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Abstract

Adolescent psychostimulant abuse has been on the rise over the past decade. This trend

has demonstrable ramifications on adolescent behavior and brain morphology, increasing

risk for development of addiction during adolescence and in later adulthood. Neuroimmune

substrates are implicated in the etiology of substance use disorders. To add to this body of

work, the current study was developed to explore the role of a chemokine receptor, CXC

Chemokine Receptor 4 (CXCR4), in the development of amphetamine (AMPH) sensitiza-

tion. We targeted CXCR4 as it is implicated in developmental processes, dopaminergic

transmission, neuroimmune responses, and the potentiation of psychostimulant abuse

pathology. To evaluate the role of CXCR4 activity on the development of AMPH sensitiza-

tion, a CXCR4 antagonist (Plerixafor; AMD3100) was administered to rats as a pretreatment

variable. Specifically, adolescent Long Evans male rats (N = 37) were divided into four

groups: (1) AMD3100 (IP, 4.0 mg/kg) + AMPH (IP, 4.0 mg/kg), (2) saline (SAL; 0.9%

NaCl) + AMPH, (3) AMD3100 + SAL, and (4) SAL + SAL. Animals were first habituated to

locomotor activity (LMA) chambers, then injected with a pretreatment drug (AMD3100 or

SAL) followed by AMPH or SAL every other for four days. After a one-week withdrawal

period, all animals were administered a low challenge dose of AMPH (IP, 1.0 mg/kg).

AMPH-injected rats displayed significantly more locomotor activity compared to controls

across all testing days. CXCR4 antagonism significantly attenuated AMPH-induced locomo-

tor activity. On challenge day, AMD3100 pre-treated animals exhibited diminutive AMPH-

induced locomotor activity compared to SAL pre-treated animals. Postmortem analyses of

brain tissue revealed elevated CXCR4 protein levels in the striatum of all experimental

groups. Our results implicate CXCR4 signaling in the development of AMPH sensitization

and may represent an important therapeutic target for future research in psychostimulant

abuse.
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Introduction

Psychostimulant drug abuse during adolescence potentiates the risk for progression to drug

dependence in adulthood for human [1, 2] and rodent [3, 4] populations. Psychostimulant

abuse remains a pervasive and significant issue for adolescents that may rise within the next

decade [5, 6]. Preclinical and clinical models implicate adolescence, compared to adulthood, as

a vulnerable developmental period for the development of psychostimulant-induced neurobe-

havioral alterations [1, 7, 8, as reviewed by 9]. Psychiatric and substance use disorders can be

explored in validated animal models [as reviewed by 10] to investigate the biological substrates

that underlie psychostimulant abuse vulnerability during adolescence to further aid the devel-

opment of viable pharmacotherapies.

A novel line of scientific inquiry operationalizes psychostimulants as activators of neuroim-

mune signaling mechanisms that affect neuroplasticity and drug-seeking behavior in preclini-

cal models [as reviewed by 11], including adolescent paradigms [as reviewed by 12, 13].

Several rodent in vivo and in vitro models have shown that drug classes such as alcohol [14, 15]

and opioids [16–19] enhance neuroinflammatory signaling through increased activity of che-

moattractant cytokines (“chemokines”). CXC Chemokine Receptor 4 (CXCR4) is a G-protein

coupled receptor that induces and propagates significant proinflammatory signaling cascades

following activation by its only ligand, CXC Chemokine Ligand 12 (CXCL12, stromal derived

factor 1; SDF-1) [20, as reviewed by 21]. CXCR4 was first discovered in vitro as a co-receptor

for human immunodeficiency virus infection, and, when antagonized, prevents viral replication

[22, 23]. In rodent and human neural in vitro [24] and in vivo models [25], CXCR4 may deter-

mine cell fate by activating secondary messengers like extracellular signal-regulated kinases 1/2

and Jun N-terminal kinase to reduce cyclic adenosine monophosphate and increase intracellu-

lar calcium levels. These activities ultimately lower the threshold for action potentials, altering

neuronal and glial signaling. CXCR4 has been associated with the onset of several diseases such

as Alzheimer’s and Parkinson’s diseases, chronic pain, and the development of various cancers

[25, as reviewed by 26–31]. CXCR4 antagonism reduces disease symptomatology [32–35]. Simi-

larly, CXCR4 antagonism has been shown to reduce the characteristic neurobehavioral patterns

of dysregulation associated with the reinforcing effects of stimulant drugs [36]. Kim and col-

leagues [37] showed that CXCR4 antagonism prior to an acute administration of cocaine pre-

vented increased locomotor activity and disrupted the cocaine-induced conditioned place

preference. Clinical evidence from abstinent lifetime cocaine users implicates CXCL12-CXCR4

and other proinflammatory substrates as predictors of cocaine symptom severity and suggests

the use of these substrates as biomarkers for the development of intervention protocols for psy-

chostimulant use disorders and psychiatric comorbidities [38]. Furthermore, clinical and rodent

models demonstrate anti-inflammatory agents as effective therapies for psychiatric and sub-

stance use disorders [as reviewed by 39, 40].

Although stimulants affect multiple monoamine systems, actions on dopamine receptors in

human and rodent populations are critical [as reviewed by 41]. Psychostimulants like cocaine

can cause long-term damage to the human and rodent brain by inducing severe neurotoxicity

to cells, altering the overall rate of enzymatic activity, and disrupting dopamine release in neu-

ral regions associated with reward [42–44]. Dopaminergic neurons originate in the ventral teg-

mental area (VTA) and substantia nigra (SN) and project to the nucleus accumbens (NAc),

striatum (caudate putamen/CPu in animal models), frontal cortex, and regions that are collec-

tively defined within the limbic system [as reviewed in 45] and use dopamine and its receptors

to communicate throughout the circuit in the mammalian brain [46, 47].

