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Abstract

Motivation: Proteomics profiling is increasingly being used for molecular stratification of cancer

patients and cell-line panels. However, systematic assessment of the predictive power of large-

scale proteomic technologies across various drug classes and cancer types is currently lacking. To

that end, we carried out the first pan-cancer, multi-omics comparative analysis of the relative per-

formance of two proteomic technologies, targeted reverse phase protein array (RPPA) and global

mass spectrometry (MS), in terms of their accuracy for predicting the sensitivity of cancer cells to

both cytotoxic chemotherapeutics and molecularly targeted anticancer compounds.

Results: Our results in two cell-line panels demonstrate how MS profiling improves drug response

predictions beyond that of the RPPA or the other omics profiles when used alone. However,

frequent missing MS data values complicate its use in predictive modeling and required additional

filtering, such as focusing on completely measured or known oncoproteins, to obtain maximal pre-

dictive performance. Rather strikingly, the two proteomics profiles provided complementary pre-

dictive signal both for the cytotoxic and targeted compounds. Further, information about the

cellular-abundance of primary target proteins was found critical for predicting the response of tar-

geted compounds, although the non-target features also contributed significantly to the predictive

power. The clinical relevance of the selected protein markers was confirmed in cancer patient data.

These results provide novel insights into the relative performance and optimal use of the widely

applied proteomic technologies, MS and RPPA, which should prove useful in translational applica-

tions, such as defining the best combination of omics technologies and marker panels for under-

standing and predicting drug sensitivities in cancer patients.

Availability and implementation: Processed datasets, R as well as Matlab implementations of the

methods are available at https://github.com/mehr-een/bemkl-rbps.
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1 Introduction

Large-scale profiling studies using multiple omics technologies are

providing increasingly accurate views of the molecular and genomic

landscapes of many cancer subtypes, with the eventual aim to

improve selection of treatment strategies for the distinct cancer

subtypes (so-called stratified medicine or precision oncology).

However, treatment response-predictive biomarkers are currently

available only for a few FDA-approved therapies (Meric-Bernstam

et al., 2015). In particular, despite of many large-scale cancer-

sequencing efforts, only a few genomically informed personalized

cancer therapies have made it to the clinical practice for specific can-

cer classes. Some of the best-known examples of clinically action-

able genomic alterations include HER2 amplification in breast and

gastric cancers, EGFR mutations and ALK fusions in non-small cell

lung cancer (NSCLC), and BRAF V600 mutations in melanoma

(Druker et al., 2006; Flaherty et al., 2012; Maemondo et al., 2010;

Shaw et al., 2013). For most cancer types or genomic alterations,

however, evidence is either absent or insufficient to support clinical

implementation of biomarker-based therapies.

Despite their critical role in the pathophysiology of many can-

cers, genomic alterations (point mutations or copy number varia-

tion, CNV) provide only one layer of biological information, and it

still remains unclear how much the other layers of molecular infor-

mation could contribute to drug response predictions. To this end,

NCI/DREAM7 challenge carried out an extensive comparison of the

predictive power of currently available genomic, molecular and epi-

genetic profiles in the task of predicting the sensitivity of 28 drugs

across 53 breast cancer cell lines (Costello et al., 2014). The omics

technologies included genome-wide CNV, exome/RNA-seq, DNA

methylation and microarray gene expression arrays, as well as

reverse phase protein arrays (RPPA). Even though the NCI/

DREAM7 RPPA dataset covered only 66 proteins (Costello et al.,

2014), it was shown to provide second-largest contribution to pre-

dictive power, after the genome-wide transcriptomics profiles, sug-

gesting that proteomic profiling is important for drug sensitivity

prediction, at least in the studied subtypes of breast cancer cell lines.

Recently, mass spectrometry (MS)-based proteomic profiling is

increasingly being carried out in multiple human tissues and cell

types (Gholami et al., 2013; Kim et al., 2014; Lawrence et al., 2015;

Wilhelm et al., 2014). Compared to RPPA technology, which allows

quantitative measurement of protein abundance in a large number

of biological samples when high-quality antibodies are available

(Gautam et al., 2016; Li et al., 2013), MS-based proteomics

provide opportunity for more global, quantitative profiling of post-

translational modifications, in terms of yielding proteome-wide

information about cancer cell signaling activity that is not accessible

by genomics or transcriptomics alone. Accordingly, it has been

shown that MS-based proteomic and phosphoproteomics profiles

enable identification of functional differences between cancer sub-

types (Casado et al., 2013; Lawrence et al., 2015; Tyanova et al.,

2016), as well as protein markers and pathway activities associated

with drug sensitivity and mechanisms of drug resistance (Gholami

et al., 2013; Lawrence et al., 2015; Wilhelm et al., 2014). However,

how to best use proteomics data in predictive modeling remains cur-

rently unknown.

