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OPEN - Database of pharmacokinetic time-
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Time courses of compound concentrations in plasma are used in chemical safety analysis to evaluate
the relationship between external administered doses and internal tissue exposures. This type of
experimental data is rarely available for the thousands of non-pharmaceutical chemicals to which
people may potentially be unknowingly exposed but is necessary to properly assess the risk of such
exposures. In vitro assays and in silico models are often used to craft an understanding of a chemical’s
pharmacokinetics; however, the certainty of the quantitative application of these estimates for
chemical safety evaluations cannot be determined without in vivo data for external validation. To
address this need, we present a public database of chemical time-series concentration data from 567
studies in humans or test animals for 144 environmentally-relevant chemicals and their metabolites
(187 analytes total). All major administration routes are incorporated, with concentrations measured in
blood/plasma, tissues, and excreta. We also include calculated pharmacokinetic parameters for some
studies, and a bibliography of additional source documents to support future extraction of time-series.
In addition to pharmacokinetic model calibration and validation, these data may be used for analyses of
differential chemical distribution across chemicals, species, doses, or routes, and for meta-analyses on
pharmacokinetic studies.

Background & Summary

When assessing chemical risk, the U.S. National Research Council has delineated two aspects that must be con-
sidered: toxicological hazard and exposure’. Toxicological hazard may be conceptualized as the dose needed to
cause an adverse effect, while exposure can involve the chance of occurrence, duration, route, and aggregate dose
received. As hazard is being estimated more frequently using New Approach Methodologies (NAMs) to deter-
mine concentrations at which bioactivity occurs, a third component, toxicokinetics (TK), is needed to compare
these hazard surrogates to exposure?. TK describes the absorption, distribution, metabolism, and excretion of a
chemical within the body for a given species. Knowledge of TK allows translation of toxicological information,
which might be collected in model animal species or in vitro, to humans or sentinel ecological species’. TK is
also needed for translating external exposure doses into target tissue concentrations and vice versa (i.e., reverse
dosimetry), allowing a linkage between cellular pathway perturbations and exposure amounts*®. Detailed infor-
mation on test animal species can be helpful, since there is uncertainty determining the relevance of an internal
dose found in an animal TK study to humans, due to the higher doses generally used in this type of testing and
other factors®. Although it can be useful in some contexts to differentiate between toxicokinetics and pharmacoki-
netics (PK), the two terms will be used interchangeably in this document.

Predicting internal doses is a primary task of 21 century toxicology’. While pharmaceuticals are vetted with
human clinical trials, and food additives or pesticides are tested using animal models, humans are also potentially
exposed to many of the thousands of commercially-available chemicals (and their transformation products) for
which there are limited toxicological and TK data®®. To address this gap, computational modelling of TK can be
performed based upon inputs from in vivo, in vitro, and in silico studies. In vitro tools have been developed to
allow screening of chemical-specific TK properties for libraries of chemicals”!?. However, each input parameter
carries an amount of uncertainty, which may not be readily quantifiable (for example, human genetic variation'?).
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This uncertainty, combined with different underlying assumptions that may have formed the basis of the model,
makes interpretation of the relevance of a model’s results to human health risk assessment complex!2.

There is increasing acceptance of the use of in vitro-derived TK for chemical risk prioritization'*'* and the
design of human clinical trials'>. However, there is still need for careful model evaluation to determine which
chemicals these techniques might work for, and how well'®'. Investigating every premise of a model would be
time-intensive, and still would not demonstrate whether a modelling approach provides a unique description of
the system modelled or an accurate prediction of dose-response curves in any non-modelled scenario’®. While
systems do exist for understanding the confidence with which in vitro-in vivo extrapolation (IVIVE) may be
applied to pharmaceuticals (e.g., Riede, et al.'?), it is simpler and more informative to compare modelling results
with at least one observed instance of a relevant in vivo exposure scenario'*'>!”. Unfortunately, the relative lack of
structured, non-pharmaceutical in vivo pharmacokinetic data makes systematic evaluation of the performance of
IVIVE for environmental chemicals difficult'’.