Modulation of dopaminergic activity in the mesocorticolimbic system is requisite for gen-

eral psychostimulant seeking behavior and the reinforcing effects of psychostimulants in
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mammals [48–50]. We build upon this preclinical and clinical evidence and hypothesize that

CXCR4 may play a role in psychostimulant-addiction like behavior. CXCR4 is expressed on

the plasma membrane surface of dopaminergic neurons, microglia, and astrocytes in the mam-

malian brain [51, 52]. Psychostimulant exposure affects dopaminergic and neuroimmune sub-

strates in the mammalian striatum [as reviewed by 53, 54]. Furthermore, rodent models report

evidence that implicates dopamine receptor activity as a regulator of nervous system immune

activity in other psychiatric and physiological pathologies [55, as reviewed in 56]. The

CXCL12-CXCR4 axis interacts with neurons to influence synaptic pruning and growth in

rodent and in vitro models [57, as reviewed in 58], neurotrophic factors in rodent and clinical

models [59, 60], and rodent hippocampal neurogenesis [61].The hippocampus is of interest as

dopamine transmission affects hippocampal inputs to the striatum in vitro [62] and goal-

directed behavior in a rat model [63]. During rodent nervous system development, CXCR4

may influence adolescent response to stimulants since CXCR4 binding to CXCL12 and subse-

quent signaling activity induces progenitor glial cell migration to layers of the early cortex and

the hippocampus in the initial organization of the brain [64–66] and cultured human neural

precursor cells [67]. While many facets of CXCR4’s developmental role are unexplored, it has

been shown that amygdalar CXCR4 expression remains upregulated in adulthood, following

an initial adolescent exposure to cocaine [68]. Collectively, these data suggest the adolescent

brain may be differentially affected by psychostimulant-induced alterations in neuroimmune

signaling and thus, confers a persisting vulnerability that increases the risk for progression to

addiction in adulthood.

It is, therefore, probable that CXCL12-CXCR4 dysregulation may be implicated in the

effects of repeated psychostimulant use and arguably influences adolescent vulnerability to

addiction-like behaviors. The present study examined the role of CXCR4 antagonism on the

development of AMPH sensitization in a cohort of adolescent male Long Evans rats. We

hypothesized that pretreatment with a CXCR4 receptor antagonist, the bicyclam drug

AMD3100 (Plerixafor; 1,19-[1,4-phenylenebis(methylene)]-bis1,4,8,11-azatetradecane),

would affect the development of AMPH-induced locomotor sensitization. Additionally,

we measured CXCR4 protein levels using immunohistochemistry to determine if differences

in striatal CXCR4 expression mapped onto differential AMPH-induced locomotor

behaviors.

Materials and methods

Ethics

All animal experiments and listed protocols were conducted in accordance with guidelines

established by and approved by the Institutional Animal Care and Use Committee (IACUC) at

the University of Massachusetts Boston. Procedures detailed here also followed the applicable

portions of the Animal Welfare Act and the National Institute of Health’s ‘Guide for the Care

and Use of Laboratory Animals’ (NIH Publications No. 80–23; Revised 1996).

Experimental subjects

A total of 40 adolescent (purchased on postnatal day [PND] 32–34, 200–350 g) male Long

Evans rats were ordered from Charles River Breeding Laboratories (Wilmington, MA, United

States). A power analysis to determine the number of animals required to detect significant dif-

ferences between groups, was calculated using G�Power software [69] and was based on past

analyses performed in our laboratory [70, 71]. Statistical significance was set to p� 0.05, and

β = 0.80. After arrival, animals were housed in groups of 2–3 in ventilated cages (229.90 ×
82.50 × 81.06 cm) (Lab Products; Seaford, DE, United States) with 3.85–4.00 cm of contact

PLOS ONE Amphetamine alters locomotion and is altered by chemokine signaling in adolescent male rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0247707 March 1, 2021 3 / 22

https://doi.org/10.1371/journal.pone.0247707


bedding. Animals were randomly sorted into experimental groups by cage (SAL-SAL, SAL--

AMPH, AMD-SAL, AMD3100 (Plerixafor)-AMPH, n = 9–10 per group) and were maintained

in a temperature- and humidity-controlled environment with food and water accessible ad
libitum. Animals were maintained on a 12:12 h light/dark cycle, and lights were on from 0700

h to 1900 h. Testing did not begin until after animals were habituated to the facility for 10 days

(PND 42–44). All testing was performed during the light cycle between 1200–1600 h.

Drug pretreatment and four-day amphetamine sensitization regimen

Every other day for four days, animals were brought into the testing room and allowed to

habituate for 30 minutes. Subjects were weighed and then placed into one of four locomotor

activity chambers. Locomotor activity (LMA) testing was performed as previously described in

our laboratory [72]. LMA chambers were directly connected to a computer running MedAs-

sociates locomotion tracking software (MedAssociates, St. Albans, VT, United States). Each

commercial LMA chamber (dimensions: 17 × 17 × 12 cm) was equipped with photoelectric

beams to record distance traveled, stereotypies, and rears when photobeam transmissions

were broken by an animal subject. Stimulants are known to induce persistent locomotor

movements that are classically considered as consequences of increased dopamine activation

to the striatum. Distance traveled was defined by each rat’s individual gait and their movement

from one point to another. Stereotypies were defined as head bobbing, twitching, licking, or

biting that were captured as rapid movements between photobeams. Rearing behavior was

defined as the animal raising up above typical height and breaking the vertical photobeam

transmission. Animals were placed in the LMA chamber for 15 minutes prior to pretreatment

to obtain a baseline measurement of typical LMA across each of these three dependent vari-

ables. After baseline observations, LMA recordings were paused and pretreatment injections

were intraperitoneally (IP) administered as appropriate to group: isotonic saline (0.9% sterile

isotonic saline/SAL) or AMD3100 (4.0 mg/kg, dissolved in saline; Plerixafor/CXCR4 antago-

nist; MedChem Express, Monmouth Junction, NJ, United States). Animals were then returned

to their respective chamber and the LMA tracking software was resumed. At the 30 min time

point, recording software was paused again and animals were injected with either SAL or

