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Abstract: Genome-editing, a recent technological advancement in the field of life sciences, is one of
the great examples of techniques used to explore the understanding of the biological phenomenon.
Besides having different site-directed nucleases for genome editing over a decade ago, the CRISPR/Cas
(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) based genome
editing approach has become a choice of technique due to its simplicity, ease of access, cost, and
flexibility. In the present review, several CRISPR/Cas based approaches have been discussed,
considering recent advances and challenges to implicate those in the crop improvement programs.
Successful examples where CRISPR/Cas approach has been used to improve the biotic and abiotic
stress tolerance, and traits related to yield and plant architecture have been discussed. The review
highlights the challenges to implement the genome editing in polyploid crop plants like wheat,
canola, and sugarcane. Challenges for plants difficult to transform and germline-specific gene
expression have been discussed. We have also discussed the notable progress with multi-target
editing approaches based on polycistronic tRNA processing, Csy4 endoribonuclease, intron processing,
and Drosha ribonuclease. Potential to edit multiple targets simultaneously makes it possible to
take up more challenging tasks required to engineer desired crop plants. Similarly, advances like
precision gene editing, promoter bashing, and methylome-editing will also be discussed. The present
review also provides a catalog of available computational tools and servers facilitating designing
of guide-RNA targets, construct designs, and data analysis. The information provided here will be
useful for the efficient exploration of technological advances in genome editing field for the crop
improvement programs.

Keywords: CRISPR/Cas; multi-target editing; promoter bashing; methylome-editing; biotic and
abiotic stress tolerance; plant transformation

1. Introduction

Cells have several inherent mechanisms for the repair of double-strand DNA breaks (DSBs) [1,2].
These DNA repair mechanisms have been acknowledged as important approaches for targeted gene
modification or editing, by introducing precise breaks in the genome at specific sites. Earlier approaches
to modify the genomic DNA and RNA included self-splicing introns, cross-linking agents like psoralen
or bleomycin or other chemical reagents coupled with chemical recognition of DNA sequences using
polyamides or peptide nucleic acids (PNAs), and homing endonucleases encoded by introns [3–7].
These strategies relied on the Watson–Crick base pairing in the nucleic acids. In 1994, Rouet and Smith
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for the first time performed experiments with rare-cutting meganuclease, I-SecI which showed that
introduction of intentional DSBs using meganucleases could be used to achieve local mutagenesis as
well as the incorporation of homologous donor sequences at the target genomic site [8]. Since then, the
field of genome editing has forged ahead enormously.

The current advancements for editing genes include site-specific nucleases, usage of which for
genome editing began with the advent of zinc-finger nucleases (ZFNs) in 2002. The ZFNs were the
first truly target specific protein reagents that revolutionized the field of genome manipulation. ZFNs
are DNA binding domains and specifically recognize three base pairs at the target site [9]. Two
DNA-binding ZFNs are attached with FokI monomer and constructed to create a spacer of 5–6 bp,
enabling the FokI to be functional on dimerization and create DSBs. [10,11]. The fusion protein of zinc
fingers with FokI nuclease had already been established as a restriction enzyme in 1996 by Kim et al. [12],
but their use as site-specific editing tool began only after 2002 when Bibikova and associates used
ZFNs to induce mutagenesis and targeted chromosomal cleavage in Drosophila [11]. It involves the
introduction of targeted DSBs using ZFN that stimulates cellular DNA repair mechanisms. Since
then, ZFNs have been used widely for targeted genome modifications in various plant species such
as Arabidopsis [13,14], tobacco [15–17], and maize [18]. The second class of site-directed mutagenesis,
transcription activator-like effector nucleases (TALENs), identified first in plant pathogenic bacteria
(Xanthomonas), function on a similar principle as ZFNs. TALENs target one nucleotide (instead of
three) at the target site, making TALENs highly specific [19,20]. TALENs have successfully been used
to perform genome editing in angiosperms as well as bryophytes [21–23]. However, difficulties of
protein synthesis, design, and validation needed for TALENs and ZFNs are some of the constraints for
the widespread implementation of these nucleases for regular use.

Recently developed CRISPR/Cas (clustered regularly interspaced short palindromic
repeats/CRISPR-associated protein) technique based on type II prokaryotic adaptive immune system,
that helps bacteria or archaea against the invading phages, provides an excellent alternative to the
first generation site-directed nucleases [24,25]. TALENs and ZFNs were successfully used for gene
editing, but CRISPR/Cas provides several advantages in terms of design, specificity, multiplexing, cost,
and flexibility over other methods. Recent efforts have expanded the utility of CRIPR/Cas system
by exploring various fundamental aspects of the biological mechanisms (Figure 1). CRISPRs were
identified in bacterial DNA as early as 1987 [26], but their function in bacteria was not understood
until 2005 [27,28], and in 2007 CRISPRs were proved to provide immunity in combination with
Cas protein [29]. In 2012, Doudna and associates were the first ones to perform gene editing using
CRISPR/Cas in a cell-free system [24], and shortly afterward five independent groups applied this
system for editing genes in the animal system [25,30–33]. First reports of gene editing in plants
using CRISPR/Cas9 came in 2013 in the model plants Arabidopsis and Nicotiana benthamina [34,35]
and rice [36]. Three types of CRISPR/Cas systems, utilizing different molecular mechanisms are
found in bacteria. The CRISPR/Cas system used was derived from the prokaryotic type II CRISPR
system of Streptococcus pyogenes, which includes precursor CRISPR RNA (pre-crRNA), trans-activating
crRNA (tracrRNA) and Cas9 nuclease. The tracrRNA is involved in the maturation of pre-crRNAs
into crRNAs [37]. Type II system utilizes a single protein for target recognition and cleavage. Dual
tracrRNA:crRNAs are engineered as single guide RNAs (sgRNAs) while using CRISPR/Cas for genome
editing. sgRNAs retain two critical features, 5′ sequence that is complementary to the target DNA
and 3′ sequence that binds to the Cas9 protein. DSBs generated can be repaired by non-homologous
end joining (NHEJ) and homology directed repair (HDR) to create gene knockout or gene knock-in
type of modifications, respectively (Figure 2) [38]. NHEJ is the most dominating and active pathway
in eukaryotes for repairing DSBs, leading to small insertions or deletions (indels), thus producing
a gene knockout or silencing of a gene. HDR can be utilized in the presence of a repair template,
and can result in insertion, translocation, or inversion of gene sequences. HDR can lead to knock-in,
protein-domain swaps, new gene functions or alteration in gene regulation. HDR can induce more
desirable mutations, but the preference of NHEJ over HDR in natural systems prevents its efficient and
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more frequent application in practical systems. Since its inception, CRISPR/Cas has progressed rapidly
and has been applied successfully in a wide range of plants and on varied traits (Table 1). This review
deals with such technological advancements, including various multi-targeting approaches, precision
editing, epigenome editing, and various other aspects.
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Figure 2. Generalized process for CRISPR/Cas mediated genome editing in plants. sgRNA is composed
of a spacer (black), and crRNA and tracrRNA (both shown here in red), and Cas9 is composed of two
domains: HNH and RuvC-like domain. HNH domain cleaves the DNA strand complementary to the
sgRNA, and RuvC-like domain cleaves the other DNA strand. Cas and sgRNA coding sequences are
cloned into a vector (blue), together or individually, which is transformed into the plant cells. The
sgRNA and Cas9 are expressed in the plant which then leads to double-strand break (DSB), resulting in
activation of DNA repair machinery leading to the modification of DNA sequence and subsequently in
the protein coded by sequences and conclusively in the phenotype. The final step is the screening of
mutations, which is usually done by PCR and sequencing. Abbreviations: Cas9: CRISPR associated
protein 9; crRNA: CRISPR RNA; DSB: double-stranded break; dsREPAIR: double-strand repair; HDR:
homology directed repair; Indel: insertion or deletion mutations; NHEJ: non-homologous end joining;
sgRNA: single guide RNA; tracrRNA: transactivating CRISPR RNA.
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Table 1. Significant studies demonstrating versatile use of genome editing approaches in plants

Mechanism of
Action. Plant Species Target Protein Type of Mutation Promoter Vector Reference

Knockout Apple PDS pcoCas9 fused to
GFBSD2 InDels NA pEgP226-2A-gfbsd2 [39]

Knockout Arabidopsis BRI1, GAI, JAZ1 hSpCas9 InDels NA NA [40]

Knockout Banana PDS Cas9 InDels resulting in early
stop codon NA pRGEB31 [41]

Knockout Rice OsROC5, OsDEP1
Arabidopsis

codon-optimized
Cas9

Small deletions of up to 10
base pairs. NA pZHY988 [42]

Knock-in Rice OsPDS SpCas9

Successful insertion of
Oligo with KpnI+EcoRI
sites resulting in gene

disruption.

