correlation matrix into different biological entities, and
reconstructed the lncRNA–disease correlation matrix through
matrix decomposition. However, the method does not deal with
the noise of the original features, so the prediction performance is
not high. Sumathipala et al. (2019) integrated integrin disease,
protein–lncRNA, and protein–protein correlation and used the

network-diffusion method to predict lncRNA–disease
association. Zhang et al. (2018) used lncRNA similarity,
protein–protein interactions, and disease similarity to
construct a composite network and then used flow-
propagation algorithm for prediction. Guo et al. (2019a)
constructed a molecular-association network based on the
known association among diseases, proteins, miRNA, lncRNA,
and drugs and then used random-forest classifier to infer the
association between any two of them. The above studies can help
elucidate cellular processes and complex pathogenesis at the
molecular level to a certain extent, but the use of multiple
biological data sources may introduce noise and irrelevant
information, leading to increased false-positive rates.

In the present study, we proposed an lncRNA–disease
association prediction method called LPARP, which is based
on a label-propagation algorithm and random projection.
LPARP uses the semantic similarity of diseases, functional
similarity of lncRNAs, and known information on
lncRNA–disease association and then predicts them through
label-propagation algorithms and random projections.
Experimental results showed that LPARP is superior to
several existing classic methods in predicting candidate
lncRNAs. Case studies on bladder cancer, esophageal
squamous-cell carcinoma, and colorectal cancer show that
LPARP can effectively identify potential diseases associated
with lncRNAs.

MATERIALS AND METHODS

Materials
LncRNA-Disease Association Network
Known experiments supporting lncRNA–disease-related data
are from the lncRNADisease database (Chen et al., 2012). We
obtain three datasets of lncRNA–disease-related data from
different versions of the database. From the 2014 version,
352 pairs of lncRNA–disease-related data are obtained,
covering 156 lncRNAs and 190 diseases (dataset1); from the
2015 version, 621 pairs of associations are obtained, covering
285 lncRNAs and 226 diseases (dataset2); from the 2017
version, 1,695 pairs of associations are obtained, including
828 lncRNAs and 314 diseases (dataset3). For convenience, a
Boolean matrix LD � (ldij)nl×nd is used to represent the
association between lncRNAs and diseases. If a known
association exist between lncRNA li and disease dj, then LD
(i,j) = 1. Otherwise, LD (i,j) = 0. nl and nd are used to represent
the number of diseases and lncRNA, respectively.

Disease Semantic Similarity
Many researchers used disease semantic similarity data to
describe the similarity between diseases. In this method, the
disease is represented as a directed acyclic graph (DAG), and
then the similarity between the diseases is calculated based on the
DAG. The detailed calculation process can be found in literature
(Wang et al., 2010). This method is used to calculate the semantic
similarity between diseases, as represented by matrix DD.
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LncRNA Functional Similarity
Considering that lncRNAs with similar functions are often
associated with similar diseases, we calculate the functional
similarity between diseases based on the semantic similarity of
diseases. This type of method is used in many lncRNA–disease
associations (Chen et al., 2020; Zhang et al., 2020; Zhang et al.,
2021). It will not be introduced in detail here. The matrix LL is
used to represent the functional similarity of lncRNA.

Disease (LncRNA) Gaussian
Interaction-Profile Kernel Similarity
Many zeros exist in the disease semantic similarity matrix DD
and the lncRNA functional similarity matrix LL, so we further
introduce the Gaussian interaction-profile kernel similarity (van
Laarhoven et al., 2011) to improve this shortcoming. The
Gaussian interaction-profile kernel similarity is also based on
the assumption that lncRNAs with similar functions are often
associated with diseases with similar phenotypes. The Gaussian
interaction-profile kernel similarity between lncRNAs is defined
as follows:

GL(i, j) � exp( − γl
�����lp(li) − lp(lj)�����2) (1)

lp(li) indicates the number of diseases associated with lncRNA li,
and γl is the width of the nuclear spectrum, defined as follows:

γl �
1

1
nl∑nl

i�1
����lp(li)����2 (2)

Similarly, we can obtain the similarity of Gaussian nuclear
spectrum between diseases:

GD(i, j) � exp( − γd
�����lp(di) − lp(dj)�����2) (3)

lp(di) is the number of lncRNAs associated with disease di, and
γd is the width of the nuclear spectrum, defined as follows:

γd �
1

1
nd∑nd

i�1
����lp(di)

����2 (4)

Integrated Disease Similarity and lncRNA
Similarity
Next, lncRNA functional similarity and lncRNA Gaussian
interaction-profile kernel similarity are integrated to construct
lncRNA similarity.

If the functional similarity between lncRNA node li and
lncRNA node lj is 0, the similarity between li and lj is taken
as the lncRNA Gaussian interaction-profile kernel similarity
value between li and lj. Otherwise, the value is the functional
similarity LL between li and lj, and the formula is as follows:

LLf(i, j) � { LL(i, j)
GL(i, j) , if LL(i, j) ≠ 0

, otherwise
(5)

In the same way, the semantic similarity between diseases and
the Gaussian interaction-profile kernel similarity between
diseases are used to construct the similarity between diseases.

DDf(i, j) � {DD(i, j)
GD(i, j) , if DD(i, j) ≠ 0

, otherwise
(6)

LDAI-ISPS Workflow Model
The algorithm is divided into three steps. In step 1, Integrated
disease similarity is constructed by using semantic similarity
between diseases and the Gaussian interaction-profile kernel
similarity between diseases, and integrated lncRNA similarity
is constructed by using functional similarity between lncRNAs
and Gaussian interaction profile kernel similarity between
lncRNAs.In step 2, the label-propagation algorithm is used to
obtain the estimated score of lncRNA–disease association. In step
3, random projections are used to obtain precise scores of
lncRNA–disease associations. (Figure 1.).

Estimated Score of lncRNA–Disease Association
First, the label-propagation algorithm in the lncRNA network is
implemented. During the label-propagation process, each point
retains the information of its neighbors and receives its initial
label information. The iterative equation can be written as follows
(Wang and Zhang, 2008):

FL(t + 1) � αpLLppFL(t) + (1 − α)LD (7)
In the above formula, t represents the time step, FL(t)

represents the result of the tth iteration in the label-
propagation algorithm, and LD is the known lncRNA–disease
association matrix, which represents the initial matrix. α ∈[0,1] is
a hyper-parameter used to balance the ratio between the
information from its neighbors and its initial label
information. LL* is the normalized matrix of the integrated
lncRNA similarity network LLf, whose calculation method is
as follows:

LLp(i, j) � LLf(i, j)/⎛⎝∑nl
i�1

LLf
i,j(i, j) +∑nl

j�1
LLf

i,j(i, j)⎞⎠ (8)

After finite iterations, the probability space reaches a stable state
F∞
L (|FL(t + 1) − FL(t)|< 10−6)to stop the iteration.
Then, the iterative equation of the label-propagation

algorithm in the disease is implemented as follows:

FD(t + 1) � βpDDppFD(t) + (1 − β)LDT (9)
LDT is the transposed matrix of LD. Let FD(0) � LDT. β ∈[0,1] is
a hyper-parameter used to control the rate of retaining
information from neighbors and DD* is the normalized
matrix of the integrated disease-similarity network DDf, then
the calculation method is as follows:

DDp(i, j) � DDf(i, j)/⎛⎝∑nd
i�1

DDf
i,j(i, j) +∑nd

j�1
Df

i,j(i, j)⎞⎠ (10)

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7986324

Chen et al. LncRNA–Disease Association Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The prediction result of the label-propagation algorithm used in
the disease network is represented bymatrix F∞

D (the iteration was
stopped when |FD(t + 1) − FD(t)|< 10−6).

