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Polyphenols in Ilex latifolia Thunb. inhibit 
human lung cancer cell line A549 by regulation 
of the PI3K‑Akt signaling pathway
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Abstract 

Background:  The leaves of the plant Ilex latifolia Thunb. can be made into Kuding tea, which is a drink rich in poly-
phenols. This study aimed to observe the effect of Ilex latifolia Thunb. polyphenols (ILTPs) on human lung cancer cell 
line A549 (A549 cells) by regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.

Methods:  In vitro cultured cells were treated with ILTPs; the proliferation of A549 cells and BEAS-2B human normal 
lung epithelial cells (Beas-2B cells) was observed using the 3-(4,5-dimethylazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) assay, and the survival status of A549 cells was observed by fluorescence staining. The expression of A549 cells 
was observed by quantitative polymerase chain reaction (qPCR) assay and Western blot analysis, while the compound 
composition of ILTPs was detected using high-performance liquid chromatography (HPLC).

Results:  The experimental results showed that the proliferation of Beas-2B cells was unaffected by treatment with 
0–500 μg/mL of ILTPs, whereas the decreased proliferation of A549 cells was observed with the increasing concentra-
tions of ILTPs. Additionally, ILTPs elevated the levels of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) 
and promoted apoptosis in A549 cells. The results of qPCR experiments showed that ILTPs upregulated caspase-9 
mRNA expression and downregulated phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), mammalian target 
of rapamycin (mTOR), B-cell lymphoma-2 (Bcl-2), nuclear factor-κB (NF-κB), vascular endothelial growth factor (VEGF), 
hypoxia-inducible factor-1 alpha (HIF-1α), and cyclooxygenase-2 (COX-2) expression in A549 cells. The Western blot 
analysis results also showed that ILTPs could reduce the protein expression of PI3K and Akt. The HPLC results showed 
that the main compounds present in the ILTPs were rutin, kaempferol, isochlorogenic acid A, isochlorogenic acid B, 
and isochlorogenic acid C.

Conclusions:  Thus, this study indicated that the polyphenols of I. latifolia act as a class of natural functional food 
materials that potently suppress cancer by exerting their inhibitory effects on A549 cell proliferation through five key 
polyphenolic compounds.
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Background
The leaves of Ilex latifolia Thunb. are harvested from 
plants mainly distributed in southwest and south 
China. The leaves are dried and brewed into a tea that 
is consumed as a traditional natural health drink com-
monly known as Kuding tea in China. The Kuding tea 
contains more than 200 components, such as saponins, 

Open Access

BMC Complementary
Medicine and Therapies

*Correspondence:  cqres@foxmail.com
†Jing Chen and Yesheng Du contributed equally.
1 Chongqing Key Laboratory of Translational Research for Cancer 
Metastasis and Individualized Treatment, Chongqing University Cancer 
Hospital, Chongqing 400030, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12906-022-03568-3&domain=pdf


Page 2 of 11Chen et al. BMC Complementary Medicine and Therapies           (2022) 22:85 

amino acids, vitamin C, polyphenols, flavonoids, caf-
feine, and protein [1]. I. latifolia has the functions of 
clearing and relieving heat, moistening the throat and 
relieving cough, reducing blood pressure and weight, 
inhibiting and preventing cancer, activating blood 
vessels, and exerting anti-aging effects [2]. Analysis 
revealed that I. kudingcha contains nearly 6% polyphe-
nols [3]. The polyphenols in the tea can remove harm-
ful free radicals, block lipid peroxidation, increase the 
activity of enzymes in the human body, exert anti-
mutation and anticancer effects, and thus can be used 
for the prevention and auxiliary treatment of various 
cancers such as gastric and colon cancers [4].

Lung cancer is a common primary cancer. The inci-
dence rate and mortality rate of lung cancer rank sec-
ond and first, respectively, among those of all other 
cancer types [5]. The incidence rate of lung cancer has 
increased significantly over the past 50 years. The inci-
dence and mortality rates of lung cancer are the high-
est among all cancer types, with these rates being the 
second highest among females [6]. Studies have shown 
that the polyphenols from green tea, apples, seaweed, 
and rice husks can help in inhibiting lung cancer in 
vitro or in vivo [7, 8].