ZmUbi pEASY-Blunt
vector [36]

Knock-in Rice
Chlorophyllide-a
oxygenase gene of

rice (CAO1)

Monocot
optimized FnCpf1

Heritable targeted
insertion of repair
template having

hygromcin resistance.

ZmUbi pUC19 backbone [43]

Knock-in Rice ALS pcoLbCpf1
Targeted ALS gene

replacement resulting in
Herbicide resistant plants.

NA pCXUN-LbCpf1 [44]

Knock-in Arabidopsis GLABRA2 (GL2);
ROS1; DME hSpCas9

GFP-DME; DME-GFP;
ROS1-GFP; ROS1-luc

fusions were generated
AtU6 pCambia1300;

pCambia3301 [45]

Knock-in Maize ALS2; LIG SpCas9

Targeted insertion of
MoPAT gene in LIG locus

by upto 83% and
mutation of ALS2 with by

HDR with two oligos.

Ubi pUC19;
pSB11 [46]

Abbreviations: AtU6: Arabidopsis thaliana U6 snoRNA promoter; Cas9: CRISPR associated protein 9; Cpf1: CRISPR from Prevotella and Francisella 1; FnCpf1: Franciella novocida Cpf1;
hSpCas9: human codon-optimized Streptococcus pyogenes Cas9; InDels: Insertion or deletion mutations; NA: Not Available; pcoCas9: plant codon-optimized Cas9; pcoLbCpf1: plant
codon-optimized Lachnospiraceae bacterium Cpf1; SpCas9: Streptococcus pyogenes Cas9; Ubi: ubiquitin promoter: ZmUbi: Zea mays ubiquitin, NA: not available.
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2. Cas Variants and Other Nucleases for Plant Genome Editing

Cas9 is a DNA specific endonuclease that is found in bacterial species—such as Streptococcus
pyogenes, Streptococcus aureus, Streptococcus thermophilus, Francisella novocida, and Brevibacillus
laterosporus—out of which the Streptococcus pyogenes Cas9 (SpCas9) is predominantly used. Cas9 is
a multifunctional protein having two nuclease domains, HNH and RuvC-like domain. Cas9 can
be modified into a nickase, capable of producing a single strand cleavage, by mutating either the
HNH or the RuvC-like domain. Similarly, Cas9 can also be customized into a DNA binding protein,
dead Cas9 (dCas9) by mutating both the domains (dCas9; Asp10

→Ala, His840
→Ala). The SpCas9

uses a 5′-NGG-3′ protospacer adjacent motif (PAM), and even though 5′-NGG-3′ sequence occurs
approximately 5–10 times in every 100 bp in model plant species [47] the PAM requirement is still
a bottleneck for the Cas9 targetable sites. To overcome this issue, many Cas9 variants and Cas9
orthologs with various PAM preferences have been used to achieve the same results as the wild type
CRISPR/Cas9 system. One of such systems is CRISPR from Prevotella and Francisella (Cpf1), which is
more recently cited as Cas12a, is a nuclease of class II type V and lacks the HNH domain, possessing
only the RuvC-like domain naturally. Cpf1 yields break sites with staggered cuts rather than blunt
ends as Cas9 [48]. Cpf1 requires a T rich PAM that increases the number of possible plant genetic
manipulations and a shorter crRNA than Cas9 [49]. However, short crRNAs increase the possibility
of having a secondary structure in the RNA. Also, Cpf1 edited lines may need precise genomic
evaluation as Cpf1 has been shown to cause genomic rearrangements in regions surrounding the
target sites [50]. Nonetheless, Cpf1 has already been used in many plant species such as rice [43,51,52]
and Arabidopsis [53] and offers a great alternative to Cas9 and a wider range of targetable genes
in addition to the ones offered by Cas9. More recently, a new class II system encoding a miniature
(529 amino acids) effector, Cas14a1, has been identified [54] Importantly, this Cas variant functions as a
PAM-independent single stranded DNA nuclease. Many more Cas variants and orthologs are being
discovered [55] and exploited for gene editing purposes since the CRISPR/Cas system is a general
immune system present in bacteria and archaea for protection against bacteriophages.

3. Genes Targeted for Genome Editing in Plants

Genome editing has also been used in plants for functional annotation of various genes previously
deciphered and proved to be associated with many vital processes. For example, stress-related genes,
ideal marker genes, genes related to plant architecture have been targeted, which are discussed in the
subsequent sections.

3.1. Evaluation of CRISPR/Cas Efficiency Using Easily Scorable Marker Genes

CRISPR/Cas9 is still in preliminary stages of development, therefore the most frequently targeted
genes used for genome editing includes the genes which have been proved to be an easily scorable
marker for plants (Table 1). Genes regulating pigmentation in plants have been used most frequently
to evaluate the precision and efficiency of the CRISPR/Cas9 system. One such gene is Phytoene
desaturase (Pds), which functions in the carotenoid synthesis pathway and converts 15-cis phytoene to
zeta-carotene. The knockout of this gene results in decreased carotenoid synthesis, thereby leading
to photobleached or albino phenotype. Most of the preliminary work have targeted Pds gene to
demonstrate the successful application of CRISPR/Cas9 in different plant species [34,39,41,56], including
horticultural woody plants, such as Actinia chinensis (kiwifruit) [57], Coffea canephora (coffee) [58],
Mannihot esculenta (cassava) [59], and apple [60]. Many other marker genes frequently used to study
CRISPR/Cas9 include Chloroplastos alterdos (Cla1), Coumarate;CoA ligase (CL), Rice Outermost Cell-specific
(ROC), Brassinosteroid insensitive (Bri), Gibberellic acid insensitive (Gai), and Young seedling albino (Ysa).
Mutations in these genes produce easy to score phenotypes, like Cla1, which is involved in chloroplast
development and when silenced results in an albino phenotype in the true leaves of cotton [61,62].
Similarly, the silencing of ROC results in curly leaf phenotype in rice plants [40]. However, these



Cells 2019, 8, 1386 7 of 39

genes can interfere with normal growth and development of seedlings, as is characterized in case of
Pds. Mutation in Pds results in stunted growth due to insufficient nutrition availability, a result of
abnormal chloroplast development in the proplastid stage. Therefore, marker genes like Ysa should be
preferred as it produces albino phenotype only in the seedling stage and has no negative effect on other
agronomical traits at the later stages of plant growth. Thus, Ysa gene has been effectively used in rice
for genome editing, indicating successful alterations in the genetic material without interfering much
with plant growth and. Although the exogenous application of Gibberellic acid (GA) has been proved
to help rectify the alterations produced by Pds3 in Arabidopsis [63]. Such factors can be identified and
used in the culture to correct the negative alterations produced by marker genes. Additional marker
genes frequently used for genome editing are β-glucuronidase (GUS) and green fluorescent protein
(GFP), but these genes cannot be used efficiently since the GUS requires histochemical assaying for
detection and GFP requires special methods to detect the inflorescence and differentiate inflorescence
from normal colors. Therefore, proper selection of marker genes is required for efficient evaluation of
genome editing tools.

3.2. Translational Efforts by Targeting Genes Previously Annotated with RNAi

Genome editing is currently being applied to create a knockout mutation in numerous genes
previously annotated by using RNAi. For instance, CRISPR/Cas9 approach has been used to knockout
Mildew Locus O (MLO-7) in grapevine [64], Self-pruning 5G (SP5G) in tomato [65], and ROC gene5 in
rice [40] which were previously characterized by RNAi technology. Targeting previously annotated
genes is indispensable for two major reasons, firstly CRISPR/Cas is still at preliminary stages of its
application that need conformational studies, and secondly to circumvent the stringent and costly
regulations raised for the commercial release of transgenic varieties developed using RNAi technology.
Crops improved using genome-editing, without any foreign piece of DNA, have already been given
the non-transgenic tag by the United States government and the same is being anticipated from other
countries as well. Therefore, for tranquil, inexpensive, profitable, and commercially facile release of
improved crop varieties, gene editing using the CRISPR/Cas system is being preferred over RNAi.
Another factor is the possibility of targeting multiple genes simultaneously using CRISPR/Cas. Genes
earlier annotated using RNAi have been included in multi targeting constructs of CRISPR/Cas, such as
pectate lyase (PL), which is involved in tomato fruit softening [66]. PL was targeted along with two
other pectin degrading enzymes, namely polygalacturonase 2a (PG2a) and β-galactanase (TBG4) for
the comparative analysis of tomato cell wall mutants [67]. Analyzing mutants in different experimental
systems is quite difficult and ambiguous. CRISPR/Cas provides an opportunity to mitigate this
difficulty by targeting multiple genes at once. Multiplexed gene targeting is discussed later in this
review in detail.

