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Abstract
Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and 
patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all 
drug classes, sex and age groups. Forty-four quantitative features estimated from a pooled dataset of 204 EEG recordings 
from 66 healthy adult volunteers who received either propofol, dexmedetomidine, or sevoflurane (all with and without 
remifentanil) were used in a machine learning based automated system to estimate the depth of sedation. Model training 
and evaluation were performed using leave-one-out cross validation methodology. We trained four machine learning models 
to predict sedation levels and evaluated the influence of remifentanil, age, and sex on the prediction performance. The area 
under the receiver-operator characteristic curve (AUC) was used to assess the performance of the prediction model. The 
ensemble tree with bagging outperformed other machine learning models and predicted sedation levels with an AUC = 0.88 
(0.81–0.90). There were significant differences in the prediction probability of the automated systems when trained and 
tested across different age groups and sex. The performance of the EEG based sedation level prediction system is drug, sex, 
and age specific. Nonlinear machine-learning models using quantitative EEG features can accurately predict sedation levels. 
The results obtained in this study may provide a useful reference for developing next generation EEG based sedation level 
prediction systems using advanced machine learning algorithms.
Clinical trial registration: NCT 02043938 and NCT 03143972.
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1 Introduction

Optimal sedation level management is critical for a healthy 
outcome of patients undergoing surgical procedures/ in 
intensive care units which otherwise can lead to unwanted 
neurological and cardiovascular complications [1–4]. In 
recent decades, developing electroencephalogram (EEG) 
based sedation level monitoring techniques has been an 
active area of research and many such techniques have 
already been developed [5–8]. However, their performance 
is limited due to drug specificity and inter- (and intra-) sub-
ject variability [5, 7, 9, 10]. Neurophysiological distinctions 
[11], age [12] and sex-dependent EEG changes [13] between 
sedation drugs highlight the need for more robust techniques 
to monitor sedation levels.

To overcome the limitation of drug specificity, in our 
preliminary work [14], we developed a machine learning 
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framework to design a drug-independent sedation level 
monitoring system using quantitative features derived from 
the frontal EEG. We developed this framework using a tra-
ditional logistic regression model which showed promising 
results in estimating sedation levels using pooled data from 
healthy volunteers during propofol, sevoflurane, and dex-
medetomidine infusion. In the current study, we performed 
the following improvements to our previous work: (i) com-
pared the performance of several nonlinear machine learn-
ing algorithms to predict sedation levels on a large EEG 
dataset of 204 EEG recordings, (ii) included remifentanil 
as an additional drug to the analysis and evaluated the sta-
bility of machine learning algorithms, and (iii) evaluated 
the robustness of the proposed framework across different 
age groups and sex. Our primary goal in this study was to 
develop a robust and reliable real-time automatic sedation 
level prediction system that is invariant across all conditions.

2  Methods

2.1  Ethics statement

The current study received ethical approval from the “The 
Independent Ethics Committee” (Medisch Ethische Toet-
sings Commissie) of the Foundation ‘Evaluation of Ethics 
in Biomedical Research’ (Stichting BEBO), Assen, The 
Netherlands.

2.2  Dataset

A detailed description of the experimental protocol and EEG 
recordings have been described in full in the original studies 
[15, 16]. However, the main methodological topics of both 
studies with a direct relevance for this reanalysis, are reca-
pitulated here. Information on the trial design and sample 
size calculation can be found in the previous studies [15, 16]. 
In general, we used an adaptive trial design and selected spe-
cific drug conentrations and number of volunteers in order 
to obtain an accurate level of information on the various 
dose-response relationships and/or drug interaction surfaces.

