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ABSTRACT

Large-scale multi-omics datasets, most prominently
from the TCGA consortium, have been made avail-
able to the public for systematic characterization of
human cancers. However, to date, there is a lack of
corresponding online resources to utilize these valu-
able data to study gene expression dysregulation
and viral infection, two major causes for cancer de-
velopment and progression. To address these unmet
needs, we established OncoDB, an online database
resource to explore abnormal patterns in gene ex-
pression as well as viral infection that are correlated
to clinical features in cancer. Specifically, OncoDB
integrated RNA-seq, DNA methylation, and related
clinical data from over 10 000 cancer patients in the
TCGA study as well as from normal tissues in the
GTEx study. Another unique aspect of OncoDB is
its focus on oncoviruses. By mining TCGA RNA-
seq data, we have identified six major oncoviruses
across cancer types and further correlated viral in-
fection to changes in host gene expression and clin-
ical outcomes. All the analysis results are integra-
tively presented in OncoDB with a flexible web in-
terface to search for data related to RNA expression,
DNA methylation, viral infection, and clinical features
of the cancer patients. OncoDB is freely accessible
at http://oncodb.org.

INTRODUCTION

The advent of large-scale multi-omics datasets, such as
those presented in The Cancer Genome Atlas (TCGA),
have greatly helped us to understand the characteristics of a
wide variety of tumors. With these cancer datasets, molec-
ular aberrations at the DNA, RNA, protein and/or epige-
netic levels can be systematically identified to better charac-
terize human cancers. To date, TCGA is the most prominent
cancer genomics program which offers >10 000 primary

tumor and matched normal samples spanning 33 cancer
types (1). TCGA hosts genomic and epigenomic data with
clinicopathologic information, which provides a significant
opportunity for data mining of cancer-relevant functional
changes. However, the TCGA web portal provides few func-
tions on statistical analysis or data visualization, and analy-
sis of TCGA data can be difficult for most researchers who
have limited bioinformatics skills. Thus, it is important to
develop user-friendly online resources to analyze and visu-
alize aberrant molecular changes in various types of cancer.

One important strategy to characterize cancer-relevant
functions is to profile aberrant changes in tumor tran-
scriptomes by RNA-seq analysis. Based on RNA-seq data,
differential expression analysis is commonly performed to
identify significantly altered genes between tumor and nor-
mal samples (2). Besides RNA-seq data, DNA methylation
data are also very useful to identify aberrant epigenetic reg-
ulation of RNA transcription. For example, hypermethyla-
tion of TP53 gene leads to unchecked proliferation as well
as inhibition of apoptosis in breast cancer (3).

Correlating transcriptomic and epigenomic data with
clinical data can help identify aberrant molecular character-
istics underlying disease development (4). Further, molecu-
lar biomarkers can be developed in this way for cancer di-
agnosis and prognosis. In particular, many RNA expression
signatures have been reported for prediction of therapeutic
response and survival outcome of cancer patients (5).

Besides aberrant DNA methylation or RNA expression,
another major cause of cancer is viral infection. Human
tumor-associated viruses (i.e., oncoviruses) are frequently
identified as main drivers of cancer development (6). For
example, HPV E7 oncoprotein could inactivate the tumor
suppressor RB by disrupting the E2F-RB complex, trig-
gering the degradation of RB via the ubiquitin-proteasome
pathway (7). Thus, identification of oncovirus-related gene
expression changes helps better understand the mechanisms
underlying virus-induced cancers.

At present, multiple online resources have been devel-
oped for analysis of cancer genomic data by focusing on
the TCGA datasets. One prominent tool is CBioPortal (8),
which provides an interface for TCGA data download and
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visualization. However, CBioPortal is focused on tumor
samples, and it does not include any data from normal sam-
ples for comparative analysis; in addition, there is no anal-
ysis functions on DNA methylation data. Another popu-
lar tool, GEPIA (9), is focused on RNA expression analysis
using RNA-seq data from TCGA and GTEx (10), whereas
MethHC (11) is a versatile web portal for epigenetic anal-
ysis using DNA methylation data collected from multiple
sources. Although these are all very useful tools, to date,
there is a lack of online resources to comprehensively study
gene expression regulation in cancer by analyzing aberrant
changes at both the RNA expression and DNA methyla-
tion levels. It is particularly important to further correlate
molecular aberrations to clinical parameters to character-
ize cancer-relevant functional changes. Moreover, analysis
functions on viral infection, a major cause of cancer, have
not been systematically implemented in any online tool. To
address these unmet needs, we established OncoDB, a com-
prehensive online database resource to explore abnormal
patterns in gene expression as well as viral infection that are
correlated to clinical features in cancer.