3.3. Genes for the Enhancement of Resistance against Biotic Stresses

Significant yield losses occur worldwide every year because of biotic and abiotic stresses.
To achieve sustainable and secure yield enhancement, engineering crop plants against stress conditions
is a valuable task. Biotic stresses faced by plants include fungal pathogens, bacteria, nematodes, plant
parasites, harmful insects, and plant viruses. Plant viruses alone cause damage of up to 10–15% in crop
yield globally [68]. Ali et al., (2016) have demonstrated efficient targeting and cleavage of Cotton leaf curl
Kokhran virus (CLCuKoV) and also illustrated that simultaneous resistance for multiple begomoviruses
can be developed by targeting the conserved nonanucleotide sequence (TYLCV, CLCuKoV, TYLCSV,
BCTV-Worland, MeMV, and BCTV-Logan), thus conferring broad-spectrum geminivirus resistance to
N. benthamiana plants [69]. A significant factor to be addressed is the ability of geminiviruses to evade
the CRISPR/Cas9 reagents. This can be more frequent due to the continuous arms race between the host
plants and invading viruses. Reports suggest that targeting coding sequences lead to viral variants
capable of evading the CRISPR/Cas9 system, and in contrast to this, elevated viral interference, and no
viral escapes from the CRISPR/Cas9 system were uncovered when non-coding intergenic sequences
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were targeted [70]. Recently, Tashkandi et al. (2018) have also developed tomato plants resistant to
TYLCV, a begomovirus, by targeting the coat protein (CP) or replicase (Rep) with single nucleotide
changes being the predominant modification observed in Cas9 targeted sites [71].

Targeting RNA viruses with CRISPR/Cas9 reagents has been a challenge since the default target
for sgRNA-Cas9 is DNA. However, there is still a possibility as the Cas9 can be programmed to
target RNA [72], and Type III-B and type VI-A CRISPR/Cas system from Leptotrichia shahii (LshCas13a)
or Leptotrichia wadei (LwaCas13a) also mediate cleavage of RNA sequences complementary to the
sgRNA [73]. Recently, Zhang et al. (2018), have accomplished successful application of the above said
concept by programming sgRNA specific for the RNA genome of cucumber mosaic virus (CMV) or
tobacco mosaic virus (TMV). Using Francisella novicida Cas9 (FnCas9) [74], they engineered Nicotiana
benthamiana and Arabidopsis plants with effectively reduced viral titer. Alternate strategies which have
been developed to mitigate this problem include targeting plant gene that is directly involved in
infection, instead of the viral RNA, to render the plant resistant to the viruses. Initiation factors like
eIF4E and eIF(iso)4E are one of such genes, which had already been proved in Arabidopsis to be involved
in Turnip mosaic virus (TuMV) infection. The CRISPR/Cas9 system has been successfully used to develop
Arabidopsis plants resistant to the potyvirus TuMV using this approach [75]. Cucumber (Cucumis sativus
L.) plants partially resistant to two potyviruses namely Papaya ringspot mosaic virus-W and Zucchini
yellow mosaic virus and an ipomovirus like Cucumber vein yellowing virus have also been developed
by targeting eIF4E [76]. Disrupting eIF4E and eIF(iso)4E-like host factors have certain supplementary
benefits, as numerous natural foundations of Potyvirus resistance arise from loss-of-function mutations
in the host initiation factors [77], therefore, providing broad-spectrum resistance. Although the
translation initiation factors are key candidates that can be targeted in the host genome [77], any of the
host genes that encodes a factor required by a virus for the effective spread of infection, is a conceivable
target for alteration. The effective use of CRISPR/Cas9 to develop resistance against viruses, specifies
the potential significance of this system to manage viral diseases in crops.

Gene editing has also been successfully used to improve plant resistance against fungal and
bacterial pathogens [78]. Significant efforts have been made towards powdery mildew resistance
in several crop species. The use of fungicides can efficiently control powdery mildew, but the
rapid evolution of fungal strains to develop resistance to these fungicides and the additional costs
to growers, together with the hazardous effect of fungicides on the environment necessitates the
development of alternative strategies. The most common practice in developing resistant varieties
is targeting susceptible genes (S gene), MLO, which suppress the defense system of plants against
powdery mildew [79]. This denotes that loss-of-function mutations in the MLO alleles should lead to
broad-spectrum resistance to the powdery mildew. Powdery mildew in wheat is caused by Blumeria
graminis f. sp. tritici (Bgt), one of the most damaging plant pathogens in wheat production. Wang et al.
(2014) have successfully knocked out all of the homologs of the MLO gene in hexaploid wheat
by deploying gene editing approach, which renders durable resistance to Bgt in wheat plants [79].
In another study, CRISPR/Cas9 edited tomato plants named as “tomelo” were developed to confer
resistance against powdery mildew by targeting MLO genes [80]. Similarly, the susceptibility (S)
gene, MLO7 has also been targeted in grape for controlling Erysiphe necator infection, a fungal agent
that causes powdery mildew in grapes [64]. Here, ribonucleoproteins (RNPs) were used to directly
deliver CRISPR/Cas9 reagents to the protoplasts of grape cultivar Chardonnay. A similar approach
was used in the same study, for developing apple plants resistant to fire blight pathogen, Erwinia
amylovora, which is an enterobacterial phytopathogen. For this purpose, DIPM-1, DIPM-2, and DIPM-4
genes were targeted for genome editing [81]. CRISPR/Cas9 system for genome editing has also been
successfully exploited in developing resistance to blast disease in japonica rice by targeting codons
close to translation initiation codon of OsERF922 with a sgRNA to introduce indels [82]. These mutant
lines further characterized for many agronomic traits including flag leaf width, flag leaf length, plant
height, number of panicles, rate of seed setting, length of panicle, and seed weight, and none of the
observed traits significantly differed from wild-type plants, implying that alteration of OsERF922 can
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yield plants with increased resistance without any negative effect on plant development. Genome
editing approaches seem promising for combating devastating diseases in crop plants

3.4. Genes for the Enhancement of Abiotic Stress Tolerance in Plants

Abiotic stresses are the most serious constraints in agricultural production, and the negative
impact is bound to worsen with global climate change. Abiotic stress tolerance is governed by
a number of genes and largely influenced by environmental factor which make it challenging to
study [83,84]. Conventional breeding techniques and transgene-based systems, although have helped
to develop resilient crop varieties, but the complex inheritance of abiotic stress-related traits and
higher environment effects make it very difficult to develop novel cultivars using conventional
methods. Similarly, induced mutagenesis is a widely explored method for the genetic improvement
of several crop species besides being entirely dependent on random events [85,86]. CRISPR/Cas9
system can be utilized for forward genetics where manipulation of genes and gene expression can
be performed to study the genetics of abiotic stress response, and thus assist in producing the
stress-resistant crop varieties. The CRISPR/Cas9 approach, which is now being largely exploited in
plant science, is restricted to a very few publications related to its application for the understanding
and development of abiotic stress-resistant plants. Shi et al. (2017) have developed a corn variety
through CRISPR/Cas based genome editing approach which has improved yield under drought stress.
The study has targeted ARGOS8 that negatively regulates ethylene responses. Improved expression
of ARGOS8 in genome-edited plants showed enhanced drought tolerance [87]. In another study,
a tissue-specific AtEF1 promoter was used to drive truncated gRNAs (tru-gRNAs) and Cas9, which
caused mutations in abiotic stress-responsive genes, namely OST2/AHA1 [88], leading to enhanced
stomatal responses in Arabidopsis. Rice genes OsRR22 and OsNAC041 have also been targeted to
increase salinity tolerance [89,90]. A recent study has been successful in targeting 25 different genomic
targets by leveraging RNase/DNase property of Acidaminococcus Cas12a (Cpf1) for multiplexed genome
editing [91]. The approach mentioned above can be helpful for simultaneously targeting the multiple
genes involved in abiotic stress. Aquaporins are some of the prime candidates for abiotic stress
enhancement, where genome editing can be employed to modulate solute transport regulations,
particularly water, urea, H2O2, and silicon [92–94]. Similarly, other transporter proteins are also
prominent candidates for genome editing for the enhancement of abiotic stress tolerance [95–97]. These
factors indicate that the CRISPR/Cas system can be harnessed prolifically for this novel purpose and
will be the future of targeting minor genes of complex quantitative traits related to abiotic stresses [98].