AMPH 4.0 mg/kg D-amphetamine sulfate; Sigma, St. Louis, MO, United States). Following

drug injections, animals were returned for a final 60 min recording for a total of 90 min for the

testing period. Between testing periods, LMA data were extracted and the LMA chambers

were cleaned between each set of experimental subjects with mild soap and water. This was

repeated every 48 h for four days after which all animals were given a 7-day withdrawal period.

Finally, animals were challenged with a low dose of AMPH (1 mg/kg, IP), sacrificed, and brain

tissue was harvested and stored at -80˚C for later histological analyses.

Challenge dose

One week following the termination of the four-day AMPH sensitization regimen, all animals

were retrieved from their cages, weighed, and brought to the LMA testing room where they

were habituated to one of four LMA chambers for 30 min. Animals were injected with a chal-

lenge dose of AMPH (IP, 1.0 mg/kg) and tested for an additional 60 min, for a total of 90 min.

Data were extracted from MedAssociatesTM tracking software after testing completion. Ani-

mals were sacrificed via live decapitation and brain tissue was immediately harvested and

stored in -80˚C for later immunohistochemical analyses. The comprehensive timeline for this

experiment can be seen in Fig 1.
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Euthanasia and brain extraction

Following the final AMPH challenge and subsequent LMA assessment, animals were removed

from the LMA chamber and prepped for sacrifice. Animals were placed inside decapicones

(Braintree Scientific, Braintree, MA; United States) and were promptly sacrificed via guillotine.

Upon decapitation, brains were extracted and snap frozen on dry ice and stored at -80˚C in a

freezer until microsectioning was performed for later immunohistochemical analyses.

Immunohistochemistry for CXCR4

At the time of histology, brains were removed from the -80˚C freezer, embedded in freezing

O.C.T. compound (mounting medium), and adhered to a metal chuck for frozen (-20˚C)

microsectioning in a cryostat (Leica CM 3050S; Leica Biosystems, Welzlar, Germany). Brains

were blocked and 30-μm coronal sections were taken to target the dorsal striatum. Next, sec-

tions were mounted on frosted glass sides (Fisherbrand Superfrost Plus; ThermoScientific,

Waltham, MA, United States). Anatomical assessment and location of the caudate putamen

was determined using a rat brain atlas [73]. The slides were thoroughly covered and post-fixed

in 2 mL of 4% paraformaldehyde for 30 min. Slides were rinsed, and then cryoprotected by

dousing in incremental sucrose-paraformaldehyde solutions (5% - 20%). Next, slides were

gently agitated in 0.05M NaPBS repeatedly for 1 h, with the NaPBS solution changed every 20

min. Following this, slides were rinsed in H2O2. A mixture of 1.5% normal goat serum-NaPBS

to block endogenous peroxidases, and after a 5 min NaPBS rinse, slides were incubated over-

night at 4˚C in primary anti-CXCR4 antibody (1:1000 in Triton-X and NaPBS; Abcam, Bos-

ton, MA; United States; Abcam Antibody Code ab2074).

On the next day, the slides were removed from the refrigerator and then rinsed in NaPBS

and incubated in goat-anti-rabbit secondary antibody (1:600 in Triton-X and NaPBS; ABC

Elite Kit, Vector Labs, Burlingame, CA, USA) at room temperature for 1 h. Following this, sec-

tions were rinsed again in NaPBS and then processed through an avidin-biotin complex

(ABC) method (Vectastain ABC HRP kit; Denver, CO, United States) and processed in

Fig 1. Timeline that depicts for the experimental design and procedures used in the current study. Animals were habituated to the laboratory

setting for one week prior to the start of testing. Following this, animals were placed in the LMA chambers for a 15 min habituation, and then

given a pretreatment (SAL, 0.9% NaCl, IP) or (AMD,4.0 mg/kg, IP). This was followed by drug treatment, (SAL or AMPH 4.0 mg/kg, IP) at 30

min, every 48 h for four days. One week after the final day of testing, which was the withdrawal period, all animals were challenged with a low

dose of AMPH (1.0 mg/kg, IP: timepoint 30 min) after a 30 min habituation in the LMA.

https://doi.org/10.1371/journal.pone.0247707.g001
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Trizma-based buffer (Sigma Aldrich; Natick, MA). Finally, the sections were stained with a

3,3’-diaminobenzidine (DAB) horseradish peroxidase (HRP) substrate kit (Vectastain ABC

HRP kit; Denver, CO, United States) for 5 min, at which time the slides were again rinsed in

Tris buffer to terminate the reaction. The slides were left to dry overnight under a ventilated

fumehood with cover to protect from dust artifacts. The next day, the slides were rehydrated

with increasing concentrations of ethanol and xylene, and then cover slipped with Permount

for microscopy and subsequent image analysis. Negative controls were run following the exact

protocol outlined above except for incubation in the primary antibody.

Image analysis

Digital images of the stained slides were taken using light microscopy (Olympus BX-40; Penn-

sylvania, United States) fitted with a monochrome Scion Image camera and software (4× and

10× magnification). Magnification at 4× was used to confirm impregnation of neuronal and

glial cells for all animals relative to the negative controls. Higher magnification images were

then used for counting positive CXCR4 immunoreactive cells. Counts were made using Cell-

TargetTM with a threshold set to count the number of CXCR4 positive cells. When imaged at

4× magnification, experimenters blind to group representation were guided to count all the

CXCR4 positive neurons visible in the dorsolateral, dorsomedial, and dorsoventral striatum.