An international workshop held in February 2016 focused on key steps needed to facilitate the adoption of
high throughput TK into chemical risk prioritization and decision making!®. That workshop recommended the
“Creation of a database that could house all shared in vitro and in vivo TK data, and identification of actions to be
taken to encourage sharing of existing data”®. Preliminary efforts by Wambaugh, et al.'* attempted to combine
concentration vs. time (CvT) data collected from literature studies with data derived from new pharmacokinetic
experiments creating a dataset covering 45 analytes. Here, we present a public database for storing CvT data and
its associated study metadata for 187 analytes across more than 550 studies. In addition, the compiled CvT data
have been analyzed with TK curve-fitting software to add a set of uniformly estimated properties, such as volume
of distribution and elimination half-life, to the database. Database creation was initiated as a proof-of-concept
designed to consider optimal structure, constraints, and detail required to facilitate “International harmonization
of data requirements by regulators”'>. Moreover, it provides an excellent source to evaluate modelled relationships
between external and internal doses. It is hoped that these data will serve as a catalyst for the public sharing of
curated TK data to improve assessment of risk posed by chemicals to human health.

Methods

The CvT database is intended to serve as a comprehensive repository for TK/PK data, including published sources
of CvT data, CvT results, and derived pharmacokinetic parameters. While many TK experiments have been pub-
lished, there has been little effort to normalize, structure, and centralize the results of these studies. The workflow
in Fig. 1 outlines the steps performed to generate a compendium of CvT data including the collection of source
materials, extraction of measured concentration time-series, and toxicokinetic parameters estimation.

CvT data sources. As had been previously reported!?, we were unable to find many structured sources of
CvT data in the public domain. The two structured sources we found provided an excellent starting point to
quickly gather content into our database; however, the majority of available TK CvT data is embedded in docu-
ments, typically journal articles. To develop a dataset that was sufficient to evaluate TK modeling methods for a
broad range of chemicals, we realized that identification and extraction of primary TK literature data would be
required, which we executed with a combination of custom machine learning and manual curation techniques.
However, we recognized that the breadth of data contained in literature would likely be too large to address
systematically with our limited curation resources. As a pilot of our data collection methods, we first focused on
discovering PK data for a set of 351 environmentally-relevant candidate chemicals derived from the 2012 TSCA
Work Plan®. Inclusion in this list suggests these chemicals had been identified as having enough available data to
support development of evidence-based risk assessments, so we considered it likely that PK information would
be available.
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Structured CvT data sources. Wambaugh, et al.!* assembled a set of pharmacokinetic time-series data
from literature source extraction and newly generated experimental data. This data for 45 analytes was available
as a supplementary file (spreadsheet) to the original publication.

Chemical Effects in Biological Systems (CEBS)?!, a public database hosted by the National Toxicology
Program (NTP) contains a total set of 83 NTP-conducted TK studies covering over 40 test substances in rat
or mouse gavage or IV studies. Although these are not peer-reviewed findings, they have undergone extensive
quality assessment. The resultant data were exported from CEBS to Microsoft Excel files from the FTP site (ftp://
anonftp.niehs.nih.gov/ntp-cebs/datatype/NTP_TK/Individual_Animal_Data/).

Literature sources. In preliminary queries of PubMed, we quickly were able to identify sources of CvT data;
however, finding extractable CvT content for our initial set of chemicals derived from the 2012 TSCA Work Plan
proved more difficult than expected.

Querying PubMed using Entrez and MeSH terms is a common way to identify articles of interest. Therefore,
using the Python 3 package BioPython??, Entrez searches were programmatically completed to identify all articles
containing the name or CAS-RN for a compound of interest and any MeSH term containing “Dose-Response
Relationship”, which was the most common term in the articles we had collected in a previous effort®. This
yielded a list of 20970 PubMed articles. Of these, 549 publications that included names of higher-priority chemi-
cals from the TSCA Work Plan were manually reviewed, but only 4% (22 articles) contained usable concentration
vs time results (true positives, or TP), which made it clear that filtering by keyword search was insufficiently
precise to efficiently identify relevant papers. This led us to investigate the use of natural language classification
modeling to improve our workflow.