4. Editing Polyploidy Genomes—Challenges and Perspective

The introduction of desirable traits in leading crop varieties using classical breeding approaches is
a very challenging and time-consuming task when it comes to very complex polyploid genomes such
as sugarcane, cotton, wheat, and potato. Introgression of multiple traits and modification of metabolic
pathways is also tricky with conventional breeding approaches in polyploidy plants. However, genome
editing techniques offer several advantages over the conventional breeding process, where multiple
genes or metabolic pathways can be targeted at the same time, without any linkage drag. CRISPR/Cas9
can especially be very efficiently used for many purposes and has already been exploited to generate
broad-spectrum resistance to powdery mildew in wheat [79], and has also been used to generate
mutations in cotton [56,61,99–102], Duncan grapefruit [103,104], and potato [105–108]. Nevertheless,
the large genome size and high copy number in polyploidy crops possess several challenges in
site-directed mutagenesis. These challenges include knock-out of multiple genes with high homology,
but it can be overcome by generating a series of allelic variants and segregating them in the next
generation to select desirable genotype.

Sugarcane being a polyploid, is a classic case of complexities for the efficient exploration of gene
editing techniques. Simultaneous manipulation of all the homologs in sugarcane looks challenging,
primarily due to its large genome size (10 GB) and the number of homologous copies of genes ranging
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from about 8 to 10 [109]. In sugarcane, the chromosome number varies even among species of the same
genus, and the species are also interfertile [110]. Transgene silencing in sugarcane, which is independent
of copy number of genes, very common in primary transformants, primarily post-transcriptional in T0
plants, and regulated by the stage of development of plant [111], is a major issue that obstructs the
successful application of CRISPR-Cas. Birch et al. (2010), have shown that this transgene-silencing is
promotor sequence-specific, which makes it obligatory to choose diverse and proficient promoters to
trim down the silencing effects [111]. Lack of an annotated genome for sugarcane also makes it tough
to design sgRNAs to target genes in this crop.

Another fundamental limitation is the requirement of a large number of mutants to study the
multiple forms of alleles present in polyploids. Multiple sgRNAs can achieve mutagenesis in crops
with annotated genome like wheat and cotton, but with sugarcane, even this seems complicated [112].
Nevertheless, with advancing technologies and handy bioinformatics tools, CRISPR-Cas will be the
most widely used tool for molecular improvement of polyploids in the near future.

5. Multi-Targeting Genome Editing Approaches

One of the major and prevalent advantages of CRISPR/Cas9 technology is that it can be used to
target multiple genes (or multiple sites within a gene) to create small or large deletions in the genome
and provides practical applications in basic and applied biological research. In general, two approaches
have been used for expressing multiple gRNA. In the first approach, each gRNA is expressed with an
individual promoter and in second approach multiple gRNAs expressed by one promoter as a single
transcript which is further processed or cleaved off to release individual gRNAs [113]. Currently, there
are several efficient strategies developed to achieve CRISPR/Cas9 enabled multiplex genome editing,
which are discussed below.

5.1. t-RNA Mediated Multi-Targeting Genome Editing

Transfer-RNAs (tRNAs) are a fundamental cellular component of all organisms, and their
production and processing are mediated by RNA-processing systems. With this concept, Xie et al.
(2015) developed an endogenous RNA-processing system to produce multiple gRNA from a single
transcript (Figure 3). They have shown that a synthesized DNA fragment having tRNA–gRNA
in a tandemly arrayed fashion can be proficiently processed into gRNAs having the desired 5′

targeting sequences, which precisely directed Cas9 protein for editing multiple chromosomal targets.
The tRNA-processing system that includes RNaseZ and RNaseP, inherently present in a cell, precisely
cleaves 5′ and 3′ ends of the tRNAs, thereby releasing individual gRNAs. By applying this strategy in
rice plants, stably inherited mutations were readily achieved with up to 100% efficiency, and since tRNA
processing machinery is nearly conserved in all the organisms, similar rates of mutation efficiency
can be expected in a wide range of organisms. The tRNA-based multiple target editing is preferred
over other methods due to several advantages, including the specificity of RNaseP and RNaseZ for
tRNA. Only D-loop arm, acceptor stem and TψC-loop arm of tRNA are obligatory for the detection by
RNase. [114]. The tRNAs also have an internal Pol III promoter site; therefore, tRNA sequences can also
be tapped into as an enhancer system for Pol III. To explore whether the synthetic poly-tRNA-gRNA
(PTG) DNA fragment would be transcribed, processed, and function as predicted, they synthesized
PTG with the structures, tRNA-gRNA (PTG1 and PTG2) or tRNA-gRNA-tRNA (PTG1.1 and PTG2.1),
and as a proof, the qRT-PCR analysis revealed that the level of PTG was 3 to 31 times higher than
the simple sgRNA in rice protoplasts. Moreover, the full tRNA-gRNA transcripts were not detected
by qRT-PCR, further confirming the efficient cleavage of gRNAs from the tRNA-gRNA transcripts
by the tRNA processing system (Figure 3). Pol III promoters (e.g., U3p) similarly transcribe the
PTGs as the sgRNA genes but, PTGs have an advantage as they are not obligated to begin with
a specific nucleotide as is the case with sgRNAs. Therefore, the vectors that are currently used in
CRISPR/Cas9 for the expression of sgRNAs can be used efficiently to express PTGs for the multiplexing
approach (Figure 3). The PTG technology can be also be exercised for the improvement of induction of
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mutations simultaneously in multiple genomic loci, or for deletion of short fragments of chromosomes.
For example, PTG could be used with Cas9 nickase to improve targeting fidelity [115–117] or with
dCas9 transcriptional activator or repressor to manipulate multiple gene expression [118,119].
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Figure 3. Multigene targeting via CRISPR/Cas9 using PTG/Cas9 method. (A) A eukaryotic pre-tRNA
with a depiction of post-transcriptional processing by RNaseP and RNaseZ (depicted as blue and
red arrows respectively), splicing out 5′leader and 3′ trailer respectively. (B) Here, each gRNA with
target-specific sequence (labelled here as circles of different colors) and conserved gRNA sequence
(blank rectangle) is fused to a tRNA coding sequence (rectangles with boxes), which is cleaved after
transcription by RNaseP and RNaseZ to release mature tRNAs and gRNAs (with lines of same colors
as the circles). These processed gRNAs direct Cas9 to the target site, which then causes a double-strand
break (DSB), which is repaired by NHEJ or Homologous recombination (HR).
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A noticeable limitation of the tRNA based multi-target-editing would be the reduction in efficiency
of the PTG system if the number of gRNAs in the polycistron were increased beyond six [114]. This
reduction in the efficiency of PTGs with a high number of gRNAs was probably due to the competition
for Cas9 among gRNAs [114]. However, still, this system seems one of the most efficient systems to
perform multi-target genome editing. The tRNA based genome editing approach has already been
exploited in other crop plants such as tomato [120], maize [121], and wheat [122]. An increasing
number of studies exploring the approach will help to understand the technique and its pros and cons.

5.2. Engineering Introns to Express sgRNAs

Pol III and Pol II promoters express small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs)
respectively. The snoRNA and miRNA are mostly present in the introns of coding genes and processed
by their biogenic pathway. Similarly, gRNAs can also be engineered from introns of Cas9 or Cpf1 by
modifying the RNA processing machinery to precisely cut individual gRNAs without disrupting the
standard splicing mechanism. Since introns are universal modules of a eukaryotic genome, they can be
engineered to express gRNAs in virtually all the eukaryotes (Figure 4). Intron PTGs constructs (inPTGs)
have comparable fragment deletion frequencies up to 30.9% with the PTG constructs. Full length and
truncated introns have also been tested, and not much difference was found in the editing efficiency
using these two, revealing that intron length has no profound influence in this method. The inPTGs
can also be expressed by various Pol II promoters at different positions in the host genome efficiently,
rendering inPTGs flexibility to enhance the editing efficiency further. The inPTGs have also been
successfully applied in CRISPR/Cpf1 crRNAs system, and the gene editing efficiency of intronic
crRNAs was almost two-fold higher than conventional U3p expressed crRNAs. In addition to the
benefits of using Pol II as promoters for gRNAs with Pol III terminator, inPTGs allow loading of
multiple gRNA-tRNA units as the introns are thousands of base pairs long. Moreover, the inPTG
method allows the synchronization and balancing of Cas9/Cpf1 and gRNA/crRNA expression with
robustness and flexibility, without introducing additional RNAs or ribonucleases, thus minimizing the
risk of the potential toxicity of additional nucleases to the cell [123]. This intricate strategy developed
by Ding et al. [123] to express multiple gRNAs from the introns of Cas9 gene, utilizing the endogenous
tRNA system to splice out the gRNAs in Cas system or crRNA processing capability of Cpf1 nuclease,
exhibits greater efficiency than standard Cpf1 vectors. Because of its simplicity, this approach can be
used on a broader platform efficiently.
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Figure 4. Schematic representation of multiplex genome editing by utilizing intron polycistronic transfer RNA-guide RNAs (inPTGs). Here, figure (A) depicts the
regular small nuclear ribonucleoprotein (snRNP) mediated splicing mechanism. (B) Introns are engineered to code for fused polycistronic tRNA-gRNAs (PTGs).
(C) PTGs are further processed to release individual gRNAs (shown here in different colors) via the tRNA processing machinery. Individual gRNAs can then go on to
target their complementary loci in the genome.