When imaged at 10× magnification, experimenters utilized the quadrant function of CellTar-

getTM [74] to maintain consistent cell counts from sample to sample.

Statistical analysis

All statistical analyses were completed using SPSS software (Windows and Mac, version 22.0).

Data were first analyzed for normality using the Kolmogorov-Smirnov Test. To identify signif-

icant differences between groups, multivariate two-way analyses with repeated measures of

variance (ANOVAs) were used. For behavioral data, three independent 2 (pretreatment) X 2

(drug treatment) repeated measures (Day and testing time block) mixed factor ANOVAs were

employed to evaluate main and interaction effects across the independent variables for (1) dis-

tance traveled (2) rearing behavior and (3) stereotypies. To support these findings, we averaged

total distance traveled (cm), stereotypies, or rears made by each subject across the four days

and performed a univariate ANOVA on the average cumulative recorded movements for each

behavioral measure for each subject. To identify AMPH-induced locomotor activation follow-

ing a low-dose AMPH (IP, 1 mg/kg) challenge after a one-week withdrawal period, 2 (pretreat-

ment) X 2 (drug treatment) mixed factors were utilized to identify main and interaction effects

for each dependent measure. All behavioral data were reported as group means ± SEM. For

neural data, a 2 (pretreatment) X 2 (drug treatment) mixed factor ANOVA was employed to

evaluate main and interaction effects for CXCR4 positive cells in the dorsal striatum. Three

experimenters who were blinded to experimental conditions and showed 0.90 inter-rater reli-

ability quantified immunohistochemistry data. Immunohistochemistry data are reported as

group means ± SEM. All significant findings were interpreted using Bonferroni correction and

Tukey’s Honest Significant Difference (HSD) post-hoc tests.

Results

Three subjects were excluded from analyses due to low weight gain, data loss, and, in the case

of one animal, escape from the LMA chamber (N = 37, n = 8–10 subjects per group). There

were no significant differences in weight in the remaining subjects when measured (S1 Fig).

We analyzed locomotor behavior (distance traveled, rears, and stereotypies) extracted from
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MedAssociates LMA software using a 2 (pretreatment) X 2 (drug treatment) mixed factors

ANOVA f with repeated measures for Day and testing time period.

Data were analyzed for normality using the Kolmogorov-Smirnov test of normality. On the

first [D(19) = 0.260; p = 0.001], second [D(19) = 0.237, p = 0.006], and fourth day of testing [D

(19) = 0.289, p = 0.0001], the data violated normality assumptions. Data from animals in the

antagonist group also violated the test for normality on the first and [D(19) = 0.302,

p = 0.0001] and fourth [D(19) = 0.203, p = 0.039] days of testing. We elected to retain the data

for analysis due to (1) retention of normality in the habituation period on all four days of sensi-

tization testing, (2) positive skewness towards zero as a result of low distance traveled and

related movements, and (3) no more than two outliers becoming apparent per group.

AMD3100 reduces AMPH-induced distance traveled, stereotypies, and

rears

Distance traveled. In the analyses performed, we observed no significant differences for

Day [F3,31 = 1.562, p = 0.218] or Time Period [F1,33 = 0.553, p = 0.462] alone on distance trav-

eled. All animals moved around the locomotor activity chamber over the progression of test-

ing, and this movement increased each day [Day × Time Period, F3,31 = 7.424,

p = 0.001< 0.05, ηp
2 = 0.418]. There were no significant interaction effects for Day × Time

Period × Pretreatment [F3,31 = 2.268, p = 0.100 > 0.05] or Day × Time Period × Pretreatment

× Treatment [F3,31 = 1.229, p = 0.316> 0.05]. Pretreatment with AMD3100 alone did not pro-

duce any change in rat behavior as indicated by non-significant results for Day × Pretreatment

[F3,31 = 1.692, p> 0.05].

The two-way ANOVA did reveal significant interaction effects of Day × Treatment [F3, 31 =

4.917, p = 0.007< 0.05, ηp
2 = 0.322] and Day × Pretreatment × Treatment [F3,31 = 4.046,

p = 0.015< 0.05, ηp
2 = 0.281]. Rats in the SAL-AMPH group traveled further than their drug-

naïve counterparts in the SAL-SAL group. Additionally, AMD3100-AMPH animals traveled

less than SAL-AMPH animals overall, especially on the first day of testing. Furthermore,

AMD3100-AMPH animals exhibited significantly greater LMA activity compared to SAL-SAL

and AMD-SAL animals (Fig 2). We supplemented our data analysis by calculating the percent

change (distance traveled from 30 to 90 min minus distance traveled from 0–30 min) for each

subject across the four main days of testing to account for general individual differences and

treatment effects. We observed a significant effect of Treatment for Day 1 [F1,32 = 39.501,

p< 0.001, ηp
2 = 0.552], Day 2 [F1,32 = 43.030, p< 0.001, ηp

2 = 0.574], Day 3 [F1,32 = 14.738,

p< 0.001, ηp
2 = 0.315], and Day 4 [F1,32 = 16.237, p< 0.001, ηp

2 = 0.337]. These findings indi-

cated that AMPH treatment caused a significant increase in the distance traveled for adoles-

cent rats regardless of pretreatment (Fig 3).