To systematically investigate the predictive power gained from

large-scale proteomics, we carried out, to our knowledge, the first

pan-cancer, multi-omics comparative investigation of the relative

contribution and optimal use of RPPA and MS-based proteomics

profiles to predicting the sensitivity of both FDA-approved chemo-

therapeutics and molecularly targeted compounds in 58 cell lines

spanning over nine cancer types. To assess the predictive power of

the omics datasets, either separately or in combinations, we used the

predictive model that was found to perform best in the NCI/

DREAM7 challenge, namely the Bayesian Efficient Multiple Kernel

Learning (BEMKL) (Gönen, 2012). In this study, we focus on pre-

dictive modeling of individual and combinations of omics profiles,

rather than comparing the prediction performance of various

machine learning models. We demonstrate that the global MS-based

proteomic profiling (8113 proteins) provides improved predictive

power, but only when treated optimally and combined with the

other omics datasets (gene and miRNA expression, point mutations

and CNV). However, the maximal predictive power was obtained

when also the RPPA dataset (162 proteins) was combined into the

BEMKL model, suggesting a complementary signal from these two

proteomic technologies for drug sensitivity prediction.

2 Materials and methods

2.1 Predictive modeling
2.1.1 BEMKL

We used the state-of-the-art BEMKL model (Gönen, 2012) for

drug response prediction from multi-omics datasets, integrated in a

biologically meaningful way. BEMKL was the top-performing

model in the NCI/DREAM7 drug sensitivity prediction challenge

(Costello et al., 2014), among various classes of machine learning

models. BEMKL (Fig. 1, grey area) belongs to a class of nonlinear

regression models, which employs kernelized regression, multi-view

and multi-task learning and Bayesian inference to solve the drug

responses prediction problem.

To predict the drug response of an unseen cell line x�, BEMKL

models the datasets using a kernel-based decision function:

f x�ð Þ ¼ a>k� þ b (1)

where k� kernel captures pair-wise similarities between samples

(here, cell lines) in the omics profiles, while a and b represent the

unknown weight vector for samples and the error term, respectively.

The kernel function k : X�X)R is used to calculate pair-wise

similarities, such that k� ¼ k x1; x�ð Þ . . . k xN ; x�ð Þ½ �>, given independ-

ent identically distributed training data X 2 RN�D, where

N¼number of cell lines and D¼number of features. The kernelized

regression formulation of Equation (1) models nonlinear relation-

ships between cell-lines by capturing similarities from omics profiles

(called views) to predict drug responses.

BEMKL employs multiple kernel learning (MKL) (Gönen and

Alpaydin, 2011) to simultaneously integrate feature information

coming from multiple views as kernels and effectively yields an

increased signal-to-noise ratio and predictive accuracy. The com-

bined kernel is calculated as a weighted sum of M input kernels as

fkm : X�X) RgM
m¼1. Thus, kernel k� in Equation (1) can be

replaced with a combined kernel using MKL algorithm:

f x�ð Þ ¼ a>
XM
m¼1

emK�;m

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

composite kernel

þb (2)

where e represents the vector of kernel weights and Kx� represents

the kernels for each view. The view specific kernel weights are

learned based on the view’s relevance for the response predictions,

making it possible for the model to efficiently integrate multiple het-

erogeneous views by learning their joint weighted representation.
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Additionally, BEMKL leverages upon multi-task learning (MTL)

to simultaneously model drug response predictions across multiples

drugs (also referred to as tasks, where drug response prediction of

an individual drug alone is a single task t). Specifically, the model

assumes that the kernel weights em are shared across all the tasks.

The distributional assumptions of the model are defined and

explained below as:

kt;n � G kt;n; ak;bk

� �
8 t; nð Þ

at;n � N at;n; 0; k�1
t;n

� �
8 t;nð Þ

tt � G tt; at;btð Þ 8t

gt;m � N gt;m; Kt;mat; t
�1
t I

� �
8 t;mð Þ

ct � G ct; ac;bc

� �
8t

bt � N bt; 0; c�1
t

� �
8t

wm � G wm; aw; bwð Þ 8m

em � N em; 0;w�1
m

� �
8m

et � G et; ae;beð Þ 8t

yt � G yt;
XM
m¼1

emgt;m þ bt1; e
�1
t I

 !
8t

Here, N ; l;Rð Þ denotes normal distribution with mean l and cova-

riance R, while, G ; a;bð Þ is gamma distribution with shape parameter

a and the scale parameter b. For N training samples and M input

kernels, Km represents the N�N kernel matrices for m ¼ 1 . . . M,

while G represents the M�N matrix of intermediate outputs.

Parameters a, b denote the weight vectors, whereas e and w are

M� 1 vectors of kernel weights and their priors and y is a N � 1

vector of outputs. t and e represent the precision parameters for

intermediate and target outputs.

To summarize, BEMKL can be seen as a two-step procedure. In

the first step, intermediate variables for each task are estimated from

view-specific kernels, using weight vector for samples (here, cell lines).

In the second step, intermediate variables are combined to estimate

the output (drug-response) matrix, using the vector of shared kernel

weights across selected set of drugs.