2.2.1  Propofol, sevoflurane and remifentanil EEG 
recordings

Thirty six age and gender stratified healthy volunteers 
(American Society of Anesthesiologists Class I) were 
included in this study (Table 1 of the online supplements 
[15]). Each age group (respectively 18–35, 36–55 and 
56–70 years of age) contained 12 participants of which 6 
females and 6 males each. During sessions that included 
the administration of remifentanil, the participants were 
also stratified to either a target effect-site concentration of 

remifentanil  (CeREMI) of 2 versus 4 ng/ml that was main-
tained throughout the study duration. Exclusion criteria 
were weight less than 70% or more than 130% of ideal body 
weight, pregnancy, diseases involving the neurological, car-
diovascular, pulmonary, gastric, and endocrinological sys-
tem, and recent use of psycho-active medication or intake 
of more than 20 g of alcohol daily.

Each volunteer participated in four sessions of anesthesia 
with different drug combinations in a random order, with a 
minimal interval of 1 week in between sessions. The drug 
combinations administered were: “propofol alone”, “sevo-
flurane alone”, “propofol combined with remifentanil”, and 
“sevoflurane combined with remifentanil”. Propofol and 
remifentanil were administered through a Fresenius Base 
Primea docking station carrying two Fresenius Module 
DPS pumps (Fresenius-Kabi, Bad Homburg, Germany) that 
were controlled by a computer-controlled drug delivery and 
data collection software package (RUGLOOPII software 
(Demed, Temse, Belgium)). The effect-site concentration 
of propofol  (CePROP) and remifentanil  (CeREMI) are calcu-
lated using the pharmacokinetic-dynamic (PKPD) model 
of respectively Schnider et al. [17] and Minto et al. [18]. 
The end-tidal vapor pressure of sevoflurane  (ETSEVO) was 
titrated using the proprietary closed loop algorithm of the 
Zeus® ventilator (Software version 4.03.35, Dräger Medical, 
Lübeck, Germany).

The oxygen saturation (measured by pulse oximetry), 
electrocardiogram (ECG) and intermittently measured non-
invasive blood pressure at 1-min intervals were monitored 
using a Philips IntelliVue MP50 monitor (Philips Medizin 
Systeme, Boeblingen, Germany). End-tidal sevoflurane 
 (ETSEVO), carbon dioxide and oxygen concentration were 
monitored using a gas-analyzer of the anesthesia ventilator.

Raw EEG was collected from a standard 10–20 electrode 
montage, using a 16 channel Neuroscan® EEG monitor 
(Compumedics USA, Limited, Charlotte, NC, USA) and 

Table 1  Summary of AUC’s (mean AUC (95% CI)) obtained for each 
model with (propofol, sevoflurane, dexmedetomidine and remifenta-
nil) and without the inclusion of remifentanil (propofol, sevoflurane, 
dexmedetomidine). The performance of ensemble tree with bagging 
outperformed other machine learning models and was stable after the 
inclusion of remifentanil

Abbreviations: EN-LR = elastic net logistic regression; SVM-G = sup-
port vector machine with Gaussian kernel; RF = random forest; ET-
B = Ensemble tree with bagging

Model AUC P value

Without remifentanil With remifentanil

EN-LR 0.89 (0.81–0.92) 0.85 (0.80–0.88) 0.02
SVM-G 0.85 (0.77–0.88) 0.84 (0.75–0.89) 0.04
RF 0.83 (0.76–0.87) 0.82 (0.75–0.88) 0.06
ET-B 0.88 (0.85–0.91) 0.87 (0.84–0.89) 0.15
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stored on a laptop computer running SCAN4 proprietary 
recording software (Compumedics, Charlotte, USA) at a 
sampling frequency of 5Khz.

In each session, the volunteers kept breathing sponta-
neously through a tight-fitting face mask connected to the 
anesthesia ventilator (Zeus®, Software version 4.03.35, 
Dräger Medical, Lübeck, Germany) although some addi-
tional respiratory support was required at deeper levels of 
hypnotic drug effect. After 2 min of baseline monitoring, 
a “staircase” step-up and step-down infusion of anesthetic 
drugs was administered.  CePROP was titrated in consecutive 
steps towards 0.5, 1, 1.5, 2.5, 3.5, 4.5, 6 and 7.5 μg/mL. For 
sevoflurane the  ETSEVO targets were 0.2, 0.5, 1.0, 1.5, 2.5, 
3.5, 4, 4.5 vol%. The upwards steps were continued till a 
significant burst suppression ratio (>40%) was observed on 
the electroencephalogram. After that, a downward staircase 
was initiated using identical targets in reverse order. For ses-
sions with remifentanil,  CeREMI was targeted 2 min before 
administration of propofol or sevoflurane, at the randomized 
target of 2 or 4 ng/ml, and maintained throughout the study. 
After each change in effect-site target, a 12 min equilibration 
time was maintained before assessing the clinical sedation 
level using the Modified Observer’s Assessment of Alert-
ness/Sedation (MOAA/S) scale. [19]