The expression of the phosphatidylinositol 3-kinase/
protein kinase B (PI3K/Akt) signaling pathway is 
abnormally activated in the occurrence and develop-
ment of some cancers. The two most widely discovered 
mechanisms of PI3K/Akt activation in human cancer 
are triggered by receptor tyrosine kinase and somatic 
mutations in specific elements of signaling pathways 
[9]. The stimulation and promotion of the PI3K path-
way may have a negative impact on cancer treatment, 
and, therefore, the inhibition of PI3K may inhibit can-
cer development [10]. Abnormal stimulation of the 
PI3K/Akt pathway is related to tumor growth, angio-
genesis, and survival [11], in which the loss of func-
tion of tumor suppressor gene phosphatase and tensin 
homolog deleted on chromosome ten (PTEN) is com-
monly seen in human tumors and leads to the stimula-
tion of the PI3K/Akt pathway [12]. The key expression 
of the PI3K/Akt pathway, which includes PI3K, Akt, 
and mammalian target of rapamycin (mTOR), has been 
confirmed to have a clinical targeted therapeutic effect 
[13].

This study verified the inhibitory effect of I. latifolia 
polyphenols on A549 cells by regulating the PI3K/Akt 
signaling pathway in vitro. Moreover, I. latifolia poly-
phenols were analyzed to elucidate the relationship 
between the active components of I. latifolia polyphe-
nols and the regulation of the PI3K/Akt signaling path-
way in lung cancer.

Methods
Preparation of I. latifolia Thunb. polyphenol extract
After freeze-drying, the I. latifolia leaves (Yuqing 
Lvye tea processing factory, Zunyi, Guizhou, China) 
were crushed, 70% ethanol (v/v) was added according 
to the ratio of liquid to material 20:1, and the mixture 
was heated in a water bath at 60°C for 3 h. The ethanol 
extract was passed through the FL-3 macroporous resin 
(Shanghai Yiji Biology Co., Ltd., Shanghai, China), the 
filtrate was collected, and the extract was obtained by 
rotary distillation of the filtrate. After freeze-drying the 
extract, the dried product obtained was a fine powder.

Analysis of I. latifolia Thunb. polyphenols extract 
composition
High-performance liquid chromatography (HPLC, 
UltiMate3000 HPLC System, Thermo Fisher Scientific, 
Inc., MA, USA) was used to determine the composi-
tion of the flavonoids in I. latifolia leaves. The chroma-
tographic conditions were as follows: C18 column (4.6 
mm × 150 mm, 2.6 μm); mobile phase A—0.5% acetic 
acid solution, B—acetonitrile; flow rate, 0.6 mL/min; 
column temperature, 30°C; detector, ultraviolet visible; 
detection wavelength, 359 nm; and injection volume, 10 
μL. The flavonoid quantitation in mg/g was calculated 
by the external standard method: Mx = Cr × Ax/Ar × 
C, where Cr (mg/mL) denotes the mass concentration 
of the standard, Ax the peak area of the sample, Ar the 
peak area of the standard, and C (1.0 mg/mL) the con-
centration of the sample stock solution.

Culture of cancer cells
The A549 cells and BEAS-2B human normal lung epi-
thelial cells (Beas-2B cells) were used in this study. The 
Roswell Park Memorial Institute (RPMI)-1640 medium 
(Invitrogen, CA, USA) was added with 10% fetal bovine 
serum (v/v) and 1% penicillin–streptomycin (v/v). The 
prepared medium was used to culture A549 cells and 
Beas-2B cells (Shanghai Yaji Biotechnology Co., Ltd., 
Shanghai, China) at 37°C and under a 5% CO2 atmos-
phere, and the medium was changed every 2 days. The 
cells in the control group were not treated with Ilex 
latifolia Thunb. polyphenols (ILTPs), while the treated 
cells received 0–500 μg/mL ILTPs.