Finally, the median values of the prediction results F∞
L and F∞

D
of the implementation of the label-propagation algorithm in the
two networks are used as the estimated scores of the
lncRNA–disease association:

Fe � F∞
L + (F∞

D)T
2

(11)

Accurate Score of lncRNA–Disease Association
First, the integrated lncRNA similarity matrix LLf is randomly
projected in the lncRNA–disease association prediction score
matrix Fe:

LDpl(i, j) � LLf(i, : ) × Fe(: , j)����Fe(: , j)���� (12)

In the above formula, ‖Fe(: , j)‖ is the 2-norm of Fe(: , j).
Then, the integrated disease similarity matrix DDf is

randomly projected into the lncRNA–disease association
estimation-score transposition matrix (Fe)T:

LDpd(i, j) � DDf(j, : ) × (Fe)T(: , i)����(Fe)T(: , i)���� (13)

Finally, LDpl and LDpd are synthesized to obtain the final
prediction score.

LDp � LDpl + LDT
pd

2
(14)

RESULTS

Parameter Selection Method
In the process of label propagation, each node retains the information
of its neighbors and receives its initial label information. In formula 7
(formula 9), the parameter α ∈[0,1] (β ∈[0,1]) is used to control the
rate of retaining information fromneighbors, and 1-α(1-β)means the
probability of receiving its initial tag information. For simplicity, we
set parameter α and β to the same size. When the parameter value
changes from 0 to 1, leave-one-out cross-validation (LOOCV) is
implemented on the three data sets to identify the optimum
parameters. In LOOCV, we use a known lncRNA–disease
association as a test sample and the remaining lncRNA–disease

FIGURE 1 | The flowchart of LPARP.
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associations as a training sample each time. After themodel is trained,
the true positive rate (TPR) and false-positive rate (FPR) are
calculated to draw the receiver operating characteristic (ROC)
curve according to the TPR and FPR under different thresholds.
The area under the ROC curve (AUC) is used to evaluate the
performance of the model, and a larger AUC value means better
prediction performance. The ROC curve and AUC value of each
parameter are listed in Figure 2. In the three different data sets,
LAPRP has the largest AUC value when the parameter is 0.9.
Therefore, we set the parameters to 0.9 on the three different data sets.

Comparison With Other Methods
As we know, NCPLDA (Li G. et al., 2019), IIRWR (Wang L. et al.,
2019), and LDAI-ISPS (Zhang et al., 2020) are excellent calculation

methods currently used to predict the association of lncRNAdiseases.
The data used by these three methods is the same as ours. Here, we
compare LPARP with them. The comparison results of
implementing LOOCV on the three datasets are shown in
Figures 3–5.

The AUC values of NCPLDA, IIRWR, LDAI-ISPS, and LPARP
on dataset 1 are 0.9107, 0.7883, 0.9154, and 0.9367, respectively, and
the AUC values on dataset 2 are 0.9383, 0.9012, 0.8230, 0.8341, and
0.9421, respectively. The AUC values on dataset 3 are 0.9307, 0.8745,
0.8455, and 0.9489, respectively. Obviously, on three different
datasets, the prediction performance of LPARP is significantly
better than those of NCPLDA, IIRWR, and LDAI-ISPS.

FIGURE 2 | Influence of parameter variation on model prediction
accuracy.

FIGURE 3 | The ROC curves and AUC values of LPARP compared with
other methods on the dataset 1.

FIGURE 4 | The ROC curves and AUC values of LPARP compared with
other methods on the dataset 2.

FIGURE 5 | The ROC curves and AUC values of LPARP compared with
other methods on the dataset 3.
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Prediction for New lncRNAs and Isolated
Diseases
With the continuous improvement in lncRNA-recognition
technology, more lncRNAs are being unearthed continuously, and
most of them have unknown relationships with diseases. We call
them new lncRNAs. Isolated diseases refer to diseases without any
known relation with lncRNAs. The association prediction of new
lncRNAs and isolated diseases helps scientists understand the
molecular mechanism of diseases and can help diagnose and treat
diseases.