2.2.2  Dexmedetomidine, remifentanil EEG recordings

In this study [16], thirty volunteers were included and strati-
fied according to age- and sex into 3 categories, respectively 
18–34, 35–49 and 50–70 years. Written informed consent 
was obtained from each volunteer before recording EEG 
with similar exclusion criteria mentioned in the previous 
section. Each volunteer underwent two study sessions with 
at least 1 week in between.

Vital signs were monitored using the IntelliVue MP70 
Patient Monitor, (Philips, Amsterdam, the Netherlands). A 
20-gauge arterial cannula was placed for blood sampling and 
hemodynamic monitoring (EV1000 Monitor with FloTrac 
sensor, Edwards Lifesciences, Irvine, California, USA). Vol-
unteers were connected to the ventilator (Zeus Infinity C500 
ventilator, Dräger Medical, Lübeck, Germany) using a tight-
fitting face mask. The cerebral drug effect was measured 
using 17-channel electroencephalography (EEG), with a 
BrainAmp DC32 amplifier and a Brainvision recorder (Brain 
Products GmbH, Gilching, Germany) recorded at a sampling 
rate of 5 kHz. In addition, we used a Sedline® PSI sensor 
(Masimo corporation, Irvine, CA, USA) with six electrodes 
that was specifically modified by the manufacturer to allow 
simultaneous measurements of patient state index while 
capturing raw signals in high resolution (5 kHz) using the 
Neuroscan EEG monitor.

On the first study day, volunteers received stepwise 
increasing effect-site concentrations of dexmedetomidine 
 (CeDEX) of respectively 1, 2, 3, 5 and 8 ng/ml as calculated 
by the PKPD model of Hannivoort and Colin et al., using 
the effect site prediction based on the MOAA/S observa-
tions. [20] For the first 3 infusion targets, the infusion rate 
was limited to 6 μg/kg/h and for the highest two targets 
to 10 μg/kg/h in order to avoid hypertensive reactions as 
seen with bolus administration of dexmedetomidine. On 
the second study day, subjects first received a stepwise 
increasing infusion of  CeREMI targets, as calculated by the 
PKPD model of Eleveld et al. [21], of respectively 1, 2, 3, 
5 and 7 ng/ml. After washout of remifentanil, a  CeDEX of 
2 ng/ml was administered and maintained while increas-
ing targets of  CeREMI, set respectively to 0.5, 1.0, 1.5, 2.0, 
2.5, 3.0 and 4.0 ng/ml. Drug infusion was stopped after 
completion of all infusion steps or when one of the safety 
criteria was met. Safety criteria were: (1) a change of 
more than 30% in mean arterial blood pressure compared 
to baseline for more than 5 min, (2) a heart rate < 40 bpm 
lasting more than 5 min, (3) a change in cardiac rhythm 
or conduction, (4) any other safety reason (decided by the 
attending anesthesiologists/researchers). All observations 
of responsiveness were done by three anesthesiologists-
researchers: HEMV, MASW and Koen Reyntjens [15]. 
During the recovery phase, all drug administration was 
stopped and measurements and monitoring continued until 
the volunteer was fully recovered from anesthesia and met 
discharge criteria of the post anesthesia care unit.