During the review of the Entrez search articles, we manually classed publications as either positive (22) or neg-
ative (527) for containing extractable time-series data. To this set we added 62 positives that we identified in ear-
lier work® yielding 84 total positives. This set was used to develop a predictive model for article relevance using
Natural Language Classification (NLC). The abstracts of the publications were first filtered to remove extremely
common words (Stanford stop words) and words that occurred with low frequency (defined as having a count
value in the lowest quartile) to reduce data noise and computational time?. The cleaned abstracts were repre-
sented by TF-IDF (term frequency-inverse document frequency) matrices calculated using the Python 3 pack-
age ScikitLearn®. A suite of classifiers (Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Logistic
Regression, Stochastic Gradient Descent, Support Vector, Linear Support Vector, Nu-support Vector, K-nearest
neighbors (3 and 5), Decision Tree, Random Forest, Multi-layer Perceptron, and AdaBoost) from ScikitLearn
were trained to classify the sets with 10-fold cross validation. The negative set was undersampled to maintain
balance. Results from all models that categorized at least 90% of abstracts correctly were averaged to create a
consensus classification for all PubMed abstracts containing compound names of interest (CAS-RN was not used
as an identifier in this trial, since it did not significantly improve recall). The approach yielded a much higher true
positive rate (details in Technical Validation). Natural language classification code is available in the information
file on GitHub (CvT_find_papers.py).

CQvT time series.  Structured source data extraction.  Structured data was formatted into our data storage
model shown in Fig. 2. For the Wambaugh et al. set, additional metadata was curated from the source documents
cited in their publication. The CEBS set was parsed and loaded into the database using a combination of custom
Python scripts and manual interventions due to the complexity of the provided data. Metadata such as fasting
state were not readily available for CEBS records.

Literature source data extraction. ~ Access to articles containing time-series data was provided by the EPA library,
or by publishers posting works openly online in Adobe PDF format. Few publications made tabular concentration
vs time data available. For most, the data was only available in plots. These plots were converted to images using
the native screenshot tool in Windows 10. Collection of data was completed through WebPlotDigitizer?, a com-
puter assisted program, requiring the identification of axes and scales for calibration and the selection of each
point for extraction by a user. Automated approaches for this task are available, but were found to be error prone
in calibration, identification of units and scale, or incapable of extracting data from plots with logarithmic axes.
Extracted tables of concentration vs time data were exported from WebPlotDigitizer to CSV, then imported
into the database using MySQL Workbench. Collecting the details of the study from which the concentration vs
time data resulted was completed manually. Annotations as described in Data Records were manually curated
from the Methods section of each paper. When available, TK parameters were also extracted from a publication’s
Results section.

Time-series data normalization. 'The data were extracted with an effort to be as faithful to the original as pos-
sible. That means that everything was collected as reported, with no consideration for standardizing the units
nor controlling the vocabulary used to describe the experiment. Standardized values were calculated and stored
alongside the original values to facilitate easier comparison across experiments. These normalized concentra-
tions are stored in pg/mL for tissues, excreta, or plasma (ugEq/mL for radiographic measurements), and pg/m"3
for breath. Times are stored in hours. A maximum of 5 numbers after the decimal point were stored for these
data types. Doses are stored in mg/kg. In cases where the mass of the subject was not reported, and the dose was
administered as a simple mass and not a body weight proportion, a mg/kg dose was calculated using the average
mass for all subjects of that type. The names for the tissues in which doses were measured were standardized to
the preferred names in NCI thesaurus as of 12 December 2018%. All subject measurements were stored in cm for
height and kg for weight/mass. The subject age may be reported as a numerical value, a category, or both. When
only a numeric value was provided, a category was inferred as given in Table 1.
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Fig. 2 Entity-relationship diagram of CvTdb. The schema can be created with the file build_cvt_db.sql included
in the figshare and GitHub.

infant | child adolescent young_adult | adult aged | unit
dog 0.75 15 6 12 24 100 month
human 0.08 2 12 16 21 60 year
mouse 1 3 5 7 10 45 week
nonhuman primate 0.5 6 36 48 72 240 month
rat 1.25 4 7 12 25 200 week

Table 1. Age categories used for potential comparison across species. Values represent the lower threshold for
age inclusion in this category. Younger than infant was categorized “neonate”. Categories were based on weaning
age, onset and cessation of reproductive potential, and cessation of skeletal growth.