Locomotor activity was measured for 90 min (data represented as Mean ± SEM). Arrows

indicate an initial 0–15 min habituation period to the LMA chamber, followed by (1) the pre-

treatment injection period 15–30 min, (2) the post-injection 30–90 min period on (A) Day 1,

(B) Day 2, (C) Day 3, and (D) Day 4. Single asterisks (�) represent a significant difference com-

pared to all other groups (p< 0.05), and single hash marks (#) represent a significant differ-

ences compared to SAL-SAL and AMD-SAL groups (p< 0.05). (E) Data are presented as a

scatterplot, with bars indicating average distance traveled (cm) in the Treatment testing period

(30–90 minutes) ± SEM. Double asterisks (��) and double hash marks (##) represent signifi-

cant differences between labeled groups and all other groups (p< 0.01).

Effect of pretreatment and drug treatment on the average distance traveled (cm) across

each of the 4 days of testing (Mean ± SEM). Asterisks (�) represent significant differences

(p< 0.05) as compared to other groups, and a hash mark (#) represents significant differences
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(p< 0.05) collapsed between AMD-AMPH and SAL-AMPH groups as compared to the fol-

lowing control groups, SAL-SAL and AMD-SAL.

Stereotypies. We report significant main and interaction effects of Day [F3,31 = 6.716,

p = 0.001< 0.05, ηp
2 = 0.394], Day × Time Period [F3,31 = 14.688, p = 0.0001 < 0.05, ηp

2 =

0.587] and Day × Time Period × Pretreatment [F3,31 = 3.151, p = 0.039< 0.05, ηp
2 = 0.234] for

stereotypies. There was also a significant interaction effect of Time Period × Pretreatment ×
Treatment [F1,33 = 4.947, p = 0.033< 0.05, ηp

2 = 0.130], demonstrating the combined effect of

repeated testing on overall stereotypies (Fig 4). Although total stereotypies made over the four

individual days were not significantly different for Pretreatment × Treatment, [F1,132 = 1.608,

p = 0.207> 0.05, n.s.], there was a significant interaction effect of Day × Pretreatment × Treat-

ment [F3,132 = 3.272, p = 0.023< 0.05, ηp
2 = 0.069]. SAL-AMPH treated rats engaged in signif-

icantly more stereotypies across the total 4 days as compared to all other groups, where

Fig 2. The locomotor effects of repeated pretreatment and treatment schedule on all experimental groups.

https://doi.org/10.1371/journal.pone.0247707.g002

Fig 3. The effect of pretreatment and treatment conditions on average cumulative distance traveled (cm) across

the four days of testing and on challenge.

https://doi.org/10.1371/journal.pone.0247707.g003
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AMD-AMPH animals exhibited diminished amounts of stereotypies compared to SAL-AMPH

animals on Day 1.

Rears. There were no significant group differences for rears that were identified in the

analysis of the habituation period (p< 0.05) on each day of the 4-day sensitization regimen. For

all other testing periods, data analysis revealed that SAL-AMPH animals reared significantly

more than all other groups across all four days of testing, and this was confirmed through a

Tukey HSD test with significance set at p< 0.05. Furthermore, AMD3100-AMPH animals were

not significantly different from SAL-SAL or AMD3100-SAL groups in terms of cumulative rears

on Day 1 of testing (p< 0.05). In the remaining experimental days, multivariate analysis revealed

a significant effect of Day × Pretreatment [F3,31 = 9.808, p = 0.002< 0.05, ηp
2 = 0.371] as well as

an interaction effect of Day × Pretreatment × Treatment [F3,31 = 7.624, p = 0.001< 0.05, ηp
2 =

0.425]. Tukey HSD post-hoc test indicated that SAL-AMPH animals reared the most as indi-

cated by an interaction of Day × Treatment effect [F8,26 = 9.493, p = 0.0001< 0.05, ηp
2 = 0.723],

and AMD3100-AMPH animals reared significantly more than SAL-SAL and AMD3100-SAL

groups but significantly less than the SAL-AMPH group (p< 0.05) (Fig 5).

AMD3100 pretreatment reduces AMPH sensitization following a one-week

drug-free period

After a one week drug withdrawal period from behavioral experimentation, all animals were

challenged with a low dose of AMPH (1.0 mg/kg, IP) to test the expression of AMPH sensitiza-

tion. Two-way ANOVA analysis revealed significant main effects of pretreatment [F2,32 =
5.237, p = 0.01< 0.05, ηp

2 = 0.247] and treatment [F2,33 = 54.263, p = 0.001< 0.05, ηp
2 =

0.772] on total distance traveled. We also report a significant interaction effect of Pretreatment

× Treatment [F2,32 = 4.133, p = 0.025< 0.05, ηp
2 = 0.205] (Fig 6A). A Tukey post-hoc HSD

test (p< 0.05) revealed that animals pretreated with AMD3100 exhibited locomotor responses

Fig 4. Average stereotypies performed following pretreatment and treatment conditions over the four-day period. Average stereotypies over

the 4-day period following Pretreatment (AMD or SAL, grey arrows at time point 15 min) and Treatment (SAL or AMPH, black arrows at time

point 30 min) conditions on (A) Day 1, (B) Day 2, (C) Day 3, and (D) Day 4. After observing main and interaction effects, post-hoc analyses

identified significant pairwise groups differences. Asterisks (�) represent significant differences between the SAL-AMPH relative to all other

groups. Hash marks (#) represent significant differences between the AMD-AMPH and all other groups. (E) The data are represented as a

scatterplot of the cumulative average of stereotypies completed by each group over the four days of testing (Mean ± SEM).

https://doi.org/10.1371/journal.pone.0247707.g004
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to a low dose AMPH challenge (IP, 1mg/kg) similarly to that of SAL pretreated animals. How-

ever, the AMD3100-AMPH group traveled significantly less in response to low dose AMPH

challenge compared to SAL-AMPH animals. Past pretreatment with AMD3100 or SAL did

not have an effect on overall stereotypies (Baseline: F[2,33 = 0.037, p = 0.848 > 0.05]; Treat-

ment: F[2,33 = 4.077, p = 0.052> 0.05]). We performed a Bonferroni correction on these data

and again found that Pretreatment did not reach significance (p = 0.65> 0.05). A significant

main effect of Treatment [F2,33 = 143.452, p = 0.001< 0.05, ηp
2 = 0.813] and an interaction

effect of Pretreatment × Treatment [F2,33 = 5.001, p = 0.032< 0.05, ηp
2 = 0.132] were found in

our analyses. This indicated that AMD3100-AMPH and SAL-AMPH groups exhibited near-

equivalent numbers of stereotypies in response to a low dose AMPH challenge (Fig 6B).

