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The clinical outcomes of triple-negative breast cancer (TNBC) chemotherapy are
unsatisfactory. Water solubility and biosafety of chemo drugs are also major barriers
for achieving satisfactory treatment effect. In this study, we have reported a combinational
strategy by self-assembly engineering nanodrugs PC NDs, which were composed of
paclitaxel (PTX) and curcumin (Cur), for effective and safe TNBC chemotherapy. PC NDs
were prepared through reprecipitation method without using any additional carriers. The
PC NDs were preferentially taken up by TNBC cells and we also observed pH-related drug
release. Compared with free PTX and simple PTX/Cur mixture, PC NDs have shown higher
therapeutic efficiency and better prognosis while themetastasis rate was significantly lower
than that of either PTX or PTX/Cur mix group. Therefore, the self-assembly engineered PC
NDs might be a promising nanodrugs for efficient and safe TNBC chemotherapy.
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INTRODUCTION

Breast cancer is the most common cancer type among women worldwide and threatens their health
seriously (McDonald et al., 2016; Yeo and Guan, 2017; Fahad Ullah, 2019). Many chemotherapeutic,
hormone-based, and combination drug regimens have been used to treat breast cancer, although patients
with advanced aggressive disease (especially triple-negative breast cancer, TNBC) still have poor survival
outcomes (Bergin and Loi, 2019). In this context, TNBC is characterized by non-expression of protein
receptors, including progesterone receptor, estrogen receptor, and human epidermal growth receptor 2.
Relative to other subtypes, TNBC is more aggressive, has a poorer prognosis and higher rates of visceral
and central nervous system metastases, with no currently approved targeted therapies (Kumar and
Aggarwal, 2016; Akram et al., 2017). Chemotherapy, including neoadjuvant chemotherapy, remains the
only standard treatment option for TNBC, although patients have a poor response because of rapidly
acquired drug resistance and distant metastasis, and also inevitably experience adverse effects (Lyons,
2019; Yin et al., 2020). Thus, there is a need for combination therapies that can improve the efficacy of
current chemotherapeutic strategies for TNBC.

Paclitaxel (PTX) is a first-line chemotherapy drug that is used to treat TNBC by preventing
microtubule depolymerization and arresting mitosis at G2/M stages of cell cycle. However, paclitaxel
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has poor solubility, unavoidable toxicity, and tumors can develop
resistance (Bielopolski et al., 2017; Abu Samaan et al., 2019).
There is growing evidence that combining PTX with other
chemotherapeutic agents (e.g., small molecule inhibitors or
natural products) could enhance the anti-tumor effect (Schmid
et al., 2018; Kang and Syed, 2020; Mittendorf et al., 2020).
Curcumin (Cur) is a hydrophobic polyphenol derived from
Curcuma longa (the spice turmeric). It exhibits anti-bacterial,
anti-inflammatory, and anti-cancer properties. Furthermore, Cur
has been proved to have excellent safety and widespread
availability with low cost. Previous studies have indicated that
Cur can downregulate the NF-kB and PI3K/Akt signaling
pathways in cancer cells, which can inhibit cell growth, induce
apoptosis, and increase drug sensitization (Hamzehzadeh et al.,
2018; Subramaniam et al., 2018; Chen et al., 2019; Ghasemi et al.,
2019; Maiti et al., 2019; Zusso et al., 2019; Borges et al., 2020;
Keyvani-Ghamsari et al., 2020). In addition, the combination of
PTX and Cur provided synergistic anti-cancer effects and
eliminated cancer stem cells in TNBC (Baek and Cho, 2017;
Calaf et al., 2018; Saghatelyan et al., 2020). However, similar to
PTX, Cur has poor solubility and low bioavailability, which has
limited its clinical application. Therefore, it would be useful to
develop an efficient and safe system that could simultaneously
deliver PTX and Cur to treat TNBC.