Detection of cell proliferation
The cell proliferation was detected using the 
3-(4,5-dimethylazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay. For this, 1 × 104/mL cells 
were seeded into 96-well plates, 180 μL per well, and 
cultured for 24 h at 5% CO2 and 37°C. After the cells 
adhered to the plate walls, 20 μL of LLTP solution at 
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different concentrations was added to each well. After 
incubation for 48 h, the medium was discarded, 200 μL 
of MTT reagent (5 mg/mL, Solarbio, Beijing, China) 
was added to each well, and the cells were cultured for 
4 h. After the end of incubation, the supernatant was 
discarded, 200 μL of dimethyl sulfoxide was added to 
each well, and the plate was oscillated for 30 min. The 
optical density (OD) value of each well was measured 
at 490 nm, and the inhibition rate of cell proliferation 
was calculated. The proliferation inhibition rate (%) = 
(ODcontrol well - ODsample well)/ODcontrol well × 100 [14].

Determination of lactate dehydrogenase levels in the cell 
culture medium
After the cells were treated according to the method 
described in the previous section, the medium was col-
lected and the lactate dehydrogenase (LDH) level in the 
medium was determined using a kit according to the 
manufacturer’s instructions (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, Jiangsu, China).

Detection of apoptosis of cancer cells by flow cytometry
The A549 cells in the logarithmic growth phase were 
treated with 125, 250, and 500 μg/mL LLTPs for 48 h. 
Then, the cells were washed with phosphate-buffered 
saline (PBS) three times, suspended in annexin V–FITC 
binding solution, mixed with annexin V–FITC and pro-
pidium iodide staining solution (Thermo Fisher Scien-
tific, Inc.), and cultured at 4°C in the dark for 15 min. 
Finally, the apoptosis of cancer cells was analyzed by flow 
cytometry (FACSCalibur, BD, NJ, USA) [15].

Detection of reactive oxygen species levels in cancer cells 
by flow cytometry
The A549 cells treated with nuciferine were collected, 
washed three times with PBS, resuspended in RPMI-
1640 medium containing 10 μmol/L 2’,7’-dichlorodihy-
drofluorescein diacetate at 37°C for 20 min, washed three 
times with PBS after incubation, resuspended in RPMI-
1640 medium, and the fluorescence intensity of each test 
sample was assessed using a flow cytometer (FACSCali-
bur, BD, NJ, USA), with the mean fluorescence intensity 
(MFI) representing the content of reactive oxygen species 
(ROS) [16].

Quantitative polymerase chain reaction assay
The total RNA was extracted using a kit, and the con-
centration and purity of RNA were determined using 
a microspectrophotometer (Nano 300, All for Life Sci-
ence, Hangzhou, Zhejiang, China). Reverse transcription 
of RNA into cDNA was performed using a Reverse Aid 
First Strand cDNA synthesis kit (Tiangen Biotech Co., 
Ltd., Beijing, China). Hieff quantitative polymerase chain 

reaction (qPCR) SYBR Green Master Mix (High Rox 
Plus), and StepOne Plus real-time PCR system (Thermo 
Fisher Scientific, Inc.) were used to measure the expres-
sion levels of target genes. The qPCR primers used are 
listed in Table  1. qPCR was carried out under the fol-
lowing cycle conditions: pre-denaturation at 95°C for 3 
min, and then denaturation for 15 s at 95°C for 60 cycles; 
annealing at 55°C for 30 s; denaturation at 95°C for 30 s; 
and annealing at 55°C for 35 s. β-Actin was used for tar-
get gene expression, and the relative intensity of expres-
sion was calculated by the 2−ΔΔCt method [17].