Behavioral rearing responses for the four groups were similar to the responses we observed

for distance traveled. We found a significant main effect of Pretreatment [F2,33 = 5.730,

p = 0.007< 0.05, ηp2 = 0.205] as well as an interaction effect of Pretreatment × Treatment

[F2,32 = 6.231, p = 0.005< 0.05, ηp2 = 0.280]. We determined this to mean that the

AMD-AMPH group showed significantly reduced rears relative to the SAL-AMPH group, but

potentiated activity as compared to controls (SAL-SAL, AMD-SAL groups) that had never

been treated with AMPH in the past. Animals in the control conditions (SAL-SAL, AMD-SAL)

reared significantly less than AMD-AMPH and SAL-AMPH animals (p< 0.05), as identified

through a Tukey HSD post-hoc test (Fig 6C).

CXCR4 protein expression is upregulated following repeated AMPH

exposure

We investigated changes in dorsal striatal CXCR4 receptor protein levels following repeated

SAL or AMPH exposure with or without AMD3100 pretreatment. Brain sections ranging

from Bregma +0.20 mm to +0.70 mm were taken from n = 16 animals. Representative images

Fig 5. The effects of the treatment conditions on rears performed over the four days of testing. Data are represented as Mean ± SEM.

Cumulative average vertical counts (Mean ± SEM) performed over the four -day (A-D) testing period. (E) The mean of rears for each

group over the four days of testing. Asterisks (�) represent significant differences between the SAL-AMPH group and all other groups

(p< 0.05), and hash marks (#) indicate significant differences between the AMD-AMPH and SAL-SAL, AMD-SAL, and SAL-AMPH

groups (p< 0.05).

https://doi.org/10.1371/journal.pone.0247707.g005
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of CXCR4 staining are shown in Fig 7A and 7B). Pearson’s product-moment correlation coef-

ficient assessed inter-rater reliability at 4× magnification [r = 0.693, p = 0.03] and 10× magnifi-

cation [r = 0.697, p = 0.001]. Counts at 20× magnification were also correlated between

independent researchers [r = 0.679, p = 0.05].

CXCR4 positive cell counts between all independent researchers were averaged for all sub-

ject tissues. A 2 (pretreatment) X 2 (drug treatment) mixed factor ANOVA revealed a signifi-

cant main effect of Pretreatment [F3,12 = 6.774, p = 0.023< 0.05]. Repeated exposure to

AMD3100 pretreatment upregulated the number of CXCR4 positive cells and clusters or

puncta in the dorsal striatum of AMD3100-AMPH and AMD3100-SAL animals (Fig 7C).

Discussion

The current study evaluated the role of CXCR4 signaling in the development of AMPH-

induced locomotor sensitization in adolescent male Long Evans rats. We antagonized CXCR4

receptor protein prior to repeated AMPH treatment to determine if it would interfere with the

development of AMPH sensitization. Our findings indicate that pretreatment with the CXCR4

antagonist, AMD3100, interferes with the development of AMPH-induced locomotor sensiti-

zation and attenuates the sensitized AMPH response to a low dose challenge following a one-

week drug withdrawal period. Accordingly, CXCR4 protein levels in the dorsomedial striatum

were significantly elevated in response to repeated AMPH treatment for both levels of the pre-

treatment independent variable (AMD3100 and SAL), directly linking the effects of repeated

AMPH exposure to dorsal striatal neuroimmune function in vivo.

We have previously shown that a low to moderate dose of amphetamine (3.0 mg/kg) is suf-

ficient to induce sensitization and neuronal GABAergic alterations in a sexually dimorphic

manner, where control and ovariectomized females were more locomotive and hyperactive

than males [75]. We adapted this behavioral sensitization model for the current experiment

and found that AMD3100 pretreatment significantly reduced total distance traveled and rears,

but not stereotypies, in adolescent male AMPH-treated rats. All AMPH-treated rats displayed

an upregulation of CXCR4-immunopositive cells in the dorsomedial striatum with no differ-

ences for animals pretreated with AMD3100. Taken together, the data implicate

Fig 6. Distance traveled, stereotypies, and rears observed after a 1.0 mg/kg challenge dose of AMPH one week following the four-day AMPH

sensitization regimen. Data are represented as Mean (A) distance traveled (B) stereotypies, and (C) rears performed ± SEM. Asterisks (�) represent

statistically significant differences set at p< 0.05 as compared to AMD-SAL and SAL-SAL groups, double asterisks represent statistically significant

differences at p< 0.01, and hash marks (#) represent statistically significant differences between AMD-AMPH and all other groups at p< 0.05.

https://doi.org/10.1371/journal.pone.0247707.g006
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CXCL12-CXCR4 activity in the development of behavioral sensitization to repeated AMPH

administration. The present experimental data does not allow for a causal link between neu-

roimmune data and behavioral outcomes. However, due to the timing of our AMPH sensitiza-

tion model it is possible that we missed acute effects of AMD3100 pretreatment on the

neuroimmune axis. Thus, at the time of measurement we were unable to distinguish any dif-

ferences in CXCR4 expression between the pretreatment groups. Further work is required to

determine if CXCR4 and CXCL12 mRNA and protein levels vary as a function of day(s) of

AMPH- or AMD3100-treatment across neural regions in the dopaminergic mesocorticolimbic

circuit.