Cells 2019, 8, 1386 14 of 39

5.3. Csy4 Nuclease Mediated Multi-Targeting Genome Editing

The Csy4 endoribonuclease, from Pseudomonas aeruginosa has been effectively exploited to excise
multiple gRNAs from synthetic polycistronic transcript [115]. Multiple gene expression was observed
by designing gRNAs in a tandem array, each flanked by recognition sequences for Csy4 (Figure 5).
Also, the bacterial origin of Csy4 makes it a suitable tool for building complex synthetic circuits
without interfering with the endogenous RNA machinery of the host cell [124,125]. The successful
functioning of Csy4 endonuclease has been shown in several, plants. The Csy4 endoribonuclease
from Pseudomonas aeruginosa has a high substrate specificity towards a 28 nucleotides RNA stem-loop
(5′-GTTCACTGCCGTATAGGCAGCTAAGAAA-3′) [126]. Once bound to the RNA stem-loop, Csy4
cleaves after the guanine at position 20, allowing to generate multiple RNA transcripts. The RNA
processing ability of Csy4 can be applied for gene deletion and interference lucratively. The PTG and cys4
mediated multiplexing has also been successfully validated in tomato (Solanum lycopersicum), tobacco
(Nicotiana tabacum), barley (Hordeum vulgare), wheat (Triticum aestivum), and Medicago truncatula [127].
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Figure 5. Multiplex gene editing using CRISPR system Yersinia (Csy4) endonuclease, shown here as
blue circles. Csy4 restriction sites are cloned between each sgRNA, and Csy4 endonuclease gene is also
cloned in the same vector. Expression of Csy4 endonuclease results in the separation of individual
sgRNAs, which can then go on to target their respective sites.

5.4. Drosha-Based Multi-Targeting Genome Editing

Drosha based multi-targeting genome editing approach is a multi-target genome editing approach
in which tandem consecutively arranged miRNA (or shRNAs)-sgRNA genes are expressed under
the control of a single polymerase II promoter. Generally, Pol III promoters are manipulated to
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express sgRNAs because of the lack of special structures such as 5′ cap, 3′ tail or introns, but they
are inefficient because of short length and limited life of Pol III transcripts (Figure 6). Polymerase II
transcribed sgRNAs are desired because of their ability to be expressed in a tissue-specific and flexible
manner, but these have redundant nuclease activity because of the 5′ cap structure. This issue can be
rectified by using miRNA-based strategy, using the microprocessor protein complex, comprised of
Drosha, an RNase III enzyme, and its cofactor, DGCR8 or Pasha for the production of mature gRNAs
and miRNAs [128]. Even though a highly robust approach, it is still relatively less preferred by the
plant scientists.
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Figure 6. Drosha based approach for multiplex gene editing. In this system, gRNAs and miRNAs
are cloned in a tandem array. Dicer cleaves the miRNA ends and thereby separating gRNAs also.
The pathway on the left explains the general scheme for miRNA mediated mRNA targeting, and the one
on right side explains miRNA-based gRNA multiplexing system. Abbreviations. miRNA: micro RNA;
gRNA: guide RNA; RISC: RNA induced gene silencing complex; Cas9: CRISPR associated protein 9;
RNase: ribonuclease; sgRNA: single guide RNA. Here, sgRNA and gRNA imply the same entity.

6. Precision Editing/Base-Editing Approach

Use of CRISPR/Cas approach is straight forward when it comes to generating knockouts, but precise
base editing remains challenging because of the preference of NHEJ instead of HDR pathway for
the repair of DSB in natural systems. Moreover, HDR also requires an oligonucleotide template
(donor template) to be developed and transferred along-with CRISPR/Cas reagents into the cells,
for target-specific recombination and gene repair. Methods have been developed to precisely edit
bases in DNA without causing DSBs using CRISPR/Cas mechanism by using modified chimeric Cas
protein, having a DNA recognition module attached to a catalytic domain with the ability of chemically
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modifying the bases. The dCas9 guided by a sgRNA is used most of the times in such a system, with
reduced insertions and deletions (Figure 7) [129]. First base editor developed by Liu et al. in 2016
is APOBEC deaminase fused to dCas9 that converted cytidine (C) to uracil (U). The resulting U-G
mismatches subsequently form U-A, and finally, the T-A base pairs [130]. BE2 is another base editor
developed afterward that uses Uracil DNA Glycosylase, which inhibits the excision repair pathway and
can be added to increase efficiency. Another system that resulted in an improvement of the technique
is BE3, that uses Cas9 D10A nickase, is similar to activation-induced cytidine deaminase (AID) and
results in a six-fold increase in the efficiency. The CRISPR-X and targeted AID-mediated mutagenesis
use such a strategy to generate mutations at localized sites [131,132]. Adenine DNA deaminases have
also been developed, which do not occur naturally.

Although initially applied in animal systems aspiring to reduce the off-target editing, this system
has also been effectively used in plant system—including wheat, maize, rice, cotton, potato, and
tomato [133–137]—and provides an opportunity to tweak the vital agronomic traits which are due to
single base-pair mutations. Base editing in rice targeting ALS and FTIP1e generated double mutants
resulting in resistance to two herbicides [134] and can be further used to improve the 14 identified
agronomic traits in rice and flavor and fruit weight in tomato as well [138]. Even though rates of
indel are significantly higher in plants as compared to that observed in mammalian species, the indel
frequency is still lower than the traditional HDR based CRISPR/Cas9 [34,139].

The indels produced by wild type Cas9 are random and do not ensure knocking out of a gene,
rather some indels may also enhance the function of the protein to be targeted. The BE3 systems have
also been used for CRISPR-STOP and iSTOP for base editing mediated introduction of early non-sense
codons [140,141]. CRISPR-STOP and iSTOP produce knockouts via early truncation of target locus,
which is in contrast to CRISPR interference (CRISPRi). Specific codons—namely CGA (Arg), CAA
(Gln), TGG (Trp), and CAG (Gln)—can be targeted in the coding strand using BE3 to create TGA (opal),
TAG (amber), and TAA (ochre) stop codons by changing G to A or C to T. Billon et al.(2017), have
developed an easy to use database to rapidly detect the induced STOP codons in the genome of eight
eukaryotes, which can be very helpful for precise and effective genome editing [140].
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Figure 7. (A) Precision base editing by utilizing cytidine deaminase fused with dCas9. With the help of guide RNA (gRNA), Cas9 make complex at a specific target
site and then the cytidine deaminase act on cysteine present on the opposite strand. The deamination process converts cysteine (C) to uracil (U) which later gets
converted into adenine-thymine base-pair during DNA replication by the inbuilt mismatch repair mechanism. (B,C) CRISPR mediated methylome editing. Dead Cas
(dCas) is fused to a DNA methyltransferase (DNMT3A in case of animals) or a demethylase, such as ten-eleven translocation dioxygenase (tet) in animals, which can
be used to edit the epigenome.
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7. CRISPR Mediated Manipulation of Gene Expression: Promoter Bashing

The CRISPR/Cas system can be used to manipulate the expression levels of a gene by using
catalytically inactive dCas9 fused to a transcriptional regulator. Earlier experiments done with animal
cells implied that fusion of dCas9 with an activator, like VP64, could activate the genes but 3-4 gRNAs
targeting a single promoter is required to activate a gene efficiently [118,142–144]. Piatek et al. (2015)
have already demonstrated the successful application of such a system in plants wherein they have used
dCas9 combined with EDLL and transcription activator-like (TAL), which are plant-specific activators,
and SRDX, which is a repressor, using sgRNAs specific for the Pds gene [145]. Lowder et al. 2015, also
discovered that the dCas9-VP64 activated miR319 and AtPAP1 (Production of anthocyanin pigment 1) by
up to 7-fold, and could also reverse gene silencing due to methylation in AtFIS2 (Fertilization-independent
seed 2) gene in Arabidopsis changing the AtFIS2 expression levels by up to 400-fold [146]. One of
the milestone studies includes the generation of diverse cis-regulatory alleles in tomato by editing
the promoters of genes involved in major productivity traits in tomato, including fruit size, plant
architecture, inflorescence, and branching [147]. These results show that CRISPR/Cas can be a powerful
tool for robust activation and repression of protein-coding as well as non-protein coding genes.