Toxicokinetic parameters. Toxicokinetic parameters are often used as surrogates for more complicated
time-series data when prioritizing chemicals according to their TK profiles; however, the models used to derive
these parameters can be inconsistent between different publications, making direct comparisons problematic.
Hence, a systematic extraction of reported TK parameters from literature was not done as part of this databasing
effort (though several TK parameter estimations reported in the literature were gathered). Rather, the R pack-
age invivopkfit v1.5 was used to calculate pharmacokinetic parameters using the function fit_all as described in

SCIENTIFIC DATA | (2020) 7:122 | https://doi.org/10.1038/s41597-020-0455-1 4


https://doi.org/10.1038/s41597-020-0455-1

www.nature.com/scientificdata/

previous publications'*?, This package was used to fit the mean of all series from each plasma study to a one- or
two-compartment PBPK model. Compartmental model analysis allowed all data from both intravenous (IV) and
oral routes to be jointly analysed, when data from both routes was available. For the one-compartment model,
the volume of distribution (V,, L/kilogram bodyweight, or L/kg BW) and the first-order elimination rate constant
(Kejim> 1/h) were estimated. For the two-compartment model, the primary compartment volume (V,, L/’kg BW),
inter-compartment exchange rate constant (k;,, 1/h), and kg, were estimated. For chemicals dosed orally, a gut
absorption rate (K1, 1/h) and fraction of the oral dose bioavailable (Fy;, %) are also calculated. If no oral dosing
data were available, only quantities that can be estimated from IV dosing were estimated (i.e., k,ps0r, and Fy;, were
not estimated). An aggregate set of these parameters were computed for all plasma concentration data for each
administration route:test substance pair, as described in Wambaugh, et al.!.

The optimized likelihood for both the one- and two-compartment models were compared using the Akaike
Information Criterion (AIC)%. Study-specific standard deviations were included in the number of parame-
ters used to calculate AIC (e.g., if there were data from two studies, there were two standard deviation param-
eters estimated and factored into the AIC). The results of the model with the lesser AIC® are stored in the
database. The script used to calculate the parameters is publicly available through GitHub repository USEPA/
CompTox-ExpoCast-invivoPKfit.

Data Records

The collected data have been made publicly available on figshare as a zipfile containing a sql dump of the data-
base®!. These data, along with additional supplements, are also available at the GitHub repository https://github.
com/USEPA/CompTox-PK-CvTdb, along with a xIsx template for submission of new studies to the database
and the latest versions of the supplements to this paper. In addition, display of the data through the U.S. EPA’s
Chemicals Dashboard (https://comptox.epa.gov/dashboard)? is planned, but not yet implemented. The data is
maintained by U.S. EPA’s Center for Computational Toxicology and Exposure in the data model depicted in
Fig. 2 instantiated in a MySQL 5.6 community edition relational database of simple data types (text, numeric,
and Boolean).

Provided are three subsets of data for use by the community:

1. Bibliography of journal articles suspected to have extractable CvT data (CvT data sources, provided within
the SQL database and as a CSV file)

2. Extracted CvT data (CvT time-series, provided within the SQL database)

3. Toxicokinetic parameters (provided within the SQL database)

CvT data sources. Identifying a set of sources for CvT data extraction was a key preliminary step in the
development of this database. Once methods were developed to identify sources for our chemical domain of
interest, those methods were also used to locate all likely data sources within PubMed that might yield CvT data.
Over 24000 publications identified by the method described in Literature Source Data Extraction are available in
the documents table (see Fig. 2). To increase the accessibility of these sources, they have been tentatively linked
to a chemical by searching them for ‘preferred_names’ from DSSTox (EPA’s Distributed Structure-Searchable
Toxicity Database)®*. Almost 20000 of the sources had a linkage to a chemical entity in DSSTox based on this
simple search. Although manual curation would be required to confirm the linkages, 1476 of these chemical
names match the name or CAS of chemicals listed in TSCA (a list of chemicals produced or imported into the
United States, with certain exceptions)** or FIFRA?® (a list of chemicals registered as pesticides in the United
States), which suggests they may be environmentally relevant; these are marked with a Boolean. Chemical names
matching compounds tested under ToxCast* are also marked to support IVIVE research. There are likely to be
false positives due to incorrect machine identification of topical chemical names (for example, the word “lead”
only sometimes refers to a compound) and false negatives due to the name by which the compound is referred
to in the abstract being different from the preferred name, but based on the precision observed in our evaluation
of extraction techniques (see the Technical Validation: Source Identification section infra), as many as 3116 of
these abstracts are true sources of relevant CvT data. Citations for unextracted publications and their tentative
chemical mapping is provided as a csv file (CvT_unextracted_sources.csv) on GitHub or in the documents table
of the database.