Chemokines are emerging as critical feedback and regulatory system messengers in

response to the use of psychostimulant drugs. As chemokines become better elucidated in the

literature, there is an emerging body of evidence that highlights the role of chemokine signal-

ing in neuronal communication and thus, could be necessary for the development and expres-

sion of responses to psychostimulant drugs. For example, human in vitro models [76]

implicate CC Chemokine Receptor 5 (CCR5) mechanisms in the cellular response to metham-

phetamine, while silencing genes for and blocking CC Chemokine Receptor 2 (CCR2) and

CCR5 elicit an attenuation in conditioned place preference and locomotor behavior to meth-

amphetamine or cocaine in rodent in vivo models [77–79]. We have likewise demonstrated

that systemic CXCR4 antagonism attenuates AMPH-induced hyperlocomotion in adolescent

Fig 7. Repeated administration of the CXCR4 antagonist AMD3100 and D-amphetamine sulfate increased CXCR4 protein levels in the dorsomedial

striatum. Striatal neurons and glia were visualized with Nickel-DAB after immunostaining for CXCR4, viewed, and imaged on a light microscope (N = 16, n = 4

per group). (A) Cells were counted specifically within the striated targeted region outlined in red on the line drawing, delineating the dorsal striatum. Bregma

+0.70 mm to + 0.20 mm ranges were selected based on rat brain atlas coordinates [73]. (B) Sample staining at 4× magnification and 10× magnification. The scale

bar on the bottom right represents ~240 pixels (154.8 um). The red arrows identify deeply stained striatal puncta and cellular processes. (C) All groups expressed

CXCR4 within the dorsal striatum. These numbers were elevated across experimental groups relative to the control (data represented as Mean ± SEM), asterisks

(�) represent significant differences set at p<0.05.

https://doi.org/10.1371/journal.pone.0247707.g007
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male Long Evans rats. Indeed, CXCR4 is evidenced to be expressed throughout the rodent

adolescent [51] and adult brains [80, 81]. Furthermore, chronic amphetamine exposure ampli-

fies the excitability of dopaminergic and glutamatergic neurons in the rodent prefrontal cortex

[82, 83], which is one of the last areas of the mammalian brain to fully mature structurally and

functionally [84–90]. As a critical developmental period, adolescence confers a lasting vulnera-

bility to structural and functional neurobehavioral changes in response to environmental chal-

lenges [as reviewed by 91] in human adolescents as compared to adults [92]. Additionally, in a

cohort of male and female rats, it was found that the timing of repeated amphetamine exposure

centered around the onset of puberty determined later susceptibility to anxiety-like behavior

and modulated dopamine D1 receptor activity levels in the ventral striatum during AMPH

withdrawal periods [93]. Similarly, psychostimulant-induced striatal fos expression is depen-

dent upon dopamine D1 and D2 receptor activation in the rat brain [94]. The current study

reports that CXCR4 antagonism during the development of AMPH-sensitization had a signifi-

cant effect on the expression of AMPH-induced hyperlocomotion and significantly upregu-

lated the expression of striatal CXCR4 protein expression following a terminal AMPH

challenge. CXCR4 protein expression was also significantly upregulated in all AMPH-treated

adolescent animals as compared to SAL-SAL controls, providing in vivo evidence of AMPH-

induced neuroimmune alterations in the adolescent rat striatum. While the current study did

not examine dopamine receptor expression in conjunction with striatal CXCR4 expression,

future work should aim to further delineate the role of CXCL12-CXCR4 signaling in relation

to dopamine receptor activity following repeated adolescent AMPH exposure.

Future work should also address sex differences, since modifications in impulsivity [95],

vigilance [96], cognitive flexibility [97], memory [98], and an enhanced sensitivity to the effects

of psychostimulants in adulthood are reported [as reviewed by 99 and 100] highlighting risk

factors for the progression to addiction. Biological females are considered more sensitive to

the effects of psychostimulants than males, and often exhibit exaggerated behavioral responses

to psychostimulants that are regulated by circulating female hormone levels [101, as reviewed

by 102]. In our future research, we intend to incorporate female animals to examine the rela-

tion between adolescence and sex as a biological variables in the development and expression

of AMPH sensitization.

The decreased effectiveness of AMD3100 in our AMD-AMPH group over the four days of

testing could represent the characteristic neuromolecular plasticity associated with adolescence

and synaptogenesis within the CXCL12-CXCR4 axis. Accordingly, it is not surprising that

AMD3100 pretreatment had no effect on the development of sensitized AMPH induced ste-

reotypies. In their 1997 review, Pierce and Kalivas argue that repeated administration to psy-

chostimulants can induce differential sensitization of ambulatory and stereotyped behavior

[103]. Furthermore, exposure to stress and subsequent glucocorticoid receptor activation alters

rodent locomotor behavioral sensitization in response to repeated psychostimulant adminis-

tration [104, 105]. Adolescence also modulates sensitized behavioral responses to psychosti-

mulant exposure in rodents, as a single exposure to a high dose of cocaine differentially

induced behavioral sensitization to a challenge dose [106]. Taken together, the discrepancy in

sensitized locomotor responses between ambulatory and stereotyped behaviors may be attrib-

uted to (1) rodent experimental differences in sensitized locomotor responses to repeated psy-

chostimulant administration, (2) natural differences in trait-anxiety phenotypes and

subsequent activation of the hypothalamic-pituitary-adrenal (HPA) axis, and (3) the adoles-

cent developmental period conferring differentiated responses to repeated amphetamine

administration in rodents. Thus, it is possible that these mechanisms are unique to the adoles-

cent brain. The development and reorganization of the adolescent brain require greater

immune and nutrient availability for growth that could be shifted by psychostimulant