Western blot analysis
The cells were treated in the same way as the qPCR 
assay. Then, 1 mL of pre-cooled lysate was added to the 
treatment cells, incubated on ice for 15 min, and then 
centrifuged at 4°C and 10,000 rpm for 15 min. After cen-
trifugation, the supernatant was removed, and the bicin-
choninic acid method was used to determine the protein 
content. The protein samples were separated using 10% 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (Thermo Fisher Scientific), and the protein in the 
polyacrylamide gel was transferred to the nitrocellulose 
membrane. The nitrocellulose membrane was blocked 
with a 5% skimmed milk powder solution at room tem-
perature for 1 h and incubated with the primary antibody 
(Thermo Fisher Scientific) overnight at 4°C on a shaker. 
Subsequently, the membrane was washed three times 
with PBS and Tween 20 (PBST) for 5 min each. Then, 
the secondary antibody (Thermo Fisher Scientific) was 

Table 1  Sequences of primers used in this study.

Gene Name Sequence

PI3K Forward: 5’-CTG​CCT​GCG​ACA​GAT​GAG​TG-3’
Reverse: 5’-TCC​GAT​TAC​CAA​GTG​CTC​TTTC-3’

Akt Forward: 5’-AGC​GAC​GTG​GCT​ATT​GTG​AAG-3’
Reverse: 5’-GCC​ATC​ATT​CTT​GAG​GAG​GAAGT-3’

mTOR Forward: 5’-ACA​ACT​TTG​GTA​TCG​TGG​AAGG-3’
Reverse: 5’-GCC​ATC​ACG​CCA​CAG​TTT​C-3’

Bcl-2 Forward: 5’-ATG​TGT​GTG​GAG​AGC​GTC​AACC-3’
Reverse: 5’-CAG​AGA​CAG​CCA​GGA​GAA​ATCAA-3’

Caspase-9 Forward: 5’-CTC​AGA​CCA​GAG​ATT​CGC​AAAC-3’
Reverse: 5’-GCA​TTT​CCC​CTC​AAA​CTC​TCAA-3’

NF-κB Forward: 5’-GAA​GCA​CGA​ATG​ACA​GAG​GC-3’
Reverse: 5’-GCT​TGG​CGG​ATT​AGC​TCT​TTT-3’

VEGF Forward: 5’-TGC​CCA​CTG​AGG​AGT​CCA​AC-3’
Reverse: 5’-TGG​TTC​CCG​AAA​CGC​TGA​G-3’

HIF-1α Forward: 5’-ATT​CCA​GCA​GAC​TCA​AAT​ACA​AGA​-3’
Reverse: 5’-GAC​TCA​AAG​CGA​CAG​ATA​ACACG-3’

COX-2 Forward: 5’-CTG​GCG​CTC​AGC​CAT​ACA​G-3’
Reverse: 5’-CGC​ACT​TAT​ACT​GGT​CAA​ATCCC-3’

β-actin Forward: 5’-TCA​AGA​AGG​TGG​TGA​AGC​AGG-3’
Reverse: 5’-AGC​GTC​AAA​GGT​GGA​GGA​GTG-3’
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added, the membrane was incubated on a shaker for 2 h, 
and washed with PBST three times for 5 min each time 
to enhance the luminescence, development, and imaging 
effects of the chemiluminescent agent (iBright, Thermo 
Fisher Scientific) [17].

Statistical analysis
SPSS v17.0 and GraphPad Prism 7 software were used 
to analyze the data. The experimental results were 
expressed as mean ± standard deviation. One-way analy-
sis of variance and t test were used to analyze the statisti-
cal difference at the level of P <0.05. All experiments were 
repeated three times.

Results
Chemical composition of ILTPs
The analysis indicated that ILTPs were composed of five 
polyphenols, (i) rutin, (ii) kaempferol, (iii) isochlorogenic 

acid A, (iv) isochlorogenic acid B, and (v) isochlorogenic 
acid C (Fig. 1) at 216.35, 167.28, 102.52, 88.12, and 128.36 
mg/g (mg/g of ILTPs extract), respectively.

