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ABSTRACT: The COVID-19 pandemic has affected many in-person laboratory courses across
the world. The viral spreading model is complicated but parameters, such as its reproduction
number, Rt, can be estimated with the susceptible, infectious, or recovered model. COVID-19
data for many states and countries are widely available online. This provides an opportunity for
the students to analyze its spreading kinetics remotely. Here, we reported a laboratory set up
online during the third week of the spring semester of 2021 to minimize social contacts. Due to
the wide interest in developing online physical chemistry and analytical laboratories during the
pandemic, we would like to share this laboratory design. The method, technique, procedure, and
grading are described in this report. The student participants were able to apply the kinetic techniques learned in physical chemistry
to successfully analyze an ongoing real-world problem through a remote learning environment and prepare this report.

■ INTRODUCTION

This laboratory targets students who are taking physical or
analytical chemistry laboratory courses and have studied or are
in the process of studying kinetics. The pandemic has rapidly
affected chemistry and promoted remote teaching and learning
globally.1,2 Significant long-term changes in chemistry
laboratory courses have been suggested in the COVID-19
special issue of the Journal of Chemical Education.1 Since
learning data analysis techniques are critical for students in
physical chemistry laboratories, the co-authors of this report
performed a project remotely to analyze kinetic data at the
beginning of the spring semester of 2021. During the
laboratory period, the instructor generated or provided kinetic
data and instructed the students on how to go about analyzing
that data. This instruction included finding key parameters,
drawing useful conclusions, and predicting the kinetics under
new conditions.3 The laboratory allowed the students to apply
the kinetic analysis method to the COVID-19 pandemic
situation and draw relevant conclusions that will give them a
better understanding of the spreading character of the COVID-
19 virus.
COVID-19 is a novel virus that the whole world has

encountered. It is a new coronavirus strain labeled as SARS-
CoV-2.4 This specific strain is an upper respiratory virus that is
somewhat like the flu but foreign to human immune systems.5,6

This newest coronavirus was first identified in December of
2019 and propelled the development of new virus detecting
methods.5,6 The list of possible symptoms associated with this
virus is incredibly long due to people responding to it
differently. The most common symptoms include cough,
fever/chills, body aches, and difficulty breathing after doing
normal tasks.7 The severity of the virus ranges from a typical

cold to intense respiratory problems. Unfortunately, this virus
is a deadly one and has led to the deaths of over three million
people worldwide from the first infection to April 2021.8

Currently, this virus is known to spread through droplets
released into the air when a person who is infected coughs or
sneezes. These droplets normally do not travel more than a
couple of feet. There has also been evidence that aerosol that
travels much further may contribute to the spread.9 Because of
this information, social distancing is one of the ways that the
CDC recommends mitigating the spread of the virus.10

With the unfortunate introduction and proliferation of
COVID-19 worldwide, many questions were raised by the
scientific community. The most important question that this
laboratory activity aims to answer is, how fast does this virus
spread? This question can be answered using a kinetic model.
Kinetic models help understand, explain, and forecast the rate
at which a virus spreads. Many disease-spreading models have
been published in the literature.11−16 The kinetic model that
was used in this experiment is the susceptible−infectious−
recovered (SIR) model,17−19 which is widely used in the
academic literature and general public,16,20,21 and has been
introduced to the chemistry teaching practice very re-
cently.22,23 In this model, a two-dimensional plot that contains
the number of infected individuals on the y-axis and time on
the x-axis is used to visualize how fast a virus truly
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spreads.16−19 Many alternative models that have been reported
in the literature are used to investigate the spreading of
infectious disease, a common feature of most is using the
reproduction/replacement number Rt as a key parameter,
whose initial value is called basic reproduction number
R0.