Significant work has been dedicated to developing drug
delivery system that can concurrently deliver PTX and Cur to
the tumor site, which might provide improved therapeutic
activity and safety. However, most reported carriers have
limited loading capacity and there are also concerns regarding
their possible toxicity and biodegradation (Hiremath et al., 2019;
Li et al., 2019; Zhao et al., 2019; Shao et al., 2020; Xiong et al.,
2020; Hu et al., 2021; Liao et al., 2021; Zhang et al., 2021). Carrier-
free drug delivery systems are recently developed alternatives that
do not rely on inert carriers and thus avoid potential toxicity.
Common strategies for preparing carrier-free nanodrugs include
nanoprecipitation, thin-film hydration, template-assisted
nanoprecipitation, supercritical fluid techniques, spray drying,
and wet media milling (Zhang et al., 2018; Zheng et al., 2018; Sun
et al., 2019; Zhou et al., 2019). Relative to free drugs, carrier-free
nanodrugs have prolonged blood circulation times, better cellular
penetration, and greater tumor accumulation (Yang et al., 2019),
which has generated interest regarding their clinical applications.
Therefore, we developed a carrier-free nanodrug that is composed
of PTX and Cur (PC NDs) using a one-pot self-assembly
nanoprecipitation method. Physicochemical, optical and drug
release properties of PC NDs were characterized, and we then
evaluated their effects against TNBC cells in vitro and in vivo. The
results suggest that PC NDs may be a highly effective and safe
option for treating TNBC.

MATERIALS AND METHODS

Chemicals and Reagents
Cur (purity: >94%) and sulforhodamine B (SRB) were obtained
from Sigma-Aldrich (St. Louis, MO, United States). PTX was
purchased from Solarbio Science and Technology Co., Ltd.

(Beijing, China). Dulbecco’s Modified Eagle Medium
(DMEM), fetal bovine serum (FBS), trypsin and penicillin-
streptomycin (10,000 U/ml) were obtained from GIBCO
(Carlsbad, CA, United States). Matrigel was purchased from
Corning Inc. (Billerica, MA, United States). Hoechst 33,258
and Lysotracker Red were purchased from Thermo Fisher
Scientific (Waltham, MA, United States). Assay kits for
determing alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (ALP), blood
urea nitrogen (BUN), and creatinine (CRE) were obtained
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
Jiangsu, China). All reagents were directly used without any
further purification.

Preparation and Characterization of
PC NDs
The PC NDs were prepared using a reprecipitation method. First,
Cur and PTX were dissolved in ethyl alcohol to provide solutions
with concentrations of 2 mg/ml. Next, 0.4 ml of the PTX solution
and 0.1 ml of the Cur solution were quickly added to 4.5 ml of
deionized water, vortexed for 1 min and allowed to stand for
15 min to produce PC NDs. Finally, PC NDs were purified via
ultrafiltration and collected via lyophilization, which provided a
4:1 weight ratio (PTX to Cur) after quantified by UV-vis method.

The morphology of PC NDs was inspected by a transmission
electron microscope (JEOL, Ltd., Japan) and a scanning electron
microscope (FESEM, S4800, Hitachi Co. Ltd., Tokyo, Japan).
Fluorescence spectroscopy was performed using a Shimadzu RF-
5301 PC spectrophotometer. UV–vis absorption spectra were
obtained using a Shimadzu 3100 UV–vis spectrophotometer.
Fourier transform infrared (FTIR) spectra were performed
with a Nicolet AVATAR 360 FTIR instrument. X-ray powder
diffraction (XRD) investigation was carried out on a Rigaku X-ray
diffractometer using Cu Kα radiation. A Nano-ZS 90 Nanosizer
(Malvern Instruments Ltd., Worcestershire, United Kingdom)
was used to determine the size distribution and zeta potential of
PC NDs.

Drug Release
Drug release behavior was evaluated by adding 5 mg of the PC
NDs to a dialysis bag (5,000 Da), which was then placed in 50 ml
of phosphate-buffered saline solution (PBS, pH: 7.4 or 5.5) on a
shaking table at 37°C for 48 h. Supernatant was then collected and
the amounts of PTX and Cur were analyzed via high-
performance liquid chromatography.