BEMKL is implemented in a Bayesian formulation to overcome

sample specific uncertainty in learning the model parameters, attrib-

uting each parameter to a specific probability distribution. Since, the

exact inference is intractable and Gibbs sampling requires rather

large computational resources, the model has been formulated using

deterministic variational Bayesian (VB) approximation for efficient

inference of the model parameters resulting into point estimates for

the posterior mean and covariance of the model parameters. Details

of constraints applied on MT-MKL algorithm used in BEMKL and

inference of approximate posterior distributions for BEMKL can be

found in the original paper (Costello et al., 2014; Gönen, 2012).

2.1.2 Rule based protein selection

In order to identify combinations of protein abundances that

best explain the drug sensitivity profiles (and which eventually could

be used as predictive biomarkers for clinical translation), we carried

out a two-step procedure. First the normalized abundance of D pro-

teins from the MS and RPPA datasets were binarized to represent up

and down regulated protein activity Pj 2 1;0½ � for j ¼ 1 . . . D, where

Pj is a vector over the samples (here, cell lines). In the absence of a

ground truth, we used scores above mean as up-regulated and below

mean as down-regulated. Pairwise interactions between the binar-

ized protein abundances were then computed as

Ij;l ¼ Pj _ Pl 8 j; l 2 f1 . . . Dg; j 6¼ l (3)

where Ij;l is the interaction between proteins j and l.

In the second step, an exhaustive search was carried out among

all the pairwise interactions between the proteins (Ij;l) for identifying

such marker combinations whose expression explains drug sensitiv-

ity profile. Specifically, each pairwise interaction was scored as a

fraction of normalized mean of �log10GI50 (where GI50 refers to

the concentration required to inhibit 50% of maximal cell growth)

values for drug t over N cell lines:

RBPS
tð Þ

j;l ¼
Y

tð Þ
n : 1þ 2

N

P
Ij;l

� �
Y

tð Þ
n0 þ 1

(4)

where Y
tð Þ

n is average �log10GI50 for cell lines n 2 fIj;l ¼ 1g, and

Yn0 tð Þ is average �log10GI50 for cell lines n0 2 fIj;l ¼ 0g for the given

drug t. The scaling factor, Y
tð Þ

n0 þ 1, emphasizes the interactions with

Fig. 1. Data modeling approach, employing BEMKL method, applied on NCI60 genomics (point mutations and CNV), molecular (gene and miRNA expression)

and proteomics (MS and RPPA) profiles across 58 pan-cancer cell lines to predict drug response of selected drugs. The BEMKL method learns the multi-view ker-

nel weights to form a joint kernelized representation of the data which is used with the multi-task drug weights to model the response profile across the cell lines

to each individual drug (the outcome matrix at the right)
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high abundances across multiple cell lines. As a result, interactions

with rule based protein selection (RBPS) scores close to 0 indicate

that the corresponding protein abundances do not explain the drug

sensitivity profile, while those close to 1 identify protein activity pat-

terns that perfectly explain the drug sensitivity outcome.

2.2 Publically available datasets
The primary dataset comprised of genomic, molecular and proteo-

mics profiles of 59 human pan-cancer cell lines from the National

Cancer Institute (NCI), also referred to as NCI-60 cell lines panel

(Shoemaker, 2006), along with their drug responses reported as

�pGI50 (�log10GI50) values (Supplementary Fig. S1). The other

dataset comprised of 53 breast cancer cell lines, extracted from NCI/

DREAM7 project (Costello et al., 2014), where along with the omic

profiles, pathway and other prior biological knowledge was also

exploited to predict drug responses. Clinical data from The Cancer

Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/docs/publica

tions/tcga/, http://www.cbioportal.org) patients was used to investi-

gate the clinical relevance of the RBPS-selected proteins.

2.3 Experimental setup
In NCI-60 cell lines, six omics views were integrated (Supplementary

Table S1), for 58 cell lines with omics profiles available. Frequent

feature-wise data missingness was observed in MS-based proteomics

dataset (on average 55% partially measured proteins across NCI-60

cell-lines panel). To avoid data-sparsity-induced noise issues, only the

completely available MS-features (505 proteins) were considered.

We used �pGI50 scores as drug sensitivity responses, averaged over

multiple five dose-assays, tested over different concentration ranges,

for selected sets of 47 FDA-approved cytotoxic drugs and

24 targeted agents with known targeted mechanism of action (MoA,

Supplementary Tables S2 and S3). Owing to the multi-view and

multi-task nature of BEMKL, the outcome of the model is a matrix of

�pGI50 scores with cell lines as rows and selected set of drugs as col-

umns. Although we cannot assume that an in vitro �pGI50 estimate

is predictive of an in vivo response to the same drug, we chose to use

�pGI50 in the current work as it was also used in the original NCI/

DREAM7 challenge, so that we can compare our results also against

the original NCI/DREAM7 results. In NCI/DREAM7 cell lines, all 22

views were integrated into the BEMKL model to predict drug sensitiv-

ities for 28 drugs across 53 breast cancer cell lines. The sample size in

DREAM7 data was further reduced to 30 cell lines considering the

availability of detailed RPPA-based proteomics data from The Cancer

Protein Atlas (TCPA, Li et al., 2013, http://tcpaportal.org/tcpa/index.

html).