11,12,21 We chose the SIR kinetic model due to its
dependence on the Rt value which correlates to the ease at
which the virus spreads. This factor was then studied as to how
it related to the effect of mitigating factors like social distancing
and other governmental regulations. We also chose the SIR
model for analysis due to its relevance to the material taught in
class. This laboratory class was the first laboratory class taught
in the semester, and it allowed for students to become
proficient in modeling kinetic trends, Microsoft Excel skills,
and advanced plotting techniques. These skills were used
throughout the rest of the semester on examinations and
homework.
The R0 and Rt values of an infectious disease are indicators

of how contagious a disease is and how easily it spreads from
person to person.24 The main purpose of this laboratory,
besides investigating the kinetic model of COVID-19, was to
analyze this Rt parameter of the virus and how social events or
limitations affect its value. The Rt is defined as the average
number of people that one infected person could infect. For
example, the Rt value for the seasonal flu is around 1.30. This
means that for every person that is infected, they have the
chance on average to infect one and a third person.25 When the
Rt value approaches one, the number of infectious people
remains the same over time.10 The Rt value can be brought
below one with social restrictions and herd immunization.26−28

These aspects would allow for the virus infections to come to a
gradual halt. Since the immunization for COVID-19 is in the
infant stages, the Rt value of COVID-19 is still ever-changing
and is a value above one across the globe.29 During this
experiment, data from different states within the United States
were analyzed, and the Rt values were assigned to peaks and
dips on the curves of the infected cases. It is still ongoing
research in the literature on the causes of the variation on Rt
with a lot of efforts in correlating with governmental policies
and more recently also on vaccination.30−33 Thus, the students
were encouraged to associate these peaks and dips with social
events, mass gatherings, or regulations such as social distancing
depending on the value of Rt. Note that the students should be
instructed that these correlations are just hypothetical practices
based on the simple social distancing rationale. More evidence
such as contact tracking is needed to conclude with higher
confidence.
Before introducing the SIR model to the students, we started

analyzing compound interest and payment balance models of a
typical mortgage loan to engage and prepare the students. The
mortgage model has been used in the United States and most
countries to pay off homes and take loans from the bank. The
mortgage model uses variables of time, balance, compound
interest, and payment to function,34 while the SIR model uses
time, susceptible people, infectious people, recovered people,
and Rt to function. When setting up the SIR model, the key
variable to study is the Rt value as it describes the rate of
infection among citizens. The key variable to study within the
mortgage model is the payment as it determines the amount of
principal and interest to be paid. If the payment value is
changed in the mortgage model, the interest amount and
balance amount fluctuate accordingly.35 If the Rt value is
changed in the SIR model, the amount of infectious and

recovered people changes. The parallel examination encour-
aged the students to find the similarities between these two
models. Even though the students found similarities between
the two models, it must be noted that the mortgage model is
somewhat disconnected from the SIR model. It is provided to
the students as a warmup experience of manual regression
using Excel. If the students have learned the general
consecutive reaction model in the lecture class, it can be
used to replace the mortgage model.
As for the laboratory techniques, the widely available

software Microsoft Excel was heavily used in the modeling
and fitting, and all interactions with students were held via
Microsoft Teams. This format is similar to the literature
reported teaching physical chemistry courses remotely during
the pandemic.1,2 Solving simple kinetics without integrals is
educationally beneficial to high school and college stu-
dents.36,37 We are interested in using this technique to analyze
the SIR model. For this relatively complicated consecutive
reaction model, computer programing is ideal to teach the
kinetics without the steady-state approximation.38−41 Excel has
been reported as an efficient tool to teach kinetics.36,37 We
have been using Excel very intensively for our physical
chemistry course. The free software Google Sheets can be
used if there is an accessibility issue with Excel. In this
laboratory, we first introduced the mortgage model of loans
and explained the analytical and numerical solutions of the
kinetic model. We then introduced how to use Excel to
implement these calculations. The students then downloaded
statewide COVID-19 data and analyzed it to find Rt values
over time in a randomly chosen state in the United States. The
major goal is to teach the students the kinetic models and the
regression method for data fitting.
Our laboratory design is complementary to the kinetic

analysis laboratories reported in the literature for chemical
reactions and COVID-19. Kinetic analysis for chemical
reactions is a common practice in various chemistry
courses.42−44 Right after the first outbreak of the epidemic,
the SIR model has been compared to a second-order
autocatalytic chemical reaction system, and the data have
been fitted using a programming language during a physical
chemistry class.23 This report is targeting the early stage of the
spreading by fitting a single set of parameters including the Rt
value. Our model has complementary targets fitting longer-
term variations on the Rt value such as detection, quarantining,
social distancing, and vaccination. The SIR model has also
been compared to the collision theory that explains the
connection between the rate constants with the social
interactions within the society.22 Combining others and our
practices, we believe the COVID-19 kinetics analysis has the
potential to go beyond the laboratory courses. It can be taught
in the physical chemistry lecture courses as an example
application of the consecutive reaction model of the kinetic
theory. At the same time, we may consider teaching kinetics
without the steady-state approximation with the help of
numerical simulation using Excel or computer programming.