Cell Culture and Uptake
A mouse breast cancer cell line (4T1), a human TNBC cell line
(MDA-MB-231), and a non-neoplastic breast cell line
(MCF-10A) were purchased from the American Type Culture
Collection. All cells were cultured in DMEM with 10% FBS,
100 U/ml penicillin and 100 U/ml streptomycin in a humidified
incubator with an atmosphere of 5% CO2. Cellular uptake of PC
NDs was evaluated after a 3-h incubation with cells, which were
then washed with PBS and co-incubated with Lysotracker Red
and Hoechst 33,258. Then cells were observed under an Olympus
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IX71 fluorescence microscope (Olympus Corporation, Tokyo,
Japan). Quantification of cellular uptake was conducted through
flow cytometry (FACS, Becton Dickinson Biosciences, Franklin
Lakes, United States).

Cytotoxicity
Cells were first seeded into 96-well culture plates at the density of
5,000 cells per well and then cultured overnight for fully
attaching. Free Cur and PTX were dissolved deionized water
at a concentration of 1 mg/ml, respectively. Next cells were
treated with different final concentrations of free PTX, free
Cur, PTX/Cur mixture (PTX/Cur mix) or PC NDs. After
being treated for 24 or 48 h, cells were subjected to standard
SRB assay and absorbance at 540 nm was analyzed using a
multifunctional microplate reader. IC50 values were calculated
by GraphPad Prism software.

In vivo Experiments
All mice were treated in compliance with the Guide for the Care
and Use of Laboratory Animals, and all procedures were
approved by the Animal Care and Use Committee of Jilin
University (China). 50 μL of 4T1 cells (5 × 105) were mixed
with 50 μL of matrigel and then orthotopically injected into the
second mammary fat pad of female BALB/c mice (six to
eight weeks old). Mice were randomly divided into five groups
(n � 6) when tumor volume reached approximately 100 mm3,
which were treated using saline, PTX (10 mg/kg,
intraperitoneally), Cur (2.5 mg/kg, intraperitoneally), PTX/Cur
mix (10 mg/kg of PTX and 2.5 mg/kg of Cur, intraperitoneally),
or PC NDs (10 mg/kg, intravenously), respectively. All drug
treatments were administered every 3 days, and measurements
of tumor volume and body weight were performed at the same
time. Tumor volume was calculated according to the following
formula: volume � 0.5 × (longest dimension) × (shortest
dimension)2.

After 21 days of treatment, all mice were sacrificed on day 22.
Tumors were measured and weighed. Main organs (liver, spleen,
kidneys, hearts, and lungs) were collected, fixed and stained using
hematoxylin and eosin (H and E) before being photographed.
Biosafety was evaluated based on changes in body weight,
pathological changes in organs mentioned above and serum
biochemistry indexes including ALT, AST, ALP, BUN, and CRE.

Statistical Analysis
All experiments were performed at least three times and results
were exhibited as mean ± standard deviation. Comparison
between groups were calculated by Student’s t-test (two
groups) or Bonferroni’s post hoc test (three groups or more).
Data were analyzed on SPSS software. Differences were
considered statistically significant when p-values were less
than 0.05.

RESULTS AND DISCUSSION

The PC NDs were created by quickly adding ethanol solution
containing PTX and Cur into excessive volume of deionized water