8. CRISPR Mediated Editing of Methylome

DNA methylation is a very important epigenetic modification that controls many biological
processes and gene regulation during development. Post-translational methylation of histone proteins
and modification of the DNA by methylation of cytosine residues are the most important approaches for
epigenetic gene regulation in organisms. DNA methylation is the preferred mode for targeted regulation
of gene expression as it is more stable and can result in long-term effects. DNA methylation maps
with single-nucleotide resolution have been developed for animal cells and specific tissues [148,149].
The same has been done with model plants [150], and this information can be used to define the
differentially methylated regions during different stages of development or in case of a disease
manifestation. Exploring the function of each methylation remains a very daunting task. However,
now this can be accomplished by utilizing the engineered nucleases (dCas or Cpf1) protein fused
to various enzymes, as is done in targeted base editing, by permanent establishment or erasure of
methylation from the targeted nucleotides. For efficiently studying or for developing disease resistance
and for other purposes related to methylation, CRISPR/Cas system can be used for methylation of
specific sites in the genome responsible for activation or deactivation of a particular gene by fusing DNA
methyltransferases to dCas9. DNA demethylases can also be used in a similar manner. CRISPR/Cas
mediated methylation and demethylation has already been achieved in the animal system [151].
In animals, DNMT3a/b is responsible for de novo methylation, DNMT1 is the most operative for the
maintenance of methylation and TET (ten-eleven translocation) dioxygenase is used as a demethylase
as shown in Figure 7. At least three classes of DNA methyltransferases are present in case of plants,
namely MET1, chromomethylases (unique to plants) and the remaining class is very similar to DNMT3
of animals, responsible for de novo methylation. Since plant DNA methyltransferases are very similar
to the animal DNA methyltransferases, methylome editing can thus be performed in plants in a very
similar fashion to animals. Very recently, CRISPR mediated methylome editing has been reported in
Arabidopsis, where a modified SunTag approach has been used along-with the previously characterized
catalytic domain of Nicotiana tabacum DOMAINS REARRANGED METHYLTRANSFERASE (DRM) to
act as a methylation effector, for the manipulation FWA and SUPERMAN genes. This work is also an
insightful example of promoter bashing (using dCas9-VP64 fusion) and site-specific base editing [152].
However, epigenome editing using CRISPR/Cas has been applied in the plant kingdom very scarcely,
but it certainly offers an extensive area of opportunities to the researchers working all over the world,
especially for the improvement of crop plants.
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9. Concerns about Off-Targeting Activities of Cas Protein

The off-target activity of Cas9 protein is a major concern as Cas protein can edit any DNA sequence
having about five mismatches with its sgRNA [153,154], however, in most cases, Cas9/sgRNA cannot
recognize a DNA sequence with mismatches greater than three with the sgRNA. Although the off-target
activity observed in plants is at a superficial level, still there is a need to develop straightforward
methods to overcome the pitfall of off-target effects to ensure specificity of editing by Cas9, increasing
the number of targetable sites and fidelity of Cas9. Many features of the CRISPR/Cas9 reagents have
been characterized regarding the off-targeting tendency of Cas9. Reports suggest that Cas9/sgRNA
cannot recognize and edit a DNA site with mismatches within 10–12 bp of the PAM site, and the Cas9
protein has a higher affinity for NGG-PAM than for NAG-PAM [155]. Several strategies have been
devised to overcome this obstacle of high off-target to on-target ratio. The easily adaptable feature
is a lower concentration of the CRISPR/Cas reagents promote specificity of targeting [155]. Other
strategies include: selecting target sites with a higher GC content (up to 70%) [156]; truncating sgRNAs
at 3′ [157,158] or 5′-end [159] and adding extra GG at the 5′ end; using paired sgRNA Cas9 nickases;
utilizing the FokI nuclease to guide Cas9 [115,160]. Potential off-target sites can also be identified using
next-generation sequencing-based methods such as ChiP sequencing [161], digenome sequencing [162],
and GUIDE-seq [163]. Many bioinformatics tools have also been developed, which can help to reduce
the off-target effect. Cas9 variants with a D10A [116] or H804A modification which converts the Cas9
into a nickase or dCas9 fused to FokI nuclease domain [117], have been developed requiring two
sgRNAs to target one site and thereby reducing the scope for off-targeting. Cas9 variants with 3-4 amino
acid substitutions, which do not tolerate even a single mismatch has also been developed [164]. These
Cas9 variants can be readily used to address the issue of off-target effects in CRISPR/Cas9 technology.
Nevertheless, the off-target concern is not that serious in case of plants as the mutations can be easily
segregated out by performing a couple of backcrosses.

10. Tools Available for Designing sgRNA and Detection of Potential Off-Target Sites

Selection of appropriate target sites is an imperative aspect for reducing the problem of off-target
effects of Cas9 and for ensuring that the target site selected is in the coding region of the gene. Various
bioinformatics tools are now available, which help in selecting appropriate target sites and designing
the sgRNA accordingly, which virtually eliminate the need for applying the above said measures to
reduce the off-target effects. Various other measures can also be kept in check, such as the GC content
of the target site and restriction sites within the selected target. Some of these tools are given in Table 2.
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Table 2. CRISPR associated tools

Tool Specialization Specific Feature Restriction Site
Compatibility

Off-Target Analysis Website Reference

ZiFiT Animal • Identifies all potential
off-target sites.

• Although originally designed for
ZFNs but now also applicable to
CRISPR/Cas.

Absent Present http://zifit.partners.org/ZiFiT/ [165]

CRISPR Direct Animal and plant • Results in the output of a table of
candidate sites with their
sequences, main sequence features,
the number of unique matches in
the genome, Tm, GC%, position of
target site in sequence and ”12-mer
+ PAM” match numbers.

• Accepts accession number, genome
location, and nucleotide sequence
as an input.

• Can also check species specificity
of sequence and mismatches,
indels with the specific genome etc.

Present Present http://crispr.dbcls.jp/ [166]

E-CRISP website Animal, bacteria, fungi,
and plant

• CRISPR/Cas9 targeting for different
protein tagging experiments.

• User can search and import
ENSEMBLID within the
E-CRISP site.

• Ranks gRNAs according to
on-target specificity and number of
off-targets, can adjust stringency,
design based on specific purpose.

• Gives an SAE score (S—specificity,
A—annotation, E—efficiency) to
each target site.

Absent Present http:
//www.e-crisp.org/E-CRISP/

[167]

http://zifit.partners.org/ZiFiT/
http://crispr.dbcls.jp/
http://www.e-crisp.org/E-CRISP/
http://www.e-crisp.org/E-CRISP/
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Table 2. Cont.

Tool Specialization Specific Feature Restriction Site
Compatibility

Off-Target Analysis Website Reference

CRISPRSeek Animal, fungi, bacteria,
and plant included in

Bio String based genome
data packages.

• Optionally filters gRNAs without
restriction enzyme site, or without
paired guide RNAs and fetches
gRNA flanking sequences as well
and indicates whether the target
and off-targets are located in exon
region or not.

• Genome-wide search for
scores, ranks.

• An offline tool and comes as a
software package.

Present Present https://bioconductor.org/
packages/release/bioc/html/

CRISPRseek.html

[168]

flyCRISPR
Optimal Target

Finder

Animal; invertebrates • Uses user specified sequences
rather than target genomes.

• Can be used with
varying stringency.

• User can directly enter the target
sites to evaluate them and confirm
the genomic location, strand, and
species specificity of the target.