METHODS AND RESULTS

Data collection and processing

The datasets included in OncoDB are mainly from TCGA,
encompassing RNA-seq, DNA methylation, and clini-
cal data from over 9000 cancer patients. Specifically, for
RNA expression analysis, we downloaded both tumor and
matched normal RNA-seq data from the GDC data por-
tal (https://portal.gdc.cancer.gov/). There is only a limited
number of normal control samples in TCGA. To address
this limitation, we also included RNA-seq data from over
1600 normal samples in GTEx (10,12). GTEx is a public
resource to study tissue-specific gene expression among 54
non-diseased tissues.

We developed an RNA-seq data analysis pipeline, adopt-
ing standard features recommended by the GDC (https:
//docs.gdc.cancer.gov/). The workflow of our pipeline is out-
lined in Figure 1. In our pipeline, as the first step, both
tumor and normal raw reads were aligned to the human
genome with STAR (13). The aligned reads were further
mapped to human RefSeq transcriptome to summarize raw
gene-level read counts. On the other hand, for reads not
aligned to the human genome, they were further aligned
to all known human viral genomes presented in the RefSeq
database (14) as well as the PaVE collection (15) to deter-
mine the virus status of each tumor. Raw gene-level read
counts were further normalized using the transcripts per
million (TPM) method. All TCGA and GTEx data were
processed using the same bioinformatics pipeline. Of note,
direct comparison of tumor and normal tissues may iden-
tify not only differences related to tumorigenesis, but also
differences in tissue composition. Thus, the comparison re-
sults should be interpreted with caution.

Raw DNA methylation data were downloaded from the
GDC data portal. Based on chromosome location anno-
tations, we mapped individual methylation probes to all
known genes in the human genome. The gene regions were
defined from the RefSeq annotation file, while the pro-
moter regions and transcription start sites were derived

from Fantom5 (16). Major clinical parameters, including
clinical stage, pathological stage, histological grade, and
gender from all cancer types, were extracted from GDC flat
files and further organized into structured data tables. The
survival time and status were determined from curated pa-
tient follow-up data. The RNA-seq reads and DNA methy-
lation profiles were mapped to clinical data based on de-
identified patient ID.

Development of the OncoDB database

All processed data described above were imported into a
MySQL relational database. Server-side scripts written in
Perl were implemented for data analysis and visualization.
Statistical results and related figures were generated by Perl-
CGI in conjunction with Python or R statistical program.
In this way, we developed OncoDB, which is an online re-
source to analyze aberrant molecular changes in cancer. On-
coDB provides multiple functions within four main mod-
ules, including RNA Expression Analysis, DNA Methyla-
tion Analysis, Clinical Analysis, and Oncovirus Analysis. In
OncoDB, RNA expression and DNA methylation data are
correlated with clinical data to characterize clinically rele-
vant gene expression aberrations. As for the oncovirus mod-
ule, gene expression and clinical data are analyzed in the
context of viral infection to identify virus-related changes.
The processed data can be retrieved through the data down-
load interface. Details of the four OncoDB modules are pre-
sented below.

Expression analysis

Dysregulation of RNA gene expression is a major cause
of cancer. Thus, studying differentially expressed genes be-
tween tumor and normal samples helps infer cancer driver
genes or potential therapeutic targets. Additionally, con-
ducting correlation analysis among individual genes could
help identify functional gene interactions in the gene regu-
latory network. In the RNA Expression Analysis module,
three main features were implemented to enable statistical
analysis and result visualization, including gene-focused ex-
pression analysis, cancer-focused expression analysis, and
correlation of gene expression.

For these analyses, RNA-seq data are retrieved from the
backend database and divided into two groups, tumor ver-
sus normal samples. Log2 fold change value is calculated
between the two groups to determine whether a gene is up-
regulated or downregulated in tumor samples. Differential
expression analysis is conducted with Student’s t-test. A
floor expression value of one is used to exclude genes with
no or very low expression before performing Student’s t-
test. Pearson correlation analysis is employed to evaluate
the correlation between two genes.