In the predictive modeling, drug responses were mean-

normalized, whereas all the other omic views were z-transformed. In

BEMKL model, Gaussian kernels were used for real-valued views

and Jaccard similarity coefficients for binary-valued views. The

prior hyperparameter values were set analogous to those in the NCI/

DREAM7 study (Costello et al., 2014).

To evaluate the predictive accuracy, we performed leave-one-out

cross validation (LOO-CV) with both of the drug sets, repeated

three times and computed average prediction accuracies. We used

several metrics to compare the model performance, including drug-

wise Spearman’s correlation, Root Mean Square Error (RMSE),

concordance index and area under curve (AUC, full results are pro-

vided in Supplementary Tables S4 and S5).

The purpose of this work was to compare the predictive per-

formance of the two proteomic platforms, MS and RPPA, using the

state-of-the-art BEMKL method, rather than comparison of several

machine learning methods. However, we additionally performed a

comparison, using standard, single-task, kernel-based SVM regres-

sion method, since SVM-based kernel methods performed next to

the winning BEMKL method in the original NCI/DREAM7 Drug

Sensitivity Prediction Challenge (Costello et al., 2014). The out-

come, of SVM, was drug-specific �pGI50 scores as vector Y 2 RN,

N¼number of cell lines. To mimic the multi-view nature of

BEMKL, omics profiles were aggregated feature-wise in SVM.

Further information on the datasets and experimental setup is avail-

able in Supplementary Material.

3 Results

We first evaluated the relative performance of the various omics pro-

files in the NCI-60 datasets, both individually and in combinations,

for the drug sensitivity predictions. In these comparisons, we pri-

marily investigated the added value of the proteomics profiles, as

compared to the other omics datasets (gene and miRNA expres-

sions, point mutations and CNV, collectively referred below to as

GM4 views, whereas adding proteomics profiles to the GM4 views

are referred to as GMP6 views).

3.1 Cytotoxic drugs
In the drug set of 47 FDA-approved, cytotoxic agents, we observed

that the completely measured MS-based proteomics dataset (505

proteins) significantly improved the response prediction beyond the

GM4 datasets (P< 0.01, one-sided, paired t-test; Fig. 2A). The origi-

nal MS data (8113 proteins), with 55% missing value rate, did not

lead to increased prediction power, having predictive accuracy simi-

lar to the limited RPPA data (162 proteins) (Fig. 2A). The missing

value distribution of MS data is highly non-uniform (Supplementary

Fig. S2), since missing values depend on the MS levels themselves.

Even though the kernel-based models can deal with noise to some

degree, the current MS data has so many missing values that the

quite extreme removal of all proteins with missing values led to sig-

nificant improvement in the results (Fig. 2). However, the maximal

predictive power for the cytotoxic drugs was obtained after adding

both the completely measured MS and the RPPA dataset, combined

with further focusing on the protein abundance of the 42 overlap-

ping COSMIC cancer census genes from completely measured MS

data (P< 0.01, one-sided, paired t-test; Fig. 2A). These results not

only demonstrated the importance of the proteomic data for the pre-

diction accuracy, but also the critical role of missing MS values and

their treatment in predictive modeling to minimize the effect of

data-sparsity-induced noise, as well as the complementary nature of

the MS and RPPA profiles.

Individually, the RPPA and MS datasets alone resulted in similar

predictive accuracies, in between of those from genomics profiles

(point mutations and CNV) and molecular profiles (gene and

miRNA expression). We note that even if the point mutations alone

led to negative individual accuracy (Supplementary Fig. S3A), com-

bining the exome-seq-based mutations with the other omics profiles,

using the multi-view approach, makes it possible to extract the

shared signal that contributes positively to the combined accuracy

(Supplementary Tables S4 and S5). A similar trend was observed

among the targeted compounds, for which the use of completely

measured MS profiles was even more important (Supplementary

Fig. S3B); however, even though the overall improvement of adding

the proteomics profiles was significant (P< 0.03, Wilcoxon signed-

rank test; Fig. 2B), there appeared much more variability in the
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prediction accuracies among the 24 targeted compounds (described

in the next section).

We next explored among the individual cytotoxic drugs the effects

of adding proteomics profiles on their response prediction (Fig. 3).

Although, on average, the prediction performance increased 75%

across the whole set of 47 cytotoxic drugs, we observed marked inter-

drug differences; drugs with most and least improvement in their pre-

dictive accuracy are listed boldfaced in Supplementary Table S2

(marked in bold in Fig. 3). We note that mode of action (MoA) infor-

mation of the cytotoxic drugs was not a determinant of their predict-

ability, with or without proteomics data (Supplementary Fig. S6B).

Doxorubicin is a clinically used cytotoxic drug therapy for multiple

cancers, however, our analyses showed its best efficacy in leukemia,

melanoma, breast and lung cancer NCI-60 cell lines (Fig. 4A).

The ROC-AUC calculation also supported the added value of proteo-

mics profiles along with other genomic and molecular views for

doxorubicin response prediction (AUC increased from 0.58 to 0.61).