The MOAA/S score was tested at baseline, before each 
increase of  CeREMI target (after maintaining an appropriate 
equilibration time) and every 2 min during the first 30 min 
of recovery, and every 10 min thereafter. In both stud-
ies prior to the measurements, the electrode impedance 
was tested and optimized if needed (e.g. by adding extra 
lubrification gel on a high impedance electrode). After 
the last measurement we retested the electrode impedance 
to confirm a maintained adequacy of impedance during 
the measurements. However, during the study phase, the 
intermittent automatic impedance checks were switched 
off to avoid signal irregularities.

In total, 204 EEG recordings from 66 healthy volunteers 
were used for analysis in this study. We used EEG record-
ings from Neuroscan recorder for propofol and sevoflu-
rane; Brainvision recorder for dexmedetomidine in this 
study. Only the four frontal EEG channels, re-referenced 
in bipolar montage: Fp1 – F7 and Fp2 – F8, were used for 
developing the prediction model. We bandpass filtered the 
raw signal (using a zero-phase second order Butterworth 
bandpass filter) between 0.5 – 25 Hz and resampled to 
250 Hz. For this study, we performed a binary classifica-
tion between two MOAA/S subgroups: awake [MOAA/S 
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5 and 4] versus sedated [MOAA/S 1 and 0], discarding the 
remaining MOAA/S scores.

2.3  Development of the sedation level prediction 
system

Fig. 1a shows the architecture of the proposed sedation 
level prediction system. From the downsampled signals, 
we extracted one minute EEG segments preceeding the 
MOAA/S assessments with an assumption that they corre-
spond to the assessed MOAA/S score. Each one minute EEG 
segment was further divided into 4 s small duration epochs 
for further analysis (see Fig. 1b). EEG epochs with abso-
lute amplitude >500 μV (corresponding to movement arti-
facts) and 0 μV (corresponding to flat EEG artifacts) were 
excluded for further analysis. Similar to our previous work 
[14], we extracted following 44 quantitative EEG (QEEG) 
features from each 4 s EEG epoch in this study:

• Time domain – (1) Nonlinear energy operator, (2) Activ-
ity (1st Hjorth parameter), (3) Mobility (2nd Hjorth 
parameter), (4) Complexity (3rd Hjorth parameter) [22], 
(5) Root mean square (RMS) amplitude, (6) Kurtosis, (7) 
Skewness, (8–11) mean, standard deviation, skewness 

and kurtosis of amplitude modulation (AM) [23], (12) 
Burst suppression ratio/min (BSR) [24];

• Frequency domain – (13) Pδ=mean power in delta 
band (0.5–4 Hz), (14) Pθ=mean power in theta band 
(4–8 Hz), (15) Pα=mean power in alpha band (8–12 Hz), 
(16) Pσ=mean power in spindle band (12–16 Hz), (17) 
Pβ=power in beta band (16–25 Hz), (18) PT=total spec-
tral power (0.5–25 Hz), (19–23) Pδ/PT, Pθ/PT, Pα/PT, 
Pσ/PT, Pβ/PT, (24–27) Pδ/Pθ,Pα/Pθ, Pσ/Pθ, Pβ/Pθ, (28–30) 
Pα/Pθ, Pσ/Pθ, Pβ/Pθ, (31–34) mean, standard deviation, 
skewness and kurtosis of frequency modulation (FM) 
[23] (35) spectral edge frequency, (36) peak frequency;

• Entropy domain – (37) Singular value decomposi-
tion entropy [25], (38) spectral entropy [26], (39) state 
entropy [27], (40) sample entropy [27], (41) Renyi 
entropy [28], (42) Shannon entropy [29], (43) permuta-
tion entropy [30], (44) fractal dimension [31].

We extracted these features separately for each bipolar 
frontal montage channel and then obtained a median across 
channels to combine the channel information. These features 
were then used to train the machine learning algorithm to 
obtain the probability of the sedated state for each 4 s EEG 
epoch.