CvT time-series. CvT results consist of the measured in vivo concentration-time data points (generally
extracted from figures in the paper) resulting from a toxicokinetic study and the experimental details that pro-
vide the context for that toxicokinetic curve. Each data point is stored in the conc_time_values table as seen in
Fig. 2. The series table contains details regarding each set of values, and studies contains more general informa-
tion about the pharmacokinetic experiment. Each study is linked to documents, which cites the information
source.

The original inspiration for the set of contextualizing metadata was based on the test guideline for metab-
olism and pharmacokinetics released by the U.S. EPA Office of Prevention, Pesticides, and Toxic Substances
(OPPTS)*. Identifying the set of parameters necessary to properly annotate the extracted CvT data was iterative,
with improvements evolving after the review of multiple publications (as the consistency and reporting of study
details is highly variable in literature). Below is the set of key study details collected:
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Fig. 3 Count of studies (in purple) and test substances (in green) with CvT results in different media (for any
species, but represented here on a human body).

o Reference (data source document identification, the name of the figure or table from which the data was
gleaned, explanatory notes provided in the source publication)

« Study scenario (test substance, administration route, dose amount, vehicle, and volume, exposure duration,
quantity of doses given and their spacing, number of subjects per treatment group, number of treatment
groups, fasting status of subjects)

o Subject details (species, type/strain, sex, age, age category, size, and any other description given by source)

o Measurement details (the original time and concentration units, analyte, the medium (tissue, circulatory
fluid, etc.) in which the analyte was detected)

o Measurement methods (the limits of detection and/or quantification, the analysis method)

o  Curation notes (known assumptions made during the collection process)

During extraction of the data from concentration-time plots, values indicating the extrema of any y-axis
(concentration) error bars were captured for some series (collection of error bars started partly through our
curation process). These were assumed to indicate the standard deviation. When the standard deviation was
calculated in log space, the non-logged values were stored as conc_lower_bound and conc_upper_bound. All
data was stored with the intent to maintain the original content with as little alteration as possible in the “*_orig-
inal” fields and then normalized into corresponding “*_normalized” fields (e.g., see the conc_units_original and
conc_units_normalized fields in the series table).

The manual extraction of data for the pilot set of chemicals derived from the 2012 TSCA Work Plan in resulted
in 291 studies associated with 50 test substances. In total, we have collected CvT data for 144 chemical substances
tested in 571 studies resulting in 16267 series. The data collected represent time courses in many different media/
tissues, species, and administration routes. The breadth of media/tissue coverage is illustrated in Fig. 3. A table
containing the count of studies for each chemical in particular routes and species is contained in the file available
on GitHub (routes_and_species_per_chemical.csv).

To demonstrate the range of CvT data and its variability, Fig. 4 provides CvT values for the most highly repre-
sented chemical substance in the database, trichloroethylene. The detailed CvT data is available through the sql
dump file provided in the zipfile on figshare or GitHub.

Toxicokinetic parameters. CvT time-series provided a basis for estimating several TK parameters. These
parameters are stored in the tk_parameters table, linked to the time-series from which they were derived. A
binary flag field “calculated_with_invivopkfit” can be used to separate parameters calculated using the standard
CvT analysis package invivopkfit v1.5 (as described in the Methods section) and the data collected from the
source documents. Parameters include Cmax (the maximum concentration), total clearance, Michaelis-Menten
values Km and Vmax, and elimination half-life. Distributions of the generated TK parameters can be seen in
Supplementary File 1.
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Fig. 4 CvT values for trichloroethylene across species, doses, and routes.

Test Description TP | FP EN | recall precision F1 score

A MeSH: Dose-response 0 48 19 0 0 0

B MeSH: Pharmacokinetics 9 22 10 0.47 0.29 0.36

C Positive/negative MeSH 6 220 13 0.32 0.03 0.05

D 100% consensus 14 26 5 0.74 0.35 0.48

E >75% consensus 19 65 0 1.0 0.23 0.37

Table 2. Summary of data source identification test results.