Cytotoxic effect of ILTPs
Figure  2A and B  shows that at the concentration of 
0–500 μg/mL, ILTPs had only a slight effect on the 
growth and proliferation of Beas-2B cells. However, 
at the same concentration, ILTPs inhibited the growth 
and proliferation of A549 cells, and the inhibition rate 
positively correlated with the concentration of ILTPs. 
The results showed that ILTPs had little effect on nor-
mal lung cells with no toxicity, but an inhibitory effect 
was observed on the proliferation of lung cancer cells. 
At concentrations of 125, 250, and 500 μg/mL, ILTPs 
inhibited the proliferation of A549 cells by 28.10%, 
54.16%, and 86.74%, respectively (Table  2). Based on 
the aforementioned experimental results, 125, 250, 

Fig. 1  Analysis of ILTPs component. (A) Standard chromatograms; (B) ILTPs chromatograms. 1: rutin, 2: kaempferol, 3: isochlorogenic acid B, 4: 
isochlorogenic acid A, 5: isochlorogenic acid C
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and 500 μg/mL concentrations of ILTPs were used for 
further experiments. As shown in Fig.  2C, the LDH 
level in the cell culture medium of the control group 
was the lowest (97.82 U/L). With the increase in the 
concentration of ILTPs, the LDH level in the cell cul-
ture medium also increased. The LDH level in the cul-
ture medium of A549 cells treated with 125, 250, and 
500 μg/mL ILTPs was 186.05, 274.88, and 406.73 U/L, 
respectively.

Apoptosis of A549 cells
As shown in Fig.  3, 500 μg/mL of ILTPs (42.92%) sig-
nificantly induced the apoptosis of A549 cells compared 
with the control group. Similarly, A549 cells treated with 
125 (16.35%) and 250 μg/mL (29.41%) ILTPs also showed 
apoptosis, and the number of apoptotic cells was higher 
than that in the control group, but less than that observed 
in the group treated with 500 μg/mL ILTPs. Also, the 
concentration of ILTP treatment positively correlated 

Fig. 2  Survival rate of ILTPs treated (A) BEAS-2B human normal lung epithelial cells, (B) A549 lung cancer cells and (C) LDH level of A549 lung 
cancer cells culture medium (n=6). Duncan multiple range test showed that a-d of different letters showed significant difference in the mean value 
of each group (P < 0.05), the same letter indicates that there is no significant difference in the average value of each group (P > 0.05)

Table 2  Inhibitory effect of different concentrations of ILTPs on proliferation of A549 lung cancer cells (n=6)

The experimental results are mean ± standard deviation. Duncan multiple range test showed that A-D and a-c of different letters showed significant difference in the 
mean value of each group (P < 0.05), the same letter indicates that there is no significant difference in the average value of each group (P > 0.05)

Group OD490
(Concentration of ILTPs, μg/mL)

Cell growth inhibition rate (%)

125 250 500 125 250 500

Control 0.445±0.005a /

ILTPs 0.320±0.011b 0.204±0.007c 0.059±0.005d 28.10±2.51C 54.16±2.02B 86.74±1.76A
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Fig. 3  Effects of ILTPs on apoptosis of A549 lung cancer cells (n=3). Duncan multiple range test showed that a-d of different letters showed 
significant difference in the mean value of each group (P < 0.05), the same letter indicates that there is no significant difference in the average value 
of each group (P > 0.05)
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with the effect of apoptosis induction. The apoptosis-
inducing effect of ILTPs on A549 cells positively corre-
lated with the concentration of ILTPs.

ROS levels in A549 cells
The flow cytometry results shown in Fig. 4 revealed that 
the MFI of the 125, 250, and 500 μg/mL ILTP groups was 
significantly lower than that of the control group (P < 
0.05). The higher the ILTP concentration, the lower the 
fluorescence intensity, indicating a lower ROS level.