■ RESULTS AND DISCUSSION

The online laboratory is carried out with a brief introductory
lecture, demonstration, active discussion, and hands-on
calculations. The major goal for the students is to use the
common principles in kinetic modeling and learn the
numerical regression method to fit kinetic data.
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Mortgage Analysis. The students are instructed to
compare the analytical and numerical solutions of fixed
monthly payment mortgages. The mortgage model is not
directly connected to the SIR model. It is provided to the
students as a warmup experience of manual regression using
Excel. If the students have learned the general consecutive
reaction model in the lecture class, it can be used to replace the
mortgage model. All calculations are carried out with Microsoft
Excel or Google Spreadsheet. Microsoft Excel is available for
free at many American Universities, and Google Spreadsheets
are free for anyone to use. In the analytical solution, the
equation used to solve for monthly payment is given by34,35,45

=
− + −P

r PV
r

( )
1 (1 ) n (1)

where P is the monthly payment, r is the interest rate per
month, PV is the principal, and n is the number of payments.
The student is given the equation and instructed to find a
solution for a set of given parameters and experiment with any
parameters they want to try. For example, PV = $100,000, n =
360 months (30 years), and r = 0.4869% (annual rate 6%),
yield P = $589.37 per month. One major concept comes from
the annual compound interest rate which is used to calculate
the monthly compound interest rate

= +r r(1 )m a
1/12

(2)

where ra is the annual compound interest rate or annual
percentage rate.
The students then carry out the same analysis in Excel using

the numerical simulation with a manual regression strategy
(Table 1, Figure 1). Most students are familiar with Excel, but
step-by-step instruction is given to avoid difficulties and
confusion in the next steps due to this regression method being
used to analyze the COVID-19 data later. An example Excel
sheet has been attached to the Supporting Information section.
Then, fixed parameters are placed in column H (Table 1).
Four columns in Excel A, B, C, D are set for four vectors, time,
balance, interest, and payment (Table 1). The first row lists
these column names. The first column, column A, contains the
time vector, months from 0 to 400. In the second row, the cell
of B2 is set to =$H$4, the same as the analytical example. The
interest is then set to 0, and the payment is set to 0. The “=”
sign is used in Excel to type in an equation, and the “$” sign is
an operator to lock the citation cell during a vector calculation.
Excel uses aEb to represent the scientific notation of the
number a × 10b. Row 3 initializes the vector calculation with
the equations shown, which can be dragged by the corners of
the cells to the bottom row to automatically implement a

vector calculation in Excel. This operation finalizes the creation
of the “software.”
In the next step, the students manually change the monthly

payment to find a condition indicated by reaching a 0 balance
at the end month, a root-finding problem. This value can be
monitored in the reporting cell, H8 (Table 1). The balance
versus time curve is also plotted in the Excel spreadsheet
(Figure 1). The students are instructed to play with the
monthly payment value manually. Typically, less than 10
guesses are needed for a regression convergence with three
significant figures. The students are then free to change the
initial parameters to practice a few random calculations using
their “software” creation.

SIR Model Analysis. The standard SIR model is then
introduced to the students. The students should have a general
knowledge of physical chemistry kinetics or should be learning
it within the course to understand this model. It should be
noted that the SIR model of kinetics and the standard
consecutive reactions kinetic model hold a significant differ-
ence. The significant difference is that the rate constants are
expressed in different ways. The rate constant for the SIR
model is expressed in terms of the Rt, while the consecutive
reaction model uses k as the rate constant. The students are
instructed to create a numerical simulation on the SIR model
like the mortgage simulation. This simulation should contain a
rate of growth and a rate of reduction. The subsequent curve
represents a logistic function that the students may have seen
before. The primary purpose of the simulation is to introduce
the concept of the Rt value to the students and should be
correlated as being complementary to the consecutive kinetic

Table 1. Part of the Excel Sheet for the Numerical Mortgage Calculationsa

aNote: red color showing the formula to type in Excel. Cell H8 value = 0.4. Significant figures are from Excel default and have not been corrected.