Fig. 1  (a) Architecture of the proposed sedation level estimator, and 
(b) Illustration of the EEG epoch selection, segmentation and feature 
extraction process. One-minute EEG segments preceding the time of 

MOAA/S assessments were used for the analysis. Each segment was 
further divided into non-overlapping 4  s short EEG epochs and 44 
QEEG features were extracted from each 4 s epoch
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2.4  Metrics

We used the area under the receiver operator characteristic 
curve (AUC) to evaluate the model performance. In addition, 
we also report sensitivity, specificity, F1-score for the best 
performing machine learning model.

2.5  Machine learning model development

In this study, we evaluated the performance of four 
machine learning algorithms: elastic net logistic regression 
(EN-LR) [32], support vector machine with Gaussian ker-
nel (SVM-G) [33], random forest (RF) [34], and Ensemble 
tree with bagging (ET-B) [35] that are commonly used 
for binary classification problems. We evaluated the per-
formance of the proposed system using a leave-one-out 
cross-validation technique i.e. we divided the data into 
N-1 folds. In each iteration, we used N-1 EEG record-
ings for training the machine learning model and the left-
out unseen recording for testing, resulting in a total of N 
iterations. In each fold, features in the training data were 
Z-score standardized (by subtracting the mean and divid-
ing by the standard deviation) and the testing data features 

were normalized with respect to the Z-score normalization 
factor of the training data before using them for classifi-
cation. We performed grid search to identify the optimal 
hyper-parameters of these models (summarized in Table 3) 
through 10-fold cross-validation within the training data 
and the final optimal model was then used to estimate the 
sedation level probability on the testing data. This was 
repeated until each data was used once for testing and is 
illustrated in Fig. 2.

First, we performed binary classification to differentiate 
between awake and sedated state using pooled dataset dur-
ing propofol, sevoflurane and dexmedetomidine infusion. 
Then we added remifentanil data to this pooled dataset 
to evaluate the robustness and stability of the machine 
learning models. By this way we identified the machine 
learning model that is invariant after the addition of new 
drug (remifentanil in this case).

For significance analysis, we used Analysis of Variance 
(ANOVA) with the Tukey Honest Significant difference 
test. All tests were two-sided with alpha = 0.05. All of the 
coding and analysis was performed using the MATLAB 
2018a scripting language (Natick, USA). All experiments 
were performed on a local computer with windows 10 plat-
form, Intel Xeon 4116 processor and 32GB RAM. The 
overall time spent to extract these features from a 4 s epoch 

Fig. 2  Illustration of the cross-
validation strategy used in this 
study. A 10-fold cross validation 
using training data was used 
for model hyperparameters and 
feature selection and leave-one-
subject-out cross validation 
was used to predict the sedation 
level for each subject
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was 0.5 s and prediction of a sedation probability using a 
trained model was 0.05 s.

3  Results

All results are reported as mean (95% confidence inter-
val) unless stated otherwise. 95% confidence interval was 
obtained using bootstrapping with 1000 bootstraps.

3.1  Performance of individual QEEG features

Figure 3 shows the performance of individual features to 
discriminate between awake and sedated states with (propo-
fol, sevoflurane, dexmedetomidine and remifentanil) and 
without remifentanil (propofol, sevoflurane, dexmedetomi-
dine). Interaction with remifentanil significantly dropped 
the performance of all features. Fractal dimension provided 
the highest AUC of 0.74 (0.71–0.75) without remifen-
tanil and dropped to 0.66 (0.64–0.68) after the addition of 
remifentanil.

3.2  Performance of machine learning models

The performance of different machine learning models to 
predict sedation levels using the proposed architecture is 
summarized in Table 1. All models had AUC’s above 0.8 
without remifentanil but the AUC’s dropped significantly 
when interacted with remifentanil. However, the perfor-
mances of the tree based methods were not sensitive to the 
addition of remifentanil and the ET-B model achieved the 
highest AUC of 0.88 (0.84–0.89). All subsequent results will 
be based on the performance of ET-B including remifentanil.