To simulate new lncRNAs, when a certain lncRNA is used as the
test sample, all associations between the lncRNA and the diseases are
removed. In the experiment, we select each lncRNA as the test sample
and all associated information with other lncRNA as the training
sample until all lncRNAs are tested as the prediction sample. A
similar method is used to verify the prediction effect of LPARP on
isolated diseases. For the prediction of new lncRNAs, the AUC on
data sets 1, 2, and 3 are 0.7705, 0.7788, and 0.8267, respectively. For
the prediction of isolated diseases, theAUCon data sets 1, 2, and 3 are
0.8716, 0.8755, and 0.8929, and the curves are shown in Figure 6.
These results indicate that LAPRP has a good predictive effect.

CASE STUDY

To further evaluate the actual effect of LPARP, the three human
diseases including bladder cancer, esophageal squamous-cell
carcinoma, and colorectal cancer are selected for the case analysis.
The association of dataset 2 is extracted from the lncRNADisease
database established in 2015. This database was selected for training,
later it was verified in the 2017 lncRNADisease database, which is
dataset 3, and the latest related literature.

First, all experimentally verified associations are taken as
training samples, and the lncRNA–disease associations that
have not been experimentally verified are were taken as

candidate associations. For a specific disease, the candidate
lncRNAs are sorted according to their prediction scores. For
the three diseases bladder cancer, esophageal squamous-cell
carcinoma, and colorectal cancer, the top five associations of
lncRNA are predicted, as shown in Table 1.

Bladder cancer is the ninth most common cancer in the world,
and more than 60% of all bladder cancer cases occur in less
developed areas of the world (Antoni et al., 2017). Table 1 shows
that three of the first five predicted lncRNAs have found
supporting evidence in the 2017 version of the lncRNADisease
database. MEG3 and PVT1 have not been verified by the
lncRNADisease database, but we have manually excavated
recent biomedical literature and find them and bladder cancer-
related evidence. For example, Fan et al. (2020) found that MEG3
can control the progression of bladder cancer through PI3K/
AKT/mTOR pathway regulation. Tian et al. (2019) found that
PVT1 can regulate the growth, migration, and invasion of bladder
cancer through mir31/CDK1.

Esophageal squamous-cell carcinoma accounts for about 90%
of 456,000 cases of esophageal cancer each year (Abnet et al.,
2018). The predicted top five lncRNAs are MALAT1, MEG3,
BCYRN1, UCA1, and LSINCT5, among which MALAT1 and
MEG3 are found to be associated with esophageal squamous-cell
carcinoma in lncRNADisease in 2017. Through literature search,
UCA1 and LSICT5 are found to be related to esophageal
squamous-cell carcinoma. Although we have not manually
excavated recent literature to prove that BCYRN1 is related to
esophageal squamous-cell carcinoma, we believe that scientists
will find the evidence that BCYRN1 is associated with esophageal
squamous-cell carcinoma in the future.

Colorectal cancer is the third most common cancer among
men and the second most cancer among women (Favoriti et al.,
2016). Among the predicted five lncRNAs, three are verified by
lncRNADisease database, but MINA and EPB41L4A-AS1 do not
show any association with colorectal cancer in the
lncRNADisease database. However, Bin et al. (Bin et al., 2020)
found in 2020 that EPB41L4a AS1 acts as an oncogene by
regulating the Rho/ROCK pathway of colorectal cancer. All of
the above literatures were published after the 2017 edition of the
lncRNADisease was updated, which confirms the reliability of
our method.

To further verify the predictive effect of LPARP on isolated
diseases, we select bladder cancer, esophageal squamous-cell
carcinoma, and colorectal cancer in dataset2 for case study.
The difference between them is that for any kind of disease
prediction, to simulate an isolated disease, when training the
model, all associations of the disease are removed. The
prediction results of the three diseases are shown in
Table 2. For Esophageal squamous-cell carcinoma and
colorectal cancer, the top five predicted lncRNAs have
supporting evidence in the latest lncRNADisease database.
For bladder cancer, three lncRNAs have supporting evidence,
and MEG3 and PVT1 have not been verified by the
lncRNADisease database. When conducting case analysis of
common diseases, these two lncRNAs are also considered to
be closely related to bladder cancer. Recently, many scientists
have proven that they are related to bladder cancer.