and vortexing the mixture for 1 min (Figure 1A and
Supplementary Figure S1). During the nanoprecipitation
process, PTX, and Cur molecules were precipitated to form
nanoparticles via intermolecular interactions, such as hydrogen
bonding, π−π stacking and hydrophobic interactions (Li et al.,
2018; Hupfer et al., 2021). The PC NDs had a spherical structure
(diameter: 120–140 nm) based on characterization via TEM and
SEM (Figures 1B,C). Zeta potential measurements revealed that
the PC NDs had a negative surface charge (−14.6 ± 0.513 mV),
which was similar to that of raw Cur (−22.2 ± 3.96 mV) and
suggested that the surface of the PC NDs was mostly composed of
Cur with phenolic hydroxyl groups. The ultraviolet-visible light
absorption and fluorescence spectra of free PTX, free Cur, free
PTX/Cur mix, and PC NDs were analyzed. The PC NDs had the
same absorption peaks as free PTX and Cur, albeit with variable
peak heights (Figures 1D,E). Furthermore, PC NDs have
exhibited weaker green fluorescence than free Cur when
excited with 420-nm laser, although free Cur, free PTX/Cur,
and PC NDs shared the same emission peak (550 nm,
Figure 1D). We used FTIR spectra to evaluate whether the
bioactive groups of PTX and Cur were preserved in the PC
NDs (Figure 1F), which revealed that the PC NDs exhibited
N-H stretching vibration at 3,515 cm−1 and C�C stretching
vibration of the conjugate system in Cur and PTX at
1,513 cm−1, as well as disappearance of the strong O-H
stretching vibration at 3,511 cm−1. Based on these results, we
conclude that the PC NDs contained most of the bioactive groups
of PTX and Cur, with Cur potentially being “surrounded” by PTX
to create the spherical structure of the PC NDs. In addition, we
performed XRD measurements to determine whether the PC
NDs formed drug eutectics or amorphous formations
(Figure 1G), which revealed that the PC NDs had an XRD
spectrogram that was similar to that of PTX crystal, with
amorphous Cur structures. These findings suggest that the PC
NDs were probably composed of crystalline formations
containing PTX nanocrystals and Cur.

The release profiles of PTX and Cur from PC NDs were
evaluated using a dialysis bag and PBS solution, with a pH value
of 7.4 to mimic normal conditions in bodily fluids or a pH value
of 5.5 to mimic the acidic tumor microenvironment, respectively.
As shown in Figure 2A, PTX release showed a time-dependent
behavior and reached approximately 33.3% over a 48-h period at
a pH of 7.4. However, when the pHwas 5.5, PTX release increased
substantially and reached 83.2% over a 48-h period. Similar
trends were observed in the acid- and time-dependent release
of Cur (Figure 2B). Thus, the PC NDs might facilitate
simultaneous and preferred release of PTX and Cur in the
acidic tumor microenvironment. As shown in Supplementary
Figure S2, PC NDs disintegrated quickly in acidic PBS, while the
hydration radius has increased by about 25% during 72 h in
neutral PBS. Therefore, PCNDs were used just after preparation.
Fluorescence microscopy was subsequently used to evaluate
cellular uptake of the two drugs. After incubation of 4T1 and
MDA-MB-231 cells with PC NDs for 2 h, we labelled the nuclei
with Hoechst dye (blue) and lysosomes with LysoTracker RED
DND (red). Green fluorescence (Cur) was observed in the
cytoplasm and lysosomes (Figure 3B and Supplementary
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Figure S3), and the overlap of the green and red fluorescence
signals suggested that the PC NDs were accumulated in
lysosomes. Furthermore, the intensity of the PC ND staining
increased with incubation time in the TNBC cells (Figure 3A),
which suggested a time-dependent drug release mechanism. As
expected, the PC NDs had stronger fluorescence intensity (vs free
Cur), which confirmed their higher rate of cellular uptake.
However, relative to in the cancer cells, there was significantly
less Cur uptake into normal breast cells (MCF-10A), which is
likely related to the higher pH in normal cells. When considered

together, these findings indicate that PC NDs can be taken up by
TNBC cells and their contents released in a pH-dependent
manner.

SRB assay was used to determine the viability of 4T1, MDA-
MB-231, and MCF-10A cells after 24–48 h of treatment using
various concentrations of free PTX, free PTX/Cur mix, and PC
NDs. Relative to the control group, 4T1 cell viability of all
PTX-containing groups has exhibited a dose- and time-
dependent decrease manner (Figures 4A,B), while the
addition of Cur provided even greater decreases. Similar

FIGURE 1 | Scheme of PC NDs preparation and its characterization. (A) Scheme of PC NDs preparation. PC NDs has been prepared using a reprecipitation
method and shown pH-sensitive drug release behavior in tumor cells. (B) TEM images of PC NDs. Scale bars are 200 and