Absent Present. http://targetfinder.flycrispr.
neuro.brown.edu/

[169]

https://bioconductor.org/packages/release/bioc/html/CRISPRseek.html
https://bioconductor.org/packages/release/bioc/html/CRISPRseek.html
https://bioconductor.org/packages/release/bioc/html/CRISPRseek.html
http://targetfinder.flycrispr.neuro.brown.edu/
http://targetfinder.flycrispr.neuro.brown.edu/
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Table 2. Cont.

Tool Specialization Specific Feature Restriction Site
Compatibility

Off-Target Analysis Website Reference

CHOPCHOP Animal and plant • Supports Cas9, Cas9 nickase,
Cas13, TALEN, and Cpf1 and the
purpose (knock-out, knock-in,
activation, repression, or nanopore
enrichment) can be specified.

• Target location (5′ or 3′ UTR,
coding region, specific exons,
promoter or splice sites), GC%,
self-complementarity, length of
flanking sequences to be displayed,
restriction enzyme company
preference as well as size of
restriction enzyme binding site can
be specified.

• Also designs primer options for the
selected target for user to
choose from.

• User can also add new species to
the database.

Absent Present http://chopchop.cbu.uib.no/ [170]

CRISPR-Multitarget Animals and plants • Input is in the form of a sequence
or gene or transcript identifiers
based on the genomes available in
the software and works for Cas
nickase as well.

• Designed to work with constitutive
as well as alternative exons present
in particular transcripts.

• User can specify 5′ dinucleotide,
target length, PAM orientation.

• Versatile and can accommodate
almost any possible target
specificity of CRISPR/Cas system.

Absent. CRISPR-Multitargeter
gives links to GT-scan
and Cas-OFFinder to

perform off target
analysis.

http://multicrispr.net/ [171]

http://chopchop.cbu.uib.no/
http://multicrispr.net/
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Table 2. Cont.

Tool Specialization Specific Feature Restriction Site
Compatibility

Off-Target Analysis Website Reference

sgRNAcas9 All organisms • An offline tool.
• Truncated sgRNAs can also

be designed.
• Extracts nucleotide sequences

flanking the target cleavage sites to
design PCR primers for the
validation of mutations by T7E1
cleavage assay.

-NA- Present https://sourceforge.net/
projects/sgrnacas9/;www.

biootools.com

[172]

CRISPR-P Plants • Scores all the possible CRISPR
Target sites, with option to
customize PAM and
on-target score.

• Input should be in FASTA format
or gene or transcript identifiers.

• sgRNA length, snoRNA promoter,
PAM sequence specific for a variety
of Cas and Cpf nucleases.

• Tells about locus, gene, GC content,
secondary structure of sgRNA and
position of the sequence in
the chromosome.

Present Present http://cbi.hzau.edu.cn/cgi-bin/
CRISPR

[173]

SSFinder -NA- • Freeware, easy to edit, and low
memory demand tool compatible
with many commonly used
operating systems.

-NA- -NA- https:
//omictools.com/ssfinder-tool

[174]

https://sourceforge.net/projects/sgrnacas9/;www.biootools.com
https://sourceforge.net/projects/sgrnacas9/;www.biootools.com
https://sourceforge.net/projects/sgrnacas9/;www.biootools.com
http://cbi.hzau.edu.cn/cgi-bin/CRISPR
http://cbi.hzau.edu.cn/cgi-bin/CRISPR
https://omictools.com/ssfinder-tool
https://omictools.com/ssfinder-tool


Cells 2019, 8, 1386 24 of 39

Table 2. Cont.

Tool Specialization Specific Feature Restriction Site
Compatibility

Off-Target Analysis Website Reference

GT-Scan Animals and plants • Calculates GC%, number of
mismatches as well as
exact matches.

• User can set high specificity
mismatch limit.

• Displays the position and location
of the target in the genomic
database, and the strand on which
the target is present as well.

Absent Present http://gt-scan.braembl.org.au/
gt-scan/

[175]

CRISPR gRNA
Design Tool

(DNA2.0 design
tool)

Animals and plants
(Arabidopsis)

• User can check the specificity of
self-designed gRNAs in
specific genomes.

• Limited species number.
• User can choose between wild type

Cas9 or nickase.
• Allows you to visualize the

position for your gRNA relative to
the splice variants and any
overlapping genes.

Absent Present https://www.atum.bio/
eCommerce/cas9/input

CCTop Animals and Plants • Evaluates target sites within the
input sequence against a
genome database.

• Displays the off-target site details
(coordinates, gene ID, distance,
etc.).

Absent Present https:
//crispr.cos.uni-heidelberg.de/

[176]

http://gt-scan.braembl.org.au/gt-scan/
http://gt-scan.braembl.org.au/gt-scan/
https://www.atum.bio/eCommerce/cas9/input
https://www.atum.bio/eCommerce/cas9/input
https://crispr.cos.uni-heidelberg.de/
https://crispr.cos.uni-heidelberg.de/
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Table 2. Cont.

Tool Specialization Specific Feature Restriction Site
Compatibility

Off-Target Analysis Website Reference

Cas-OFFinder Animals, plants and
others (fungi, bacteria,

virus)

• Online or downloadable program.
• Searches potential off-target sites

for a variety of
CRISPR/Cas systems.

• In addition to base mismatches,
DNA or RNA bulges are included
in the search and results can also
be filtered.

-NA- Present http://www.rgenome.net/cas-
offinder/

[177]

Breaking-Cas All eukaryotic genomes
present in ENSEMBL.

(protists, fungi, bacteria,
plants and animals)

• Accepts nucleotide FASTA as input.
• Cas9 and Cpf1 variants, as well as

customized PAM specificity, PAM
position (5′or 3′), sgRNA length.

• Most extensive number of genomes
are accessible.

Absent Present http://bioinfogp.cnb.csic.es/
tools/breakingcas

[178]

Abbreviations: CRISPR—Clustered Regularly Interspaced Short Palindromic Repeats. Cas—CRISPR Associated protein. GT—gene target. NA—Not available. PAM—Protospacer
adjacent motif. RFN—RNA-guided FokI Nuclease. sgRNA—single guide RNA. Tm—Melting temperature. ZiFiT- Zinc Finger Targeter.

http://www.rgenome.net/cas-offinder/
http://www.rgenome.net/cas-offinder/
http://bioinfogp.cnb.csic.es/tools/breakingcas
http://bioinfogp.cnb.csic.es/tools/breakingcas
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11. Challenges for Plants Difficult to Transform

Although CRISPR/Cas is an unparalleled and pioneering technology, still there are some bottlenecks
for its effective application in the area of crop improvement and translational research. One of those
bottlenecks is efficacious delivery of transformation vectors into the correct host cells and further
successful regeneration of plants. Plant transformation progresses through two consecutive steps:
Transient transformation and stable transformation. Stable transformation being responsible for the
production of edited plants having heritable mutations, of which the integrated transgene of nuclease
can be segregated away to produce transgene-free plants.

Agrobacterium-mediated and biolistic transformation methods remain the most applied
transformation methods, but they are incompetent for many crops with the main challenges being:
(1) low incidence of stably transformed plants, (2) long tissue culture periods, (3) tissue damage
due to biolistic transformation, (4) limitation of Agrobacterium-mediated transformation to very few
genotypes in a species, (5) Agrobacterium induced browning and necrosis of tissues, (6) induction of
somatic mutations, (7) difficulties in transforming monocot species using Agrobacterium, and (8) low
quantities of DNA delivered via Agrobacterium-mediated transformation which are insufficient for
efficient HDR. Also, most of the time, cells easily regenerated cannot be transformed or vice versa
and meticulous optimization of tissue and cell culture media with appropriate growth regulators
are required [179]. Therefore, alternate transformation strategies that are proficient, easy to use,
labor-saving, and simplified are required. Some of the improved transformation strategies are given in
the following section.