3.3  Discriminative features

Fig. 4 illustrates the heatmap of weights assigned by the 
ET-B algorithm to individual features across all itera-
tions. Different features were selected in different iterations 
and 6 features were highly discriminatory (normalized 
weight ≥ 0.3) without remifentanil: BSR, Pβ, Pβ/PT, stand-
ard deviation of FM, SVDE, and FD. After the inclusion of 
remifentanil 12 features had weights above 0.3: NE, mobil-
ity, complexity, BSR, Pα, Pσ, Pα/Pθ,standard deviation of 

Fig. 3  The distribution of AUC’s for individual features across all 
drugs to discriminate between awake and sedated EEG epochs with 
(propofol, sevoflurane, dexmedetomidine and remifentanil) and 
without remifentanil (propofol, sevoflurane, dexmedetomidine). 
The performance of all features significantly dropped after the addi-

tion of remifentanil. Here the vertical solid line indicates mean AUC 
and horizontal bar refers to standard deviation. X-axis corresponds 
to features: 1–12 = time domain, 13–36 = frequency domain and 
37–44 = entropy domain features
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FM, kurtosis of FM, SVDE, SE, and FD. This suggests that 
with the addition of remifentanil, the properties of EEG 
change and the ET-B algorithm requires more features to 
achieve comparable prediction performance.

3.4  Effect of age

To evaluate the effect of age on the performance of the 
ET-B model, we divided the dataset into three sub groups: 
group1–18 to 35 years, group 2–35 to 50 years and group 
3–50 to 70 years. We then performed three different training 
testing combinations: (i) train on group 1 test on groups 2 
and 3, (ii) train on group 2 test on groups 1 and 3 and (iii) 
train on group 3 test on groups 1 and 2. Table 2 summarizes 
the performance. We can see that the performance of the 
model was nearly similar when trained and tested within the 
same age group, however, it dropped significantly (approxi-
mately 10% reduction in the overall AUC) during cross train-
ing and testing (trained and tested on different groups).

Fig. 4  Heatmap illustrating the weights (normalized to 1) assigned 
by the ensemble tree with bagging algorithm. Different features were 
selected when remifentanil was added to propofol, sevoflurane, dex-

medetomidine. Here dark blue indicates highest weight assigned by 
the elastic-net regularization algorithm. Fractal dimension had high-
est weight in both cases

Table 2  Summary of AUC’s (mean AUC (95% CI)) obtained for each 
model when trained and tested across different age groups. The per-
formance significantly dropped when trained and tested across dif-
ferent groups demonstrating age specific nature of the sedation level 
prediction models. Group1 = 18–35 years; Group 2 = 35–50 years and 
Group 3 = 50–70 years

Group1 Group2 Group3

Group1 0.89 (0.79–0.95) 0.75 (0.74–0.76) 0.73 (0.71–0.74)
Group2 0.77 (0.75–0.79) 0.88 (0.77–0.95) 0.80 (0.78–0.82)
Group3 0.78 (0.77–0.79) 0.83 (0.81–0.84) 0.89 (0.76–0.95)

Table 3  Summary of the 
grid search range used 
to tune machine learning 
hyperparameters. The optimal 
value refers to the value 
obtained during the training 
process

Abbreviations: EN-LR  = elastic net logistic regression; SVM-G  = support vector machine with Gaussian 
kernel; RF =, random forest; ET-B = Ensemble tree with bagging

Model Hyperparameter Grid search range 
(min,max,step size)

Optimal parameter

EN-LR α (Regularization) 0,1,0.1 0.9
SVM-G γ = gaussian kernel, C = cost function 0.1, 100,0.1 γ =2.5, C = 50
RF number of trees 50, 1000,10 500
ET-B Number of learning cycles 10,200,5 30
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3.5  Effect of sex

To evaluate the influence of sex, we performed cross train-
ing and testing i.e., we trained the ET-B model on male 
and tested it on female and vice-versa. When trained and 
tested within the same sex the prediction performance of the 
ensemble model was similar: AUC = 0.88 (0.82–0.92) and 
0.90 (0.85–0.94) for male and female, respectively. However, 
the overall performance dropped by 9% (0.79 (0.75–0.85)) 
and 8% (0.82 (0.77–0.88)) for male and female, respectively 
during cross training and testing.