Technical Validation

Source identification. Identification of sources proved to be more difficult than expected, leading to a small
study to evaluate and validate methods of source selection to improve our workflow efficiency. Our baseline
search technique using MeSH terms is documented in Methods: Literature Sources above; however, this base-
line search proved to have a high false positive rate leading to the review of many articles with no CvT data. In an
attempt to reduce the false positive rates observed in our initial review of the identified literature, we devised five
data source identification methods for performance comparison on a pseudo-random set of 1000 publications
returned by chemical-based querying of PubMed. The set of 1000 test publications was filtered to only the publi-
cations with both abstracts and MeSH annotations, which reduced the sample size to 773. The methods applied
can be broken down into two classes: MeSH filters and NLC. Two of the MeSH filter approaches were just simple
searches for (A) MeSH terms containing “Dose-Response Relationship” (our baseline) or (B) the MeSH term
“Pharmacokinetics” within the set of publications.

The next three methods used 611 already-reviewed publications as a training set of documents containing
CvT data (positive) and documents with no CvT data (negative) documents. We identified MeSH terms that
appeared highly represented (in greater than the square root of that class’s number of articles) in the positive and
negative classes. MeSH terms that were highly represented in both positive and negative classes were removed
from both. Lists of the identified positive and negative MeSH features are provided in a text supplement on
GitHub (tk_enriched_MeSH_terms.csv). For search (C), publications having any positive MeSH feature but zero
negative MeSH features were classified as positive. More advanced classification tools were deemed inappropriate
for application to MeSH annotations because the number of terms per document was extremely variable. For
NLC, models were developed as described in Methods: Literature Sources using criteria that either (D) all mod-
els or (E) 75% of the models needed to predict the publication as a positive. All papers classified as positive by at
least one test method were requested from the EPA library and manually reviewed (283 total). The resulting recall
statistics are provided in Table 2. We concluded from these results that Test D was the best data source identifica-
tion method to apply with our limited curation resources.

Data validity. In assessing the validity of the data collected, three aspects were considered: limitations in the
source material, unreported experimental variability from CvT experiments, and inaccuracy in the collection
techniques applied when extracting the data from source content.

First, we considered the limitations in the source material. Source data (being primarily from peer-reviewed
literature sources) was generally assumed to be error-free. There were cases where the graphical representation
of the data did not unambiguously convey experimental results (e.g., blurry images, concentration points below
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the graph’s datum). In these cases, the data were extracted to the best of our ability and annotated in the database
with a curation note.

The chemical tested or analysed was usually only identified by their name in the source documents. This leaves
some room for ambiguity®®. The source names were mapped to unique substances (designated by DSSTox SIDs)
through expert curation.

It is important to note that the time-series data came with the experimental details that Chemicals in unstruc-
tured data were usually only identified by their name in the source documents. This leaves some room for ambi-
guity®®. Names were mapped to unique substances (designated by DSSTox SIDs) through expert curation.

It is important to note that the experiment details provided with the source data came with varying degrees of
completeness. It was common for study details that could be relevant to interpretation and comparison between
experiments to be omitted in the source material. For example, the method used to quantify chemicals in media,
the recovery amount associated with that method, and its associated limit of quantification were rarely reported
in our sources. To give another example, 145 of 263 oral dosing studies did not report whether subjects were
fasted. Absence of study details from the database should be considered by the user when accessing the validity
of the data for their use cases.

Another notable example of a type of incompleteness is that 5180 of 6769 concentration points representing
multiple subjects did not include any estimate of variability. Most of these series had sample sizes of 4, 5, or 6; it
is not obvious how relevant a mean of that sample is to population mean behavior. Even when included, it was
rarely clear whether error bars represented standard deviation, standard error, or another measure. We consider
improved estimates of central tendency through comparison across studies one of the benefits of this data set for
PBPK modelers.