A web interface was established to search for the expres-
sion profile of a user-specified gene in one or more cancer
types. In addition, normal samples of the same tissue origin
as the tumors are also analyzed to identify potential differ-
ences in gene expression profiles. The result is visualized in a
boxplot (an example shown in Figure 2A) along with a table
summarizing detailed statistical results. In addition, for any
user-specified cancer type, OncoDB presents top-ranking
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Figure 1. Workflow for the RNA-seq alignment pipeline to summarize human and viral sequencing reads.

differentially expressed genes between tumor and normal
samples based on expression fold change and statistical sig-
nificance. The result is retrieved and presented in a table for
these genes, summarizing statistics such as false discovery
rate (FDR)-adjusted P-value and log2 fold change. Besides
making comparison between tumor and normal samples,
for any selected cancer type, a user can also perform cor-
relation analysis between two genes of interest. A scatter
plot along with Pearson correlation analysis results are pre-
sented to compare two input genes (an example shown in
Figure 2B).

Methylation analysis

Increasing evidence shows that epigenetic dysregulation of-
ten results in aberrant RNA expression, and thus it is a com-
mon mechanism in cancer development. To this end, two
main features were implemented in the Methylation Analy-
sis module, including both gene-focused and cancer-focused
analyses. Specifically, tumor samples and normal reference
samples of the same tissue origin are compared to identify
differential methylation patterns. Student’s t-test is used in
both gene-focused and cancer-focused methylation analy-
ses. For a user-specified gene, differential methylation anal-
ysis is conducted for each probe individually to identify al-
tered gene regions (including both the promoter and gene
body). A line graph is presented to summarize averaged
methylation levels for each probe within the gene structure
(including the promoter, exon, and intron) for tumor or nor-
mal samples (an example shown in Figure 2C). In addition,
probe-level analysis results are also summarized in a table,
with statistically significant probes highlighted.

For a user-specified cancer type, there is an option to con-
duct differential methylation analysis for each gene using
subsets of probes mapped to the promoter, gene body, or
both. Differentially methylated genes are identified by com-
paring the average probe intensity of each gene between tu-
mor and normal samples. A table is presented to summarize

the statistics for top-ranking genes with differential methy-
lation patterns.

Clinical analysis

The Clinical Analysis module enables correlative analysis
between clinical data and RNA expression / DNA methyla-
tion profiles. Specifically, clinical analysis can be performed
by focusing on either user-specified gene or cancer type.
Patient clinical data, including various clinical parameters,
survival time, and outcome status, are retrieved from the
backend database and associated with individual genes or
cancer types. Clinical parameters consist of TMN stages
and other common parameters such as age, alcohol con-
sumption, gender, histology, smoking, BMI, family history,
and race.

Analysis of Variance (ANOVA) test is performed to iden-
tify clinically significant genes by correlating RNA-seq or
DNA methylation data to individual clinical parameters.
When a user specifies a gene of interest for analysis, the re-
sult is displayed in a boxplot for RNA expression data or
line graph for DNA methylation data (an example shown
in Figure 2D). Moreover, an accompanying table is also
presented to summarize analysis results including sample
size, expression/methylation levels and statistical signifi-
cance. On the other hand, when a user specifies a cancer
type as well as a clinical parameter for analysis, the result
table summarizes the statistics for top-ranking genes identi-
fied by their differential expression or methylation patterns
associated with the selected clinical parameter and cancer
type.

The survival plot feature presents the survival curves of
user-specified gene in one or more specified cancer types,
based on the Kaplan-Meier (KM) model which calculates
the survival probability along with survival time. Based on
the levels of RNA expression or DNA methylation, all se-
lected cancer cases are stratified into either the high or low
group according to a user-defined percentage cutoff. Ad-
ditionally, summary statistics are presented, including the
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Figure 2. Examples to demonstrate features of the Expression Analysis, Methylation Analysis, and Clinical Analysis modules. (A) A boxplot to compare
RNA expression level of CCT3 in liver tumor vs. normal samples. CCT3 was recently reported as a biomarker for liver cancer (17). (B) A scatter plot
to compare RNA expression level of two genes (MITF and ZEB2) in breast tumor samples. Previous research indicates these two genes have highly
correlated expression profiles (18). (C) A line graph to compare the DNA methylation level of CCND2 in breast tumor versus normal samples. Previous
research reported that CCND2 is hypermethylated in breast cancer (19). (D) A boxplot for subgroup comparison of CCT3 RNA expression, stratified by
pathological M stage in liver tumor samples. (E) A survival plot to evaluate the prognostic significance of CCT3 RNA expression in liver tumor samples.
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Figure 3. Examples to demonstrate features of the Oncovirus Analysis module. (A) A boxplot to compare RNA expression level of CDKN2A in HPV-
positive vs. HPV-negative cervix tumor samples. CDKN2A (commonly known as p16) is a well-established marker for HPV infection (20). (B) A line
graph to compare the DNA methylation level of CDKN2A in HPV-positive versus HPV-negative cervix tumor samples. (C) A survival plot to evaluate the
prognostic significance of CDKN2A expression in HPV-positive cervix tumor samples only. (D) A survival plot to evaluate the prognostic significance of
HPV infection in cervix tumor samples.