Figure 1. Overlay of a few plots of the balance over time modified
from a student’s laboratory report. Part of the Excel sheet is shown in
Table 1.
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model the students have studied during the lecture class. For a
SIR model14,16,19,46

β

γ

+

⎯ →⎯⎯⎯⎯⎯

→

N
susceptible infectious

/
2 infected

2 recovered or died (3)

where susceptible (S) is the total non-infected people in the
state, infectious (I) is the active carriers that can infect others,
recovered (R) is the people who are neither susceptible nor
infectious (immune or dead), N is the total population in the
state, β is the average infection frequency of one carrier
infecting a susceptible person per period with the unit of day−1,
and γ is the frequency of removing a carrier with the unit of
day−1. It is important to note that as soon as a person is
infected, he/she can begin infecting others, and the probability
of this person infecting others is related to the γ value which is
discussed further in this report.
The following differential equations of the SIR epidemic

model are used for the students to numerically fit the COVID
spreading data.13,14,16,19,47

β= −S
t

IS
N

d
d (4)

β γ= −I
t

IS
N

I
d
d (5)

γ=R
t

I
d
d (6)

The reproduction number, the average number of people
infected by an infectious person is

β
γ

=R
(7)

The basic reproduction number, R0, is defined as the initial
replacement number when one infectious individual is
introduced into an all-susceptible population with initial

parameters β0 and γ0, = β
γ

R 0
0

0
.16 We can define time-

dependent reproduction number

β
γ

=R
t
t

( )
( )t

(8)

Rt remains constant at R0 over time if no action is taken.
When actions such as social distancing, detection, protection,
quarantine, and better treatment are taken which change β and
γ, then Rt changes over time.
We can further assume an effective reproduction number

from eq 5 to incorporate the effect of the “dilution” of the
susceptible population on spreading into the effective
reproduction number13,26,47

β
γ

=R t
t S t

t N t
( )

( ) ( )
( ) ( )e

(9)

where S(t) is the non-immune susceptible population and N(t)
is the total population. We can see that when Re > 1, eq 5 has a
positive value, and the number of infectious people
exponentially grows; when Re < 1, eq 5 has a negative value,
and the number of infectious people exponentially decay; and
when Re = 1, eq 5 equals 0, and the curve of infectious people
reaches a “steady state.”

Comparing Rt and Re, Rt is correlated to β and the second-
order spreading rate constant (eq 8), and Re is correlated to
the quasi-first-order rate constant with respect to the infectious
population (eq 9).
The students are then instructed to use a set of parameters

to create a simulated trajectory of the SIR model of an
epidemic example in Excel. An example is shown in (Table 2,

Figure 2), and an in-class demonstration file is shown in the
Supporting Information. Equations 4−6 are numerically
approximated by calculating the changes in the number of
people ΔS, ΔI, and ΔR within time Δt. The simulation is more
accurate with a smaller time spacing Δt. Δt is set to 1 day in
this laboratory, but it can be a variable for the student to
change to check the convergence of the simulations. The
students create their own Excel files and debug their formulas
and then can play with changing the parameters such as the
size of population N, recovery rate γ, and spreading rate β/N to
check the trend of the trajectories. In this model, the Rt, β, and
γ remain constants, and the two reactants, S and I, change over
time (Table 2, Figure 2). We can see for a constant Rt, S goes
down, R goes up over time, and I goes up at the early stage and
then goes down at the later stage when assuming the recovered
population gains immunity in the SIR model (Figure 2A). This
is because the “concentration”/fraction of the susceptible
people (S/N) drops over time, becomes significant, and then
dominates at the middle to late stages of the outbreak, which
reduces the probability of an infectious individual reacts with a
susceptible individual. Rt maintains constant over time in this
simulation, while Re decays from R0 to zero over time and
equals 1 at the peak of the I curve, a “steady-state” (Figure 2B).
It is scaled from the curve of the number of susceptible
populations.
To simplify the analysis in this laboratory class, we assume

that the total population of interest N(t) remains the same N

Table 2. Excel Sheet of a Simulated SIR Model

time Rt Re(t) β γ S I R

0.0 3.0 3.00 0.375 0.125 1000.0 1.0 0.0
1.0 3.0 3.00 0.375 0.125 999.6 1.3 0.1
2.0 3.0 3.00 0.375 0.125 999.2 1.6 0.3
3.0 3.0 3.00 0.375 0.125 998.6 2.0 0.5
4.0 3.0 2.99 0.375 0.125 997.8 2.4 0.7