Because experimental variability was often underreported in our source material, we analyzed results from
a paper that performed the same study several times to serve as controls for different treatment groups on a
25mg/kg dose of phenytoin®’, yielding three replicates each of test compound and metabolite results from IV
administration and two replicates each from oral administration. We consider this a proxy for the minimum
possible amount of variance due to unknown biological differences or other experimental variability, since the
replicate series use the same subject pool, same experimenters, same analytical methods, mean concentrations
representing a higher-than-average number of test subjects per series (21), and identical quantities of time points
over the same study durations. Using the Kolmogorov-Smirnov test (a two-sided test for the null hypothesis that
2 independent samples are drawn from the same continuous distribution) with an alpha of 0.05 as implemented
in SciPy*, the replicates are affirmed to be from the same distributions for the oral metabolite and IV and oral
dosed compound replicates, but not for the IV metabolite studies. AUCs (area under the curve) were calculated
in Python 3 using the Numpy function trapz for each extraction set. The standard deviation of the AUCs was
converted to a fraction of the total plot space to normalize uncertainties across plots.

AUCFracVar = gAUCs

Aplot

Eqn 1. Fractional variability between different CvT time-series plots.

The AUCFracVar was around 5% across the case study series. As this is derived from a single set of experi-
ments for a single substance, it is possible that this variability is not representative for other chemicals.

Finally, we sought to evaluate the uncertainty inherent in the use of computer-assisted extraction techniques
to collect the CvT time-series data. Specifically, a pseudo-random sample of 13 series (based on the square root
of N plus one rule) were re-extracted to characterize differences in measurements due to personal technique,
image resolution, calibration, data point size/shape, or other factors: once by the same curator, and once by a
newly-trained curator. AUCFracVar between extraction instances was 0.06% with the same curator, and 0.44%
with a different curator (with high variation in one series driving almost half of the difference). Since the magni-
tude of extraction error is less than we expect the error due to experimental or biological variance (based on the
case study described above), we conclude that the data was faithfully transcribed from the source material.

Usage Notes

TK data is often used by researchers to better understand the complex relationship between external exposures
and internal doses. Typically, this is done through the development of complex PBPK models that are fit to the
data to represent mechanisms of that particular chemical’s absorption, distribution, metabolism, and excretion
(ADME). This database provides a trove of structured data that can be used to develop such “bespoke” models
thereby acting as an easily accessible resource for such research. However, when attempting to understand the
TK of an individual chemical, collection and extraction of the relevant data from literature, while taxing, is not
overly burdensome (and review of such literature is often necessary to understand mechanisms that should be
considered for that chemical). This database is more tailored to the development and validation of generic TK
models. Such models are intended to provide estimates of TK profiles for broad sets of chemicals. Evaluating and
improving generic TK models has been inhibited by the lack of structured data sources containing CvT data for
large set of chemicals. By crafting the largest set of openly available CvT data, we hope that iterative testing and
improvement of generic models will be facilitated.

Another possible use case would be the inclusion of the provided CvT data or derived TK parameters to aid
in assessing a chemical’s risk. All data is from peer-reviewed journal articles or the National Toxicology Program,
and can be treated with the same general confidence level you would afford any published data. It is important
that in such a situation, that the researcher restrict their analysis to datasets from experiments that meet a specific
standard; it may be necessary to refer to the source documents to find whether studies meet your criteria. The
authors welcome feedback on additional metadata that would be useful for filtering results.
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The current dataset contains a large subset of data based on an initial, externally-identified list of chemicals, as
well as the easily obtainable already-structured datasets. However, it covers only a small proportion of the extent
of the tested chemical space and doesn’t necessarily contain all instances of concentration time-series data for any
of the chemicals therein. It can be used to investigate similarities between series, but it is up to each user to assign
a significance to the similarities. Likewise, the pharmacokinetic parameters calculated from aggregated series will
change based on inclusion of new sets. Researchers using these parameters should develop their interpretation by
examining the R code that generated them.

The set of likely CvT sources linked to tested chemicals is intended to be both a resource and a call for help in
this effort. Such information can be used to aid users in finding CvT data that has not yet been structured for their
own research objectives, but the size of the data extraction task is large and unlikely to be completed by such a
small set of researchers. Readers are encouraged to contribute either their own experimental data or experimental
data they have extracted from other sources, including as much metadata as possible, in the format shown in a
CSV template (CvT_data_template.xlsx) on our GitHub repository.

Code availability
The Python code to identify possible CvT data sources in literature is available at our GitHub repository.
Download of the database is required to train the model.
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