P-value from the log-rank test and hazard ratio from Cox
proportional regression analysis. An example of the survival
plot is shown in Figure 2E. In case the selected gene is sig-
nificantly correlated with one or more clinical parameters,
a table will also be presented to summarize the statistical
analysis results.

Oncovirus analysis

Viral infection is a major cause of cancer, leading to aber-
rant changes at various gene regulatory levels such as RNA
expression and DNA methylation. Thus, differential ex-
pression / methylation analysis on virus-positive vs. virus-
negative tumors can be a useful approach to identify viral
targets in the human transcriptome, providing mechanis-
tic insights into virus-induced cancers. In OncoDB, the on-

covirus status of each tumor sample was determined with
the sequencing analysis pipeline (Figure 1), and then used
to stratify patient cases from user-specified cancer type. In
this way, differential RNA expression or DNA methylation
analysis can be performed to identify changes associated
with viral infection.

In the Oncovirus Analysis module, a user can perform
gene-focused analysis to evaluate potential viral associa-
tion for user-specified genes in one or more cancer types.
A boxplot for expression analysis or a line graph for methy-
lation analysis is presented to visually compare the virus-
positive and virus-negative groups (examples shown in Fig-
ure 3A and B). In addition, differential analysis is per-
formed to identify any statistical significance associated
with the virus status, with the results summarized in an
accompanying table. Alternatively, cancer-focused analysis
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can be performed to identify all top-ranking genes associ-
ated with user-specified virus and cancer type. In this case, a
table is presented to summarize detailed statistical analysis
results for all identified virus-associated genes.

The Oncovirus Analysis module also enables various
virus-related gene analyses in the context of clinical data.
For example, users can perform patient survival analysis
to evaluate the prognostic significance of a gene (based on
RNA expression or DNA methylation) in the virus-positive
group or virus-negative group separately, with a survival
plot presented for each group. An example of survival plot
based on RNA expression analysis of CDKN2A in HPV-
positive cervical cancer is shown in Figure 3C. Addition-
ally, survival plots for cancer cases stratified by the virus
status can be used to evaluate the prognostic value of user-
specified virus in any specific cancer type. Figure 3D shows
an example of survival plot grouped by the HPV status in
cervical cancer. Users can also perform combined viral and
clinical parameter analysis of a gene by specifying the virus,
cancer type as well as clinical parameter of interest. In this
case, the result is displayed in a boxplot for RNA expression
data or line graph for DNA methylation data, stratified by
user-specified clinical parameter for all virus-positive can-
cer cases. An accompanying table is also presented to sum-
marize detailed analysis results such as ANOVA P-value
to assess gene association with clinical parameters in virus-
positive cases. Meanwhile, differential clinical analysis func-
tion provides a result table to summarize top-ranking genes
with differential expression or methylation patterns based
on user-specified virus, cancer type and clinical parameter.
Lastly, users can analyze the expression of oncoviral genes
from specific virus subtypes to correlate viral gene profiles
with selected clinical parameters. The result is displayed in a
boxplot along with a table to summarize detailed statistical
results.

CONCLUSION

OncoDB is a comprehensive online database to analyze
gene expression and methylation data from over 10 000 pa-
tients spanning 33 major cancer types. Researchers could
conveniently retrieve and analyze a large quantity of cancer
data without requiring advanced bioinformatics skills. In
OncoDB, RNA-seq, DNA methylation, and related clinical
data are integratively analyzed and then visually presented
on the web portal. Another unique feature of OncoDB is
its oncovirus analysis module, which was developed by in-
tegration of viral infection status with cancer genomic and
clinical data; this new feature provides functional as well as
clinical insights into the roles of oncoviruses in cancer de-
velopment and progression.
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