Asparaginase is another positive example, with increased sensitivity

especially in leukemia, renal and prostate cancers cells (Supplementary

Fig. S7B). Procarbazine is a negative example, in which proteomics

profiles did not improve the sensitivity predictions (Supplementary Fig.

S8A). However, ranking of the cell lines for procarbazine sensitivity

shows that the drug response is dominated by the cancer type, rather

than by their molecular or genomic features. This explains why the

pan-cancer model cannot predict well the cell-specific procarbazine

response patterns.

3.2 Targeted compounds
Compared to the cytotoxic drugs, the set of 24 molecularly targeted

compounds showed higher variability in their predictive accuracy

with and without proteomics (Fig. 5). The maximal predictive

power was obtained after focusing only on 55 overlapping COSMIC

A B

Fig. 2. Average Spearman correlation, with standard error of the mean, between experimental and predicted drug sensitivity levels over 58 pan-cancer NCI-60

cell lines, using different omics data combinations for selected set of (A) 47 cytotoxic and (B) 24 targeted compounds. The red horizontal line indicates the base-

line GM4 prediction accuracy. Statistical significance of the difference against the GM4 predictions was assessed with one-sided, paired t-test for the cytotoxic

drugs and Wilcoxon signed-rank test for the targeted compounds. Statistical testing method was chosen based on the normality of the drug response distribution

with Chi-square test

Fig. 3 Drug-specific comparison between the baseline GM4 and best GMP6 predictions, based on average Spearman correlation, for 47 cytotoxic drugs. The dot-

ted vertical line distinguishes drugs with improved prediction using proteomics data (left-hand side). The dotted horizontal line indicates well-predicted drugs

(correlation � 0.5). Boldfacing marks the example drugs selected for further study (Supplementary Table S2). MoA details are shown in Supplementary Figure

S6B

Global proteomics profiling improves drug sensitivity prediction 1357

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx766#supplementary-data


cancer census genes from both the completely measured MS

(42 overlapping genes) and the RPPA (13 overlapping genes)

datasets. In particular, HSP90 inhibitors, antifolates (folic acid

antagonists, Df), MEK and mTOR inhibitors showed improved per-

formance with the optimal treatment of the proteomics data (left-

hand side compounds in Fig. 5). However, similar to the cytotoxic

drugs, the predictability of the drug responses was seriously limited

by the high proportion of missing MS and RPPA data for many of

the primary targets (grey squares in Supplementary Fig. S9B).

Midostaurin, selumetinib and staurosporine were selected as posi-

tive examples, which showed improved compounds response predic-

tions with proteomics data, whereas alvocidib and lapatinib are

negative examples, i.e. compounds that have better prediction accu-

racy when modeled without the proteomics datasets (Supplementary

Table S3, boldfaced).

Midostaurin, a multi-targeted kinase inhibitor, showed espe-

cially high relative improvement after adding the proteomics profiles

(Fig. 4B). Multiple cancer types among the NCI-60 cell line panel,

including TNBC, leukemia, CNS, melanoma, prostate and ovarian

cancer, showed high sensitivity to midostaurin. It has been suggested

that midostaurin suppresses the proliferation of TNBC cells through

inhibition of the Aurora kinase family, especially AURKA (Kawai

et al., 2015), which is breast tumor-amplified kinase involved in the

phosphorylation of BRCA1 in breast cancer cells (Ouchi et al.,

2004). Further, midostaurin received recently a Breakthrough

Therapy designation from the FDA for newly diagnosed

FLT3-mutated acute myeloid leukemia (AML). In leukemic cells,

midostaurin inhibits c-KIT and FLT3 kinases (Gallogly and Lazarus,

2016; Stein and Tallman, 2016).

To further study the role of the primary targets in sensitivity

predictions, we selected seven targeted compounds (macbecin II,

selumetinib, tamoxifen, tanespimycin, alvespimycin alvocidib and

lapatinib), with completely measured primary target proteins in the

RPPA and/or MS datasets. Removing their primary target proteins

from the proteomics datasets resulted in systematic decrease in the

accuracy of the response predictions for each of these compounds

(P < 0.01, one-sided, paired t-test; Supplementary Fig. S10). This

result further supports the importance of having detailed proteomics

data for all the primary targets for understanding of their MoA, and

for improved response prediction of targeted compounds in cancer

cells.

As a specific example, we focused on lapatinib, a clinically

approved dual EGFR-ERBB2 tyrosine kinase inhibitor for breast

cancers, especially for women with HER2þbreast cancer. Since we

took here the pan-cancer modeling approach, the overall association

between the lapatinib response and proteomics profile takes prece-

dence over the selective lapatinib sensitivity in a specific cancer sub-

types. This led to a poor overall correlation between ERBB2 and

lapatinib response across all the 58 cell lines considered in the model

(Fig. 6, solid black line). However, when focusing on the breast and

ovarian cancer cell lines only, we observed a significant positive cor-

relation (Fig. 6, dotted line), supporting the role of ERBB2 as a pre-

dictive biomarker for lapatinib sensitivity. The absence of any

HER2þbreast cancer cell lines in the NCI-60 cell line panel also

partly explains the poor prediction accuracy for lapatinib.