4  Discussion

In recent years, there is a growing interest in developing 
EEG-based level of sedation monitors. However, among sev-
eral unresolved important questions, it was not clear why 
these monitors failed to perform across different anesthetic 
drugs and patient groups. In this study, we compared the 
performance of four machine learning models trained on 
a large dataset of 204 EEG recordings. Using a large set of 
44 QEEG features, the ensemble tree with bagging (ET-B) 
machine learning model achieved the best prediction per-
formance of AUC > 0.85 to discriminate between awake and 
sedated states. There are four major contributions of this 
study: (i) we developed a technique for a drug-independent 
nonlinear machine learning based sedation level predic-
tion system, (ii) we showed that individual features and/ 
or features derived from spectral domain are not sufficient 
for real-time sedation level prediction at population level, 
(iii) we demonstrated how addition of remifentanil affects 
the prediction performance of different features, and (iv) 
we demonstrated the importance of the inclusion of all age 
groups and sex to develop a robust patient-independent seda-
tion level monitoring system.

The EEG is the only technique available to accurately 
monitor sedation levels in real-time. One of the main 
issues in developing EEG based sedation level monitors is 
the “feature engineering”: which features should be used 
to accurately predict sedation states? Current EEG based 
sedation level monitors either use a single feature or few 
expert defined spectral features to predict sedation levels [6, 
8]. Additionally, the inclusion of remifentanil significantly 
decreased the predictive ability of all features as shown in 
Fig. 3. Our results suggest that neither of these approaches 
is ideal and a multidimensional approach together with non-
linear machine learning algorithms would be an alternate 
choice for developing a robust monitor.

It should be noted that we only performed binary clas-
sification to discriminate between two extreme levels of 
sedation: awake and sedated. If the model is not robust in 
this scenario, it will not be efficient to discriminate multiple 

levels of sedation. However, we have already developed a 
method to estimate continuous level of sedation from binary 
classification via sigmoid transformation in our previous 
work [14]. Except for tree based methods, we found that the 
performance of all other machine learning models was sig-
nificantly influenced by the addition of remifentanil. ET-B is 
an ensemble algorithm that develops a predictive model by 
combining multiple decisions to decrease bias/variance via 
bagging or bootstrap aggregation [35]. A highly robust pre-
dictive decision is obtained by majority voting of decisions 
from individual classifiers in each ensemble. It was observed 
that the ET-B algorithm selected a different combination of 
features to differentiate between awake and sedated states. 
Only four features: BSR, standard deviation of FM, SVDE 
and FD were commonly selected in all conditions making it 
an important feature to predict sedation levels. It should be 
noted that only two features from the spectral domain (power 
in alpha band and power in beta band) were selected by the 
ET-B algorithm suggesting that features derived from the 
traditional spectral analysis alone are not sufficient to track 
sedation levels.

5  Limitations

There are several limitations in this study. First, despite 
using advanced nonlinear machine learning algorithms, 
we did not achieve perfect discrimination between awake 
and sedated states (AUC = 1.0). Inclusion of additional data 
and/or QEEG features could help improve the performance. 
Second, we only used four anesthetic drugs in this study. 
Validation on another external dataset with combination 
of multiple drugs is required to explore the robustness of 
the proposed system. Third, we did not include pediatric 
(< 18 years) and data from elderly cohorts (>70 years) in 
this analysis due to the nature of the clinical trial. Fourth, 
we only used data from healthy volunteers which may not 
reflect the influence of disease severity/routine medications 
on the EEG.

6  Conclusion

Despite the above mentioned limitations, the findings in this 
study suggests that by pooling data from different drugs, age 
and sex groups, it is possible to develop a robust realtime 
sedation level prediction system using advanced nonlinear 
machine learning algorithms. Features derived from tra-
ditional spectrogram alone are not sufficient to accurately 
predict levels of sedation. It is hoped that findings in this 
study would help understand the mechanism of anesthetics/
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sedatives on EEG and help in developing improved and 
robust sedation level monitoring systems.
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