Hand-In-Hand Improved Transformation Approaches

Some advancements in strategies used for plant transformation have already been made, and
much work is simultaneously going on. One such strategy is to increase the frequency of HDR
because efficient HDR requires high titers of nuclease and repair template to be delivered into the plant
cell. Viral vectors are being developed to deliver large numbers of nucleases and repair templates
aiming at increasing the frequency of HDR [180]. Agrobacterium species with a broader host range
should also be developed. Many bacterial species other than Agrobacterium, capable of transforming
diverse plant species have also been reported. These include Sinorhizobium meliloti, Mesorhizobium loti,
Rhizobium sp. NGR234 and other Rhizobium species, and Ensifer adhaerens [181–183], of which at least
Sinorhizobium meliloti has been shown to be capable of infecting both dicots and monocots [184]. Most of
the microorganisms capable of transferring genetic material into plant cells use Agrobacterium-derived
DNA transfer machinery, but a Rhizobium species has been identified recently which is capable of
transferring DNA with its protein apparatus [185]. Tobacco rattle virus (TRV) based vectors used for
virus-induced gene silencing (VIGS) have also been developed and demonstrated to work efficiently for
the delivery of gRNA and Cas9 in Nicotiana benthamiana germline cells, bypassing the requirement for
plant transformation, and can infect multiple plant species. TRV based system is also crucial because
the viral RNA genome does not integrate into the plant DNA genome and thus is a desirable factor to
generate transgene-free plants [186]. Recently, Lowe et al. (2016) developed a ‘genotype independent’
method to improve the transformation efficiencies in several recalcitrant monocot species including
maize, sorghum, sugarcane, and rice. In this technology, they expressed developmental regulators
Baby Boom and Wuschel2 to stimulate the proliferation of transformed cells and recover transgenic
plants at higher frequencies. [187]. Many other novel methods—such as magnetofaction using iron
nanoparticles for pollen transformation [188], agar-trap method for liverwort transformation [189],
mesoporous silica nanoparticles [190,191], carbon nano-fibres [192], and fluorescently labeled starch
nano-particles [193]—have been developed which majorly use particle bombardment but can be used on
a very wide platform and with much higher efficiency. Of these advancements, pollen magnetofaction
is particularly interesting in that it provides an opportunity to generate transformed seeds directly
without regeneration, and is genotype independent as well as culture-free. This technique has been
successfully applied in cotton, which is difficult to regenerate. The transgene was shown to integrate
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into the genome stably, effectively expressed, and transferred stably to the subsequent generations [188].
The use of regeneration boosters to help regenerate recalcitrant species seems to have tremendous
applicability. Dependence on resistance marker gene for the selection of plants in the CRISPR/Cas
application is tedious, and at least two generations must be screened to check the efficiency of the
transgene. The use of fluorescent proteins as a selectable marker, in recent years, has emerged as a
speedy method to identify transgene. In Arabidopsis thaliana, it has been successfully applied to check
transgene expression [194]. However, due to the necessity of in vitro transformation protocol, it has
not been tested in other species. Aliaga-Franco, Cunjin [195] applied the Golden Braid cloning system
in Arabidopsis, rice, and tomato and used DsRed fluorescence as a marker that operates accurately
in dry seeds and helps to select transgene-free dry seeds. This technique has also been applied in
hexaploid wheat (Triticum aestivum) for the production of male-sterile lines by targeting Ms1 (Male
fertility gene) [196]. Using a marker-free system is another advancement that utilizes the competence
of transformed and non-transformed entities to regenerate by using regeneration promoting factors
such as cycD3 gene, cytokinin, and auxin-related genes [197]. Discovery of simplified protocols for
plant transformation not requiring plant tissue culture, easily reproducible in multiple labs and not
requiring much expertise is needed for the application of gene editing on a broad range of plant species.

12. DNA-Free Reagent Delivery Methods

CRISPR/Cas mediated genome-edited plants can be classified as non-genetically modified.
However, the most frequently used methods for the delivery of constructs also lead to the insertion of
transgene/s in the plant genome, therefore resulting in transgenics and a need to segregate the inserted
genes in the following generation. However, this process is more troublesome if transgenes are inserted
at multiple sites into the genome. Additionally, RNP mediated genome editing is desirable for clonally
propagated plants. Hence, more novel technologies to altogether bypass the transgenic regulations are
required. One such method is the production of Cas9 RNPs, which are composed of pre-integrated
Cas9 nuclease and sgRNAs, and are equally efficient to generate genetic alterations as DNA-based
transformation methods. In case of plants, RNP complex delivery is inhibited due to the presence of
cell walls and thus is incorporated into naked plant protoplasts. RNPs have been successfully used
in wheat [198], Petunia [199], lettuce, rice, Arabidopsis and tobacco [200], maize [201], and also in
grapes and apple to improve biotic resistance. [81]. Svitashev et al. (2016) [201] have reported much
higher mutation frequencies using RNPs for CRISPR/Cas than using plasmid-based approach. Efficient
delivery and higher cleavage rate, along with the probability of bypassing the transgenic regulations,
make RNPs a tool of choice.

13. Germline-Specific Gene Expression

A lot of early experiments using CRISPR/Cas equally involved rice and Arabidopsis, but the
efficiency of transmission of mutations to subsequent generations was much higher in rice than in
Arabidopsis. The higher efficiency of mutation inheritance was evident from the fact that in experiments
evaluating knocking out effects of CRISPR/Cas involving Pds, the albino phenotype was transmitted to
subsequent primary transgenic generation in rice [36]. However, Arabidopsis took several generations
to obtain the homozygous mutants, with 1-bp deletions and chimeric mutations predominating and
most of the mutations being in somatic cells [202]. This phenomenon is most likely due to different
DSB repair capacity among different cell types. This prompted researchers to use a different cell or
tissue-specific promoters to optimize gRNA and Cas nuclease expression, including germline-specific
gene expression. Some examples of such promoters are given in Table 3. One of the disadvantages
associated with germline-specific promoters is that there is no way to check at an early stage if sgRNA
is being expressed well as no expression can be detected in vegetative tissues. Therefore, if the target
sites are not edited in T0 plants then one might have to wait till T2 or even further generations. Still,
such promoters can be used to increase the gene editing frequency in recalcitrant species and offer vast
potential for technological improvement.
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Table 3. Tissue-specific promoters which can be used in CRISPR/Cas9 technology

S.No. Specificity Promoter Reference

1. Egg cell specific EC1.2 promoter [203]
2. Germ-line-specific SPOROCYTELESS [204]
3. Meiocyte-specific promoter AtDMC1 [205]
4. Pollen-specific promoter Lat52 [204]
5. Egg cell- and early embryo-specific promoter DD45 [204]
6. Dividing tissue specific INCURVATA2 [206]
7. Cell-division specific YAO [207]

14. Future Prospects

CRISPR/Cas based genome editing emerged as a game-changer in recent years due to its enormous
potential to make desired modifications in the genome and also for versatile diagnostic purposes. The
technological advances are being implemented not only for generating knockouts but also knock-ins,
and for activation as well as repression of gene expression. Because of its utility in a practical system,
many advancements have already been achieved in a very short period after its discovery, that
includes DNA free genome editing systems (RNPs), multiple Cas9 variants, many multi-gene targeting
approaches, precise base editing, and measures to increase the frequency of HDR. Advancements in
the CRISPR/Cas related bioinformatics tools have also led to the elevated use of this powerful genome
editing technique. However, the challenge of providing the public with sufficient knowledge regarding
CRISPR/Cas mediated method of modifying crops cannot be discounted, as this is essential to take
laboratory research to the masses, to provide agriculture with a sustainable future. In a case, it is
essential to have laws that clearly mark a line between the gene-edited plants having foreign DNA
and gene-edited plants without any foreign DNA, rendering the latter subject to be bypassed for any
regulations, making the utilization of such plants very trouble-free. As compared to the commercial
release of transgene-free genome-edited plants having a novel mutation, genome-edited plants with
mutation precisely the same which exist with natural variation will be more relaxed, more particularly
in countries where policies are not in the favor. In this regard, the precise genome editing approaches
look promising. The gap between lab to the field is continuously widening because of the regulatory
policies which are not yet well defined. Since gene editing may lead to genome modifications which
occur in nature and the results of genome modifications implemented by the ‘traditional’ methods
and genome editing cannot be distinguished in some cases, and, therefore, special regulation of the
technology is unreasonable. Another opinion states that the legislator should concentrate on the
specific characteristics of the final product rather than on the production method to identify the
possible risk in any case. At the same time, one must not forget about the obligation for proper
assessment and management of risks, regulation of the gene drive issue, and essential precautions for
the use of this technology in the field of reproduction and human genetics. Apart from these issues,
significant efforts are required to improve the transformation techniques which is not yet optimized
for several crop species and highlighted as a bottleneck to explore recent advancement efficiently.
The CRISPR/Cas based genome editing is still limited to sophisticated molecular biology lab which
mostly focuses on the fundamental biological question. In contrast, crop breeders still need to make
significant efforts to implement technological advances in crop improvement programs. Pay-per-use
basis, public as well as private facilities providing service for construct development, transformation,
and evaluation of genome-edited plants, will be game-changer to take the advancements from lab to
field by facilitating crop breeder with most efficient genome editing tools. The information provided
here will be helpful to understand the recent technological advances, knowledge gaps, problems with
technological adaptations which are required for the efficient utilization of genome editing tools for
crop improvement.
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