FIGURE 6 | Results of LPARP for new lncRNAs and isolated diseases.
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DISCUSSION

This study shows how to combine lncRNA similarity, disease
similarity, and known lncRNA–disease interactions to predict new
lncRNA–drug interactions. A new integration method of label-
propagation algorithm and random-projection algorithm
(LAPRP) is proposed. After evaluating three different datasets,
we find that compared with other state-of-the-art methods,
LAPRP improves performance effectively and can predict
isolated diseases and new lncRNAs. Two types of case studies
are carried out on three human diseases: bladder cancer,
esophageal squamous-cell carcinoma, and colorectal cancer.
The first category is general disease prediction. Among the
predicted top five lncRNAs, all five lncRNAs related to bladder
cancer, four related to esophageal squamous-cell carcinoma, and
four related to colorectal cancer have verified to be the latest
confirmation of database or latest literature. The second category
is the prediction of isolated diseases. The top five lncRNAs
predicted to be related to the three diseases have been
confirmed by the latest database or the latest literature.

Comparative experiments and case studies show that LAPRP
has high prediction accuracy and does not require negative
samples. It can be used to predict isolated diseases and new
lncRNAs. LAPRP is a useful supplement to experimentalmethods.
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TABLE 1 | The top 5 lncRNA candidates predicted for bladder cancer, esophageal squamous-cell carcinoma, and colorectal cancer.

disease lncRNA name Evidences Rank

bladder cancer HOTAIR LncRNADisease 1
bladder cancer MALAT1 LncRNADisease 2
bladder cancer MEG3 Fan et al. (2020) 3
bladder cancer PVT1 Tian et al. (2019) 4
bladder cancer GAS5 LncRNADisease 5
Esophageal squamous cell carcinoma MALAT1 LncRNADisease 1
Esophageal squamous cell carcinoma MEG3 LncRNADisease 2
Esophageal squamous cell carcinoma BCYRN1 Unconfirmed 3
Esophageal squamous cell carcinoma UCA1 Kang et al. (2018) 4
Esophageal squamous cell carcinoma LSINCT5 Jing et al. (2019) 5
colorectal cancer MEG3 LncRNADisease 1
colorectal cancer H19 LncRNADisease 2
colorectal cancer MINA Unconfirmed 3
colorectal cancer UCA1 LncRNADisease 4
colorectal cancer EPB41L4A-AS1 Bin et al. (2020) 5

TABLE 2 | The top 5 novel disease-correlated lncRNA candidates predicted for bladder cancer, esophageal squamous-cell carcinoma, and colorectal cancer.

disease lncRNA name Evidences RANK

bladder cancer HOTAIR LncRNADisease 1
bladder cancer MALAT1 LncRNADisease 2
bladder cancer H19 LncRNADisease 3
bladder cancer MEG3 Fan et al. (2020) 4
bladder cancer PVT1 Tian et al. (2019) 5
Esophageal squamous cell carcinoma HOTAIR LncRNADisease 1
Esophageal squamous cell carcinoma MALAT1 LncRNADisease 2
Esophageal squamous cell carcinoma H19 LncRNADisease 3
Esophageal squamous cell carcinoma MEG3 LncRNADisease 4
Esophageal squamous cell carcinoma PVT1 LncRNADisease 5
colorectal cancer HOTAIR LncRNADisease 1
colorectal cancer MALAT1 LncRNADisease 2
colorectal cancer H19 LncRNADisease 3
colorectal cancer MEG3 LncRNADisease 4
colorectal cancer PVT1 LncRNADisease 5
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