Figure 2. Corresponding SIR curves of the numerical simulation of
the SIR model in Excel with N = 1000. Part of the Excel sheet is
shown in Table 2. (A) Changes of populations over time. (B)
Changes of reproduction number and effective reproduction number
over time.
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over time and are all-susceptible at the beginning, and the
recovered or vaccinated population is immune

= − −S t N t R t V t( ) ( ) ( ) ( ) (10)

where V is the number of people who are vaccinated. Because
the data we had in the laboratory was at the early stage of the
COVID-19 outbreak when S(t) ≈ N(t) (Figure 2B, left part of
the dashed line on the left), following an approximation in the
literature,47 we further simplified eq 9 to

β
γ

≈ ≈ =R t S N
t
t

R( )( @early stage)
( )
( ) te

(11)

Future laboratories can consider including the vaccination
and recovery data in the analysis, suggesting to assume S(t) =
(1 − pR − pV)N(t), where pR is the fraction of the population
that has been recovered (assuming people gain immunity after
recovery) and pV is the fraction of non-infected people who are
vaccinated. Therefore

β
γ

=
− −

R t
p p t

t
( )

(1 ) ( )

( )e
R V

(12)

If there are populations who are naturally immune, it can be
further removed from the susceptible population. One can see
that, for example, R0 = 3, >67% vaccination rate is enough to
bring the Re to <1 to guarantee the value I to exponentially
decay when eq 5 has a negative value. At this vaccination ratio,
the society achieves “herd immunity”26 without any change in
β and γ (and thus a constant Rt), that is, under the same social
and clinical conditions before the breakout.
Obtaining the COVID Data. The students are then

instructed to obtain and analyze COVID-19 data from two
states within the United States, with the state of residence
being mandatory and the other state being the student’s
choice. The students are instructed to download the COVID
spreading data. Some data sites contain Excel files of the
spreading data, while some do not. The instructor should
suggest that the students pick a website that uses a
downloadable data format,48 whose consistency has been
checked with official sources such as the US CDC and WHO.
This laboratory was done in February 2021, so most of the
data are from around March 2020 to February 2021 for a US
state. Only the time (date) and the accumulated positive viral
test values are used for this data analysis laboratory.
An example of the data and the pre-analysis data treatment is

shown in Figure 3. The date are ordered backward in the
original data file found online, with the most recent dates at the
top of the document and the later dates at the bottom of the
document. Before analysis, the data should be resorted to have
the most recent dates at the bottom and later dates at the top
using the sorting function in Excel. The daily number of people
who tested positive can be obtained by subtracting a day’s
positive test value from the day before (−ΔS). If the daily
positive cases are plotted, the curve is consistent with the
curves from the CDC or other websites such as Google (Figure
3B). This daily positive curve is then smoothed using a
moving-average method in Excel. This is carried out by
creating a new column and calculating the average cases in 5−7
days. An example of a moving average would be that the day 1
value is the average positive cases of day 1−6, the day 2 value is
the average positive cases of day 2−7, the day 3 value is the
average positive cases of days 3−8, and so on. This smoothing
allows the students to identify waves at the noisy parts of the

data which signify inclines or declines in positive cases. For the
simplicity of this laboratory, the waves in the smoothed daily
cases are divided into pieces of incline periods and decline
periods manually. Students divide the pieces very differently
depending on where they think the incline and decline periods
are located. Some students divide the periods, as shown in
Figure 3B, into many more pieces, especially for the areas
around markers 6 and 7. Some students may only divide the
smoothed graph into a few pieces for analysis. For simplicity,
each piece will be fitted with one average Rt value. This
procedure is explained in the next section.