A B

Fig. 4. Ranked cell-specific prediction of (A) doxorubicin and (B) midostaurin response using the baseline GM4 and best GMP6 model. Value x¼0 is set to equal

rank for both the measured and predicted drug responses. Asterisk indicates the case closer to the measured rank for a particular cell line. Color bar quantifies

the measured cell line drug sensitivity responses (GI50). ROC-AUC calculation was based on quantile value of 0.55
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3.3 Predictive biomarkers
Finally, we applied the RBPS algorithm to identify the optimal com-

bination of biomarkers explaining response of the seven targeted

compounds (Table 1). Pair-wise interactions were computed

between all the 55 proteins (42 proteins from the completely meas-

ured MS and 13 proteins from RPPA dataset). For four of the com-

pounds (macbecin II, alvespimycin, lapatinib and tanespimycin), the

primary targets were identified amongst the top 10 rules explaining

their sensitivity, again showing the importance of primary target

abundance for response prediction. For those compounds whose pri-

mary targets did not appear to have a relationship with their

response, when studied through RBPS, the top first rule with most

abundantly expressed protein was listed in Table 1. For instance,

NPM1 was identified as the most informative protein for selumeti-

nib sensitivity, even though it is not its primary target. NPM1 has

been associated with initiation of AML (Noren et al., 2016), and the

cell line response results also identified HL60 leukemic cell line as

the most sensitive cell line (Supplementary Fig. S11A). Below, we

investigate the clinical relevance of both the target and non-target

markers for selected compounds.

Tamoxifen is a commonly used hormonal therapy for breast can-

cers. Based on the TCGA patient data, the tamoxifen-predictive RBPS

rule (SF3B1UP OR DDX5DOWN) was associated with poor survival

in breast cancer patients (P¼0.0067, log-rank test; Supplementary

Fig. S13A), even though neither of these non-target proteins showed

significant effect on survival when tested individually. Further support

for these RBPS-selected biomarker proteins comes from a recent study

that showed high levels of SF3B1 in tamoxifen-resistant ERþbreast

cancer cells (Gökmen-Polar et al., 2015), suggesting MoA of tamoxi-

fen through splicing factor 3b subunits. Further, DDX5, which is

required for DNA regulation and cell proliferation, has been found

overexpressed in breast cancer cells, and suggested as a novel thera-

peutic target for breast cancer treatment (Mazurek et al., 2012)

Similarly, the RBPS rule (HSP90AB1UP OR HSP90AA1DOWN)

for the three HSP90 inhibitors, alvespimycin, tanespimycin and mac-

becin II, was associated in TCGA data with poor survival in papillary

renal-cell carcinoma cancer (PRCC) patients (P¼0.023, log-rank

test; Supplementary Fig. S13B). A recent study linked high expression

of HSP90 in clear-cell renal cell carcinoma (Massari et al., 2014).

This suggests the prognostic role of HSP90 in renal cancer, although

deeper understanding is still lacking for specific renal cancer subtypes.

Interestingly, RBPS also selected both target and non-target protein

markers for macbecin II (HSP90 inhibitor) and alvocidib (multi-serine

threonine cyclin-dependent kinase inhibitor), associated with poor

survival in PRCC patients: HSP90AB1UP (P¼0.0014, log-rank test),

RHOADOWN (P¼0.0064, log-rank test), NPM1UP (P¼0.036, log-

rank test) and FHDOWN (P¼0.044, log-rank test; Supplementary Fig.

S13C–F). Previous studies have also implicated these proteins or

related pathways in renal cancer (Cheng et al., 2016; Llamas-Velasco

et al., 2016). Our cell line response predictions for alvocidib also iden-

tified renal cancer cell lines as most sensitive and well predicted with

proteomics (Supplementary Fig. S12A).

4 Discussion

Global proteomic profiling is increasingly being carried out both in

cancer cell line panels as well as in patient-derived samples to pro-

vide insights into cancer type classification and potential treatment

options. However, systematic assessment of the predictive power of

proteomics for a wide spectrum of drug compounds and cancer

types has been lacking. To that end, we carried out the first pan-

cancer, multi-omics comparative analysis of the relative perform-

ance of two proteomic technologies, RPPA and MS, in terms of their

accuracy for predicting the sensitivity of both FDA-approved

Fig. 5. Drug-specific comparison between baseline GM4 and best GMP6 pre-

dictions, based on average Spearman correlation, for 24 targeted com-

pounds. The dotted vertical line distinguishes compounds with improved

prediction using proteomics data (left-hand side). The dotted horizontal line

indicates well-predicted drugs (correlation � 0.5). Boldfacing marks the

example compounds selected for further study (Supplementary Table S3).