Expression of PI3K, Akt, mTOR, Bcl‑2, caspase‑9, NF‑κB, 
VEGF, HIF‑1α, and COX‑2 mRNA in A549 cells
As shown in Fig. 5, A549 cells in the control group exhib-
ited the weakest mRNA expression of caspase-9, while 
the strongest mRNA expression of PI3K, Akt, mTOR, 
B-cell lymphoma-2 (Bcl-2), nuclear factor-κB (NF-κB), 
vascular endothelial growth factor (VEGF), hypoxia-
inducible factor-1 alpha (HIF-1α), and cyclooxygenase-2 
(COX-2). Moreover, ILTPs was able to downregulate 
the expression of PI3K, Akt, mTOR, Bcl-2, NF-κB, 
VEGF, HIF-1α, and COX-2 and upregulate the expres-
sion caspase-9 in A549 cells. Compared with the control 
group, the expression of caspase-9 was stronger, while 
that of PI3K, Akt, mTOR, Bcl-2, NF-κB, VEGF, HIF-1α, 
and COX-2 decreased as the concentration of ILTPs 
increased.

Expression of PI3K and Akt protein in A549 cells
As shown in Fig.  6, the A549 cells in the control group 
showed the strongest protein expression of PI3K and 
Akt . After treatment with ILTPs, the protein expression 
of PI3K and Akt decreased, and with the increase in the 
ILTP concentration, the protein expression of PI3K and 
Akt became weaker.

Discussion
The main causes of cell death are apoptosis and cyto-
toxicity. ILTPs can induce apoptosis and death of cancer 
cells, but they have low toxicity and little effect on normal 
cell proliferation [18]. The present study demonstrated 
that ILTPs significantly inhibited only the proliferation 
of lung cancer cells, and did not affect normal lung tis-
sue cells. Thus, ILTPs have the potential to be used as an 
active substance to inhibit lung cancer.

Under normal physiological conditions, only small 
amounts of LDH are present in body fluid, and intra-
cellular LDH is released only after cell membranes are 
damaged. When the cancer cells are destroyed and die 
down, the LDH level in the culture medium significantly 
increases [19]. In this study, the LDH levels in the cell 

culture medium increased after lung cancer cells were 
treated with ILTPs, which showed that the ILTPs inhib-
ited the proliferation of cancer cells and destroyed them. 
ROS can destroy normal tissues and DNA, leading to tis-
sue lesions, which may be a contributing factor to cancer. 
In addition, a previous study showed that the ROS lev-
els in cancer cells were higher than those of normal cells, 
and high levels of ROS might promote the growth and 
proliferation of cancer cells [20]. ILTPs have antioxidant 
and free-radical scavenging activity to protect the body 
[1]. The present study also showed similar results, where 
the ROS level of A549 cells was high, and after treatment 
with ILTPs, they might exert the ability to inhibit the high 
level of ROS in cancer cells. The ROS level of cancer cells 
decreased, subsequently inhibiting their negative effects.

The PI3K/Akt signaling pathway is an important cancer 
pathway because it can promote the growth and survival 
of cancer cells [21]. mTOR is a key kinase downstream 
of PI3K/Akt, and it plays a role in regulating the growth, 
proliferation, survival, and even metastasis of cancer cells 
[22]. The expression of PI3K, Akt, and mTOR inhibits 
pro-apoptotic factors and activates anti-apoptotic factors 
to promote the occurrence and development of cancer. 
PI3K/Akt-mTOR inhibits the activity of pro-apoptotic 
members and activates anti-apoptotic members through 
phosphorylation [23–25]. In addition, some studies 
showed that oxidative stress could activate PI3K/Akt [26, 
27]. In this study, ILTPs effectively inhibited the expres-
sion of PI3K, Akt, and mTOR in the PI3K/Akt pathway. 
They also inhibited the PI3K/Akt pathway activated by 
oxidative stress, subsequently inhibiting the growth and 
proliferation of A549 cells.