COVID Data Analysis. First, the students will use the first
2 weeks of state Covid-19 data to find an initial R0 value of the
state using the manual regression method under direct
instructor demonstration. For this section, students will need
to create several columns to calculate the SIR values each day
using the model, as shown in Figure 2, and then compare the
(I + R) values to the accumulated cases. The instructor should
have fixed all parameters for a given state, except for the Rt
value, which is the only parameter that is left to adjust during
the manual regression data fitting. All people within a state are
assumed to be susceptible at the beginning of the spread.
The value γ(t) is difficult to determine in each state. In the

SIR model (eqs 4−8), each infectious individual randomly
infects βS/N people per day, and the infected person recovers
or dies with the probability of γ per day. The γ value is
dependent upon the inverse of the recovery time.16,46 Both β
and γ values should change over time. When the two
parameters have the same value, the number of infected
people I drops because the rate in eq 5 is negative. It drops
faster and faster over time because the fraction of the
susceptible population S/N in eq 5 decays. The β(t) and
γ(t) values are affected by detection, self and mandatory
quarantine, treatment, vaccination, and even seasonal changes.
Given similar conditions, γ(t) should be relatively stable.
Literature sources also reported the median incubation time
(time to show symptoms) for COVID-19 being 5.1 days,49,50

and the individual is suspected already infectious during this
period.49 The United States CDC reported average infectious
time, the time between infection and loss of infectiousness, of
COVID-19 being 5−7 days.51 After that, the person may stay
infectious but does not infect others due to the factors of
quarantining, or recovery, or death. We fixed the average γ(t)
value to be 1/5 day−1 in this laboratory to simplify the analysis.

Figure 3. (A) Example raw data (state of Ohio) of the accumulated
positive test cases (N−S) vs time. (B) Tested positive cases per day
(−ΔS) and an overlay of the smoothed data in orange. The time is
divided manually into seven pieces for the further fitting of Rt.
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This γ value is consistent with the values adopted in the
literature.11

The students can then manually guess the Rt value that
changes the β(t) to quickly get a good fit signified by an
overlay between the raw data and the simulated curve (Table
3, Figure 4). As listed in Table 3, the first column is the day,

the second column is the accumulated positive raw data, the Rt
value is guessed, and β is calculated from eq 7 with the guessed
Rt and fixed γ value equaling 0.2 day−1. S, I, and R are
calculated using eqs 4−6 with Ohio’s population, N, equaling
1.16 × 107 and an initial guess of I0 equaling 1. The last
column is the simulated total positive cases I + R. Please see
the Supporting Information in the Excel sheet for the
procedure. The simulated curves with different guesses on Rt
are shown in Figure 4. Fitting by eye is used in this laboratory
for the time concern, and students with extra time can be
instructed to use the least-square residual criteria for fittings
with better goodness. The students found that it was easy to
guess an Rt with two significant figures that fit the data well by
eye. The initial R0 value at Ohio is 2.8, which is consistent with
the literature reported value of an average initial R0 value of
about 2− 4 in many places of the United States,12 and
consistent with the initial R0 of other countries.

23

The last step of the fitting is just to repeat the process for the
other smoothed graph wave periods one by one. Students must
start at the beginning dates and progress chronologically
through wave periods because the fitting of each period is
dependent on the fitting of the period before it (Figure 5). A
few guesses of Rt values for each period are typically sufficient
to obtain a reasonable fit of the curve (Figure 5A). Once all the
pieces are fitted, one can also estimate the daily Rt′ values using
eq 7 (Figure 5B). One can also overlap the daily positive cases
with the fitted values to check the accuracy of the fitting
(Figure 5C). This curve can be linked to the daily interest
parameter of the mortgage model.

After fitting all the data, some students will have free time to
play with the Rt values and predict a trajectory in the future
based on different social activities such as fully open social
activities, social distancing, reducing social activities, lockdown,
and vaccination. Each event will affect the current Rt values,
and the students will use the different social activities to project
the future Rt values using the SIR model.
The students should be encouraged to fit at least one other

state’s data. The states chosen by this class include West
Virginia, Florida, Texas, Michigan, Tennessee, and New York.
A few examples fitted by the students are shown in Figure 6.

Relating Rt Values to Social Events. The students are
instructed to search for hypothetical correlations to the inclines
or declines of positive cases indicated by the waves on the
smoothed graph. The correlations are to be reported in their
laboratory reports. These waves are not associated with the
change in the fraction of the susceptible population (<10%),
which maintains in small change at the early stage of outbreak
and vaccination. Rather it is mainly attributed to the change in
the reproduction probability β upon changes in social

Table 3. Part of the Excel Sheet in Fitting the R0 Value of
the State of Ohio

day case R0 β γ S I R simu.