Primary drug target details are available in Supplementary Figure S9B

Fig. 6. Correlation between measured lapatinib response and ERBB2 protein

abundance (available in RPPA only) across all 58 cell lines (solid black line),

and in breast and ovarian cancer cells (dotted line). ERBB2 is a known molec-

ular predictor of lapatinib response in breast cancer patients. Statistical sig-

nificance was assessed with two-sided t-test

Table 1. Optimal protein combinations identified using the RBPS

algorithm for explaining the response of the selected compounds

Drug name Protein selection RBPS score

Alvespimycin HSP90AB1UP OR HSP90AA1DOWN 0.74

Macbecin II HSP90AB1UP OR HSP90AA1DOWN 0.90

HSP90AB1 UP OR RHOADOWN 0.86

Selumetinib NPM1 UP OR U2AF1DOWN 0.93

Tamoxifen SF3B1UP OR DDX5DOWN 0.89

Tanespimycin HSP90AB1UP OR HSP90AA1DOWN 0.81

Lapatinib ERBB2UP 0.96

Alvocidib NPM1UP OR FHDOWN 0.88

Note: For instance, alvespimycin response can be explained accurately

when HSP90AB1 is up-regulated or HSP90AA1 is down-regulated. For mac-

becin II, alvespimycin and tanespimycin, the primary targets (bold) were iden-

tified amongst the top 10 rules. For lapatinib, the primary target was

identified only when modeled for breast and ovarian cancers (see Fig. 6).
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chemotherapeutics and molecularly targeted anticancer compounds

in the NCI-60 cell line panel. The key findings were: (i) global MS

data are more informative for drug response prediction as compared

to targeted RPPA technology, (ii) missing values (i.e. partially meas-

ured proteins) in MS data complicate its use in predictive modeling

and require non-standard treatment of the MS profiles, (iii) rather

surprisingly, reducing the number of proteins from 8113 (original

MS data) to 42 (COSMIC cancer census genes with no missing val-

ues) resulted in maximal predictive accuracy for both cytotoxic and

targeted compounds, (iv) MS and RPPA profiles provide comple-

mentary signal for the response prediction and (v) primary target

information is critical when predicting targeted compounds. These

results provide important insights into the relative performance of

the two widely applied proteomic technologies, which should prove

useful in many practical applications, such as for choosing the best

combination of omics technologies for understanding and predicting

drug sensitivities in cancer cells.

In comparison with kernel-based SVM regression model, we

observed that the BEMKL method was efficient in capturing the

available predictive signal from the proteomics profiles, as there

were no overall performance improvements by SVM. The prediction

performance of kernel-based SVM regression method supports the

overall results obtained with BEMKL (Supplementary Figs S4 and

S5), in terms of the importance of the different omics datasets for

drug response prediction, for both cytotoxic and targeted com-

pounds. However, there were a few notable differences due to inher-

ent differences between BEMKL and SVM models. SVM showed

improved predictions using mutation profile alone for the targeted

compounds (Supplementary Fig. S4B). However, as predictive accu-

racy of mutation data alone was very low, compared to the other

views, and since no similar result was seen for the cytotoxic drugs

(Supplementary Fig. S4A), we believe this is more like a technical

artefact. Moreover, the prediction performance with the combina-

tion views, and after adding complete MS or both of proteomics

data was significantly improved with BEMKL (Supplementary Fig.

S5), whereas SVM shows only a marginal improvement. This differ-

ence can be attributed to the multi-view and multi-task nature of

BEMKL, which is absent in the standard SVM implementation and

thus affected the SVM performance. Although both BEMKL and

SVM are kernel-based regression methods, BEMKL has more prin-

cipled ways of dealing with noise (Gönen, 2012) through hyper-

parameters and error term (also known as bias). We believe that this

difference in noise treatment resulted in markedly poorer perform-

ance of SVM for the GM4þMS view combination, for both cyto-

toxic and targeted compounds (Supplementary Fig. S5).

In addition to the NCI-60 cell line panel, we further confirmed

the importance of comprehensive proteomic coverage in 30 addi-

tional NCI/DREAM7 breast cancer cell lines using the same

BEMKL model. We observed that a more detailed RPPA data (102

proteins) led to an improved drug response prediction as compared

to the original NCI/DREAM7 challenge RPPA data (66 proteins)

(P < 0.05, one-sided, paired t-test; Supplementary Fig. S14).

Although our results support the conclusions from the NCI/

DREAM7 challenge (Costello et al., 2014), these results extend to

pan-cancer setting and also demonstrate the increased performance

gained from the global MS profiles, when treated adequately in the

BEMKL model. We note that there were no comprehensive MS data

available for most of the NCI/DREAM breast cancer cell lines.

Previous studies on drug response prediction have often focused

only on gene expression and genomics profiles, and the main focus

has often been on comparative assessment of improvements, as com-

pared to existing predictive models (Azuaje, 2016). A notable

exception is the recent work (Cortés-Ciriano et al., 2016), where the

authors used all different profiles available for the NCI-60 cell line

panel. Our results are in agreement with their results, showing that

protein abundance together with gene and miRNA expression pro-

vides the highest predictive signal. However, instead of using the

limited RPPA dataset (89 proteins), we demonstrated here the added

value of the more detailed RPPA and global MS proteomic profiling.