PLOS ONE Amphetamine alters locomotion and is altered by chemokine signaling in adolescent male rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0247707 March 1, 2021 13 / 22

https://doi.org/10.1371/journal.pone.0247707


experience. The refinement and modification of neuronal and glial systems in the prefrontal

cortex and throughout the rest of the brain, is aided in part by chemokines [107, as reviewed

by 108]. The CXCL12-CXCR4 axis has specific functions to aid progenitor cell migration, pro-

liferation, and axonal pathfinding in the neonatal period [66, 109–111]. Although CXCR4 lev-

els decrease two weeks following the neonatal period, when they have reached their temporary

maximal peak [112], we report evidence that repeated exposure to a moderate dose of AMPH

significantly increased adolescent CXCR4 expression in the dorsomedial striatum. We, there-

fore, hypothesize that CXCR4 is recruited in the presence of repeated AMPH exposure to

increase signaling, synaptic plasticity, and neuronal activation throughout the adolescent brain.

We also observed that AMD3100-SAL treated rats exhibited a significant increase in

CXCR4 protein levels comparable to that of AMD3100-AMPH and SAL-AMPH treated rats.

CXCR4 is downregulated in cortical circuit neurons from the early postnatal period through-

out adolescence and into adulthood in mammals [66, as reviewed by 113]. In the present

study, the observed changes in CXCR4 protein expression may be a compensatory attempt by

the adolescent neuroimmune microenvironment to correct cell positioning and function after

the neurotoxic effects of repeated AMD3100 and AMPH exposure on cell activity. Further-

more, it is also likely that given AMD3100 affects other signaling mechanisms, their recruit-

ment may serve to augment CXCR4 protein levels. Another possibility is that any suppressive

effects of AMD3100 on striatal CXCR4 expression may be acute and, therefore, our one-week

withdrawal period is too long to detect transient changes that may have occurred during the

four-day AMPH sensitization regimen. Future experiments should be designed to delineate

these theoretical possibilities. Moreover, differential CXCR4 protein expression is evidenced

in other psychiatric disorders [114] and physiological system dysregulation [115, 116] as well.

Our findings demonstrate that striatal CXCR4 receptors are upregulated in response to

repeated AMPH exposure and CXCR4 antagonism and these changes are linked to

CXCL12-CXCR4 axis alterations observed in other diseased/disordered states.

Although we did not extend our findings to additional dopaminergic mesocorticolimbic

regions that regulate psychostimulant addiction-like behaviors, there is an emerging body of lit-

erature that implicates other dopaminergic region alterations in chemokine activity and relates

this to psychostimulant exposure related rodent behaviors [37, 77, 117–120]. For example, exog-

enous CXCL12 administration prior to cocaine injection into the nucleus accumbens shell has

inhibitory effects on rat activity [120]. Furthermore, CXCL12 signaling mediates the migratory

process and maintenance of in vitro and in vivo rodent dopaminergic neurons within the VTA

[121] and CXCL12 protein levels are required for executive function and inhibitory gating

within the mPFC [122, 123]. Thus, chemokine activity is implicated in psychostimulant-related

behaviors throughout the dopaminergic mesocorticolimbic pathway. Future research should

center on further elucidating the role of various chemokines systems in the mesocorticolimbic

pathway on the rewarding and psychomotor-activating effects of psychostimulants.

One potential direction that could clarify the depth of CXCR4 activity on the development

and maintenance of AMPH sensitization would be to better understand the genetic and epige-

netic properties of CXCR4. In the present study, increased expression of striatal CXCR4 pro-

tein could be indicative of compensatory mechanisms for intracellular regulation, such as

heterologous dimerization with CXCR7 or the production of upregulated proinflammatory

signaling factors like nuclear factor kappa beta (NF-κB), toll-like receptor 4 (TLR4), and Pro-

tein kinase B that follow G-protein coupled receptor activation [96, 124, 125]. A future direc-

tion for our animal model would be to assess and map genetic and epigenetic substrates within

these proinflammatory pathways to psychostimulant-induced behavioral outcomes. For exam-

ple, repeated methamphetamine exposure upregulates mouse striatal CCR2 mRNA and

increases expression of the epigenetic marker histone H3 lysine 4 (H3K4) trimethylation at the
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CCR2 promoter region [79]. Additionally, in a mouse model, paternal sire cocaine use affected

filial 1 offspring’s drug preference along with significant chemokine (and other systems associ-

ated with psychostimulant exposure and neurodevelopment) and gene expression changes in

the ventral striatum [126]. Drug-induced behavioral and epigenetic alterations to chemokine

systems within the rodent mesocorticolimbic pathway extends to other drugs of abuse as well,

such as morphine [127]. Taken together, genetic and epigenetic markers map onto psychosti-

mulant exposure and chemokine activity in the rodent brain and this relation should be fur-

ther explored in future work.

The present study demonstrates that CXCR4 antagonism with AMD3100 is sufficient to

modify the development of amphetamine sensitization in a male adolescent rat model. We

show here that dorsomedial striatal CXCR4 protein levels are enhanced by repeated AMPH

exposure and CXCR4 antagonism. These findings further implicate the CXCL12-CXCR4 axis

in the development of amphetamine sensitization and encourages additional experimental

research to examine adolescent psychostimulant vulnerabilities and/or therapeutic develop-

ment involving this neuroimmune axis.
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