0 0 2.8 0.56 0.2 1.16 × 107 1 0 1
1 0 2.8 0.56 0.2 1.16 × 107 1.36 0.2 1.56
2 0 2.8 0.56 0.2 1.16 × 107 1.85 0.5 2.32

Figure 4. Example simulation for the student to fit the average R0
values in the first 2 weeks of COVID-19 data of the state of Ohio.
Overlap of the data with three different guesses of R0. Part of the Excel
sheet is shown in Table 3. The fitting precision is adjusted by eyes.
Students with extra time can create a square deviation column (square
residual) to minimize the sum of the square deviation for better
precision (Supporting Information, Excel sheet). The residual from
the R0 = 2.8 fitting is shown in the figure.

Figure 5. (A) Manually fitted cumulative positive cases of the state of
Ohio with the piecewise guesses of Rt, as shown in (B). (B) Averaged
Rt and an estimated daily value Rt′ using the equation shown. (C)
Overlay of daily positive cases raw data and the piecewise fitted curves
calculated with the equation modified from eq 4.

Figure 6. Example fittings by the students. The accumulated data are
plotted in (A,D), and the daily positive data are plotted in (B,C), as
preferred by different students.
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activities. The effect of a social event on the Rt value is
assumed to show up after 1−2 weeks, which is consistent with
a recent contact tracing study.30 For example, several students
correlated the drop of the Rt value within the first month in
Ohio with the stay-at-home order announced on day 18. A
further drop in the value is associated with the mask mandate
on day 53. A small incline wave around 60 days could be
caused by the partial reopening of stores. After the reopening,
the social distancing regulations allowed the Rt value to flatline
over a long period. On day 150, the mask order was
implemented in schools which correlated to seeing a dropped
wave after about a week. The incline spikes after day 240 are
correlated to the beginning of the holiday season, such as
Halloween, Thanksgiving, Christmas, and New Year. It should
be noted that this practice can be harmful if the students are
not told that the guessing and associating of Rt is not
scientifically rigid. Correlation with higher confidence can be
found via contact tracing and statistical analysis with a few
examples cited.30−33 There are inherent dangers with allowing
students to be open with guessing the effects of the social
mandates, and readers should use caution when allowing
students to do so. It is ultimately up to the reader whether this
practice is followed, but the reader may also implement
guidelines for the students. For example, if the reader knows
where the peaks and dips are in a certain state’s Rt kinetic
model, they may be able to tell students that there are six peaks
and the students must find what mandates they correlate to.
Similar correlations are observed for other states with an
example from a student, as shown in Table 4.

Relating Rt to Reaction Rate Constant k. The students
are then instructed to connect the Rt value to a typical reaction
rate constant, k, that they have studied in the lecture class. In a
typical kinetic analysis in physical chemistry, the β/N value and
γ value will be presented as rate constants k1 and k2, while the
Rt value is the total susceptible population times the ratio
between the two individual reactions involving k1 and k2 (see
eq 8).52 The students strengthen this connection in this

laboratory and understand the exponential growth or decay
models determined by the Rt value. The change in Rt upon
social behaviors can be correlated to the change in the rate
constant in a reaction. For example, social distancing is like the
temperature of a heat-favor reaction suddenly drops; mask
order is like a sudden rise of the reaction energy barrier; and
vaccination is like a change in the reactant concentration on
susceptible people.
When the effective reproduction number Re is introduced in

future laboratories with later stages of the epidemic, the
difference between Rt and Re should be discussed. Re is better
correlated with the quasi-first-order rate constant of the
number of infectious population than Rt. It is easier to be used
to measure the spreading rate and predict the future trajectory
of the epidemic. Rt is better correlated with the second-order
reaction rate constant of the same reaction and the intrinsic
properties of the disease than Re. It is easier to be used to
compare the different mutations of the same disease or among
different contiguous diseases. These simplifications (could be
too naive) can help the undergraduate students establish a
connection between the SIR model and the kinetic models
learned in the textbook, especially for those who have just
started learning kinetics.

Take-Home Questions and Report Grading. There are
additional take-home questions for the student to think about
within this laboratory, with one example being the discussion
of the similarity between the mortgage model and the SIR
model, that is, Rt = 1 is equivalent to paying just the interest in
the mortgage, so the balance is flat. Additional questions
include, what one can do to stop or slow down the spreading
of the virus? What can the government do to help stop the
spreading? What will a vaccination of 50% of the population do
to slow down the spreading?
The laboratory report is written in a standard ACS style like

this manuscript, with each section graded for both structural
and merit points. Reports are due ∼2 weeks after the
laboratory. Instruction is given to the students on the grading
of the report and is also attached in the Supporting
Information section of this report.