There are only a few comparative analyses between RPPA and

MS measurements in overlapping samples. One study noticed that

RPPA misses part of the MS-detected phosphorylation events

(Zhang et al., 2016), which can partly explain the increased predic-

tive signal from the global MS data. Our results show relatively low-

correlated pattern between the MS and RPPA profiles observed

across the NCI-60 cell lines and overlapping proteins (cor¼0.053,

P¼0.025, two-sided t-test; Supplementary Fig. S15). It is possible

that combining RPPA data can compensate to some degree the miss-

ing MS data for key predictive proteins, for instance, through corre-

lation links between the protein abundance levels of related proteins

in target pathways, consequently leading to improved joint predic-

tive power. Perhaps not surprisingly, the availability of proteomic

data for primary targets was proven important for the response of

targeted compounds; however, also the non-target features were

required for accurate predictions. Off-target and other indirect

mechanisms also play an important role in determining cell line

response to a particular drug treatment.

The dual EGFR-ERBB2 inhibitor lapatinib serves as a good

example to illustrate the various lessons learned from this study.

First, only one of its primary targets (HER2/ERBB2) was com-

pletely measured in the RPPA, whereas the other (EGFR/ERBB1)

was absent in the RPPA and partially measured in MS, which likely

explains why the present proteomics datasets were unable to predict

its response accurately. More comprehensive mapping of the target

protein abundance, together with other target mechanisms, should

vastly improve the future drug response predictions. In contrast to

the pan-cancer approach taken here, however, it may also be benefi-

cial to stratify the prediction models according to different cancer

types, as was illustrated in the lapatinib example (Table 1 and

Fig. 6). Lapatinib is an effective inhibitor of HER2þ cells, which

unfortunately are not included in NCI-60 cell lines panel. Similarly,

ibrutinib and sunitinib responding-cell lines are also not covered by

the NCI-60 panel, partly explaining why the protein information

does not improve their sensitivity prediction (Fig. 5). The cancer-

type-specific models would naturally require much larger set of pan-

els from each cancer type (Azuaje, 2016), something that may not

be feasible especially in clinical applications.

As a potential extension of the current work, other means to deal

with the missing MS data could lead to even better prediction accu-

racies. The missing value pattern in the MS data across the NCI60

cell lines is MNAR (missing not at random), often due to low abun-

dance peptides in a sample (below the limit of detection of the MS

instrument), resulting in highly non-uniform missing value distribu-

tion. Improved MS protocols for lower-abundance protein activity

measurement as well as missing data imputation methods, poten-

tially already at the peptide level before data normalization, should

be implemented to avoid so large percentage of missing data values

in the future studies, and to make the best use of all the MS data

points for the drug response prediction. There are many approaches

to imputing missing proteomic values before the actual data model-

ing (Webb-Robertson et al., 2015); however, ideally, the predictive

model itself should be able to treat the missing data values as part of

the modeling process (Aittokallio, 2010). In order to make maximal
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use of the MS information, the BEMKL model could be coupled

with kernel completion approaches (Bhadra et al., 2017).

Further possible approach would be using component-wise ker-

nel method (Ammad-Ud-Din et al., 2016), along with information

on chemical properties of drug compounds. Such extension might

potentially also enhance our knowledge of drug MoA, and predic-

tive biomarkers, via pathway-response associations. Since the

BEMKL method integrates the datasets in the kernel space instead

of directly operating on the feature space, one future modeling

approach could be to formulate an extension of BEMKL method

that learns the kernels from the feature space while integrating out

the missing values in the features; however, developing such a model

is a non-trivial machine learning task and beyond the scope of cur-

rent study. Further, the point mutation data should ideally be mod-

eled using other than the standard binary coding, which could also

lead to its enhanced contribution to the prediction power. Improved

feature selection methods might also lead to identification of protein

marker combinations, resulting in novel associations between cancer

types and drugs. Experimental validation is, however, of core impor-

tance for pre-clinical support of the marker panels.

An important future translational step will be the transition from

in vitro cell-line panels to patient-derived ex-vivo or clinical in-vivo

response prediction, enabling the identification of novel proteomics

markers for choosing individualized therapies, in line with the cur-

rent clinical evidence; for instance, erlotinib has a FDA-label for

EGFR (ERBB1) protein expression in NSCLC and pancreatic cancer

(Dienstmann et al., 2015). Clinical response prediction studies have

also observed that mRNA and miRNA expression show better pre-

dictive accuracy than CNV or DNA methylation (Ding, 2016), in

line with the cell line results, and also the importance of RPPA pro-

teomic data to predict standard chemotherapy responses in AML

patient (Noren et al., 2016). Moreover, the goal of the present study

was to establish biomarker profiles that are predictive of in vitro

responses, which makes it possible to start exploring in-vivo drug

responses, since without the linked predictive biomarkers, one can-

not even explore whether the in vitro drug response patterns trans-

late to the clinical setting in most cancer types. The lessons learned

form this work could therefore become useful also for future clinical

proteomic-based precision oncology strategies.
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