In PI3K/Akt signaling activation, Akt activation is 
related to apoptosis, which, in turn, is related to the Bcl-2 
family. The BAD of the Bcl-2 family can form dimers with 
Bcl-xL and promote cell apoptosis through signal trans-
duction. Activated Akt can phosphorylate the ser136 site 
on BAD, thus preventing the apoptotic signal transmit-
ted by BAD. After PI3K inhibitor transplantation, Akt-
induced BAD phosphorylation is blocked [28]. Akt can 
also promote cell growth and inhibit cell apoptosis after 
the phosphorylation of NF-κB and activation of NF-κB 
in the nucleus [29]. When the cell is damaged, secondary 
damage to the mitochondrial membrane releases caspase 
and cytochrome c, and activates the cell death process 
through signal transmission. Activated Akt not only 
inhibits the release of apoptotic factors and cytochrome 
c but also inactivates caspase-9 by phosphorylating ser 
196, and thus blocking its pro-apoptotic pathway [30]. 
After affecting the PI3K/Akt pathways, ILTPs also influ-
ence Bcl-2, NF-κB, and caspase-9 expression, thereby 
promoting cancer cell apoptosis.
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Fig. 4  Effects of ILTPs on ROS level in A549 lung cancer cells (n=3). Duncan multiple range test showed that a-d of different letters showed 
significant difference in the mean value of each group (P < 0.05), the same letter indicates that there is no significant difference in the average value 
of each group (P > 0.05)
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PI3K joined the vascular endothelial signaling path-
way of VEGF action via the activation of the PI3K/
Akt pathway by forming a complex with E-cadherin, 
β-catenin, and VEGFR-12. Hypoxia and other factors, 
such as growth factors and insulin, can act on mem-
brane surface receptors to induce the expression of 

HIF-1α, which prompts the translational expression of 
downstream angiogenic genes such as VEGF [31]. The 
activation of the PI3K/Akt pathway, which upregulates 
HIF-1α through multiple pathways, drives the expres-
sion of VEGF to enable the migration of endothe-
lial cells to form a neovasculature network, so as to 

Fig. 5  Effect of ILTPs on mRNA expression of A549 lung cancer cells (n=3). Duncan multiple range test showed that a-d of different letters showed 
significant difference in the mean value of each group (P < 0.05), the same letter indicates that there is no significant difference in the average value 
of each group (P > 0.05)

Fig. 6  Effect of ILTPs on protein expression of A549 lung cancer cells (n=3)



Page 10 of 11Chen et al. BMC Complementary Medicine and Therapies           (2022) 22:85 

promote the growth and metastasis of cancer cells [32, 
33]. VEGF, a major regulatory factor involved in angio-
genesis, binds to endothelial cells in a targeted manner 
to promote vascular endothelial cell growth, increase 
their permeability, and then generate new blood ves-
sels [33]. COX-2 is able to influence endothelial cell 
movement and the generation of new blood vessels, 
and the activation of the PI3K/Akt signaling pathway 
can upregulate COX-2, which in turn is involved in 
tumor angiogenesis [34]. On the contrary, ILTPs func-
tion to control cancer cell metastasis and proliferation 
by regulating the expression of VEGF, HIF-1α, and 
COX-2 under the influence of angiogenesis.

Rutin, kaempferol, and isochlorogenic acids A, B, 
and C are all polyphenolic antioxidant substances, and 
studies have shown that these compounds also exert 
some anticancer effects [35–39]. Rutin and kaemp-
ferol, as the main effective chemicals contained in 
some food products, also showed some interventional 
effects on lung cancer [40, 41]. The combined effect of 
these five compounds was responsible for the inhibi-
tory effect by ILTPs on A549 cells in vitro, including 
the interventional effect on the pathway.

Conclusions
This study found that ILTPs had little effect on normal 
lung tissue cells cultured in vitro but could inhibit cancer 
cell proliferation and cause A549 cells to undergo apop-
totic death. ILTPs also played a role in regulating lung 
cancer cell apoptosis at the molecular level by regulating 
the expression of the PI3K/Akt signaling pathway. Five 
important polyphenol compounds contained in ILTPs 
contributed to these effects. The present study only pre-
liminarily verified the effect and mechanism of ILTPs on 
lung cancer through in vitro experiments, and the effects 
and mechanisms that play a role in animals need to be 
explored in further studies.
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