■ CONCLUSIONS

Numerical simulation of kinetics has its value in teaching
kinetics and addressing complicated kinetic models. It also
carries an additional advantage to explain or bypass the steady-
state approximation for some models in the textbook. This
form of teaching could also be positively impacted by the
learning of a computer programming language, for example
MATLAB that has been used in the author’s laboratory for
research projects. As a rethinking of our chemistry curriculum
has been suggested,1 we may consider adding the learning of a
computer language as a mandatory requirement to overcome
possible technical challenges. While this laboratory does not
contain the learning of a computer language, this skill could aid
students in becoming familiar with the premises of numerical
simulations without the steady-state approximations. Start
from this training, several sophisticated and free software
packages of numerical simulation can be used for their later
projects, such as Acuchem,53 Kinsim,40 and COPASI.9

By comparing the Rt value between states and their
correlation with social events, we believe that social regulations
such as lockdown, facemask, and social distancing orders are
effective ways to slow down the spreading speed. However, we

Table 4. Possible Correlation between COVID-19 Cases
and Social Events in Texas was Modified (Formatting) from
a Student’s Laboratory Report

days
Rt

value CDC cases SIR cases % errora events

0−14 2.60 82 73 11.26 testing begins
in Texas

14−50 1.81 21 944 19 856 9.51 (stay home
order day
30)

50−90 0.93 66 568 66 271 0.45 schools go
online

90−140 1.27 351 618 344 725 1.96 businesses can
operate at
50%
occupancy

140−200 0.90 688 534 687 486 0.15 bars close
again

200−275 1.15 1 350 542 1 350 006 0.04 college football
275+ 1.07 2 574 194 2 611 607 1.45

aThis student reports % errors between the confirmed cases in the
state of Texas and the simulated data (the absolute value of 1 −
simulated/confirmed) as a measure of the goodness of the manual
simulations. These correlated events are hypothetical that may or may
not be among the major causes.
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are aware that there are limitations on such analysis due to
uncertainty on the data and the over-simplicity of the model.
From Rt analysis, we can see that its value is more sensitive

to the changing of the spreading speed rather than the
confirmed cases or accumulated confirmed cases. A very large
number of positive cases does not necessarily associate with a
large Rt value. This is because the Rt value is more connected
to the slope of the increase rate rather than the absolute value
of the confirmed cases. As such, it is a better parameter to
investigate the total number of cases in a state. The change in
the Rt value provides fast feedback on the evolution of the
virus, the degree of the effect of the social regulations, events,
and vaccination on the early stage. Bringing the effective
reproduction number Re below 1 will see a turning point of the
number of infectious people which is the goal of the disease
control. We approximate Re to Rt for the early outbreak data in
this laboratory (eq 8). Re can be calculated using eq 9 from Rt,
which should be analyzed for future laboratories when
infection and vaccination rate are significant. Although Re
can be less than 1 with many different strategies, one would
hope it to be realized via a large number of the vaccinated
population rather than a large number of the infected
population.
The manual regression method that the students learned in

this laboratory can be employed in many other data analysis
projects. Through learning these practices, students gain a
hands-on feeling about how to adjust a fitting parameter to
influence a larger set of data. Students also learn how to
establish a software package in Excel dealing with complicated
kinetic models. It is also crucial that the students create all the
spreadsheets themselves. This can be carried out through
direct demonstration by the instructor or brief demonstration
by the instructor. The students should create the template
because knowing the principles and using an established
template are very different than creating a bug-free version of
the template by themselves. The skill of applying an “eye-ball
fit” by overlaying curves and checking differences is also
adapted in this laboratory. The least-squares regression method
and the accuracy of the fitting, such as the R2 value, have also
been introduced in the lecture but are not practiced in this
experiment due to time restrictions. Convergence tests run by
changing the independent variable spacing, Δt (which is
reasonably set = 1 day now), have been discussed during the
lectures and mentioned during the laboratory but are not
practiced due to the time constraints. This laboratory class is
important because students are to use these techniques for data
analysis in later laboratories during the semester. We hope the
knowledge of data fitting will be acquired and will provide the
students with strategical data analysis experience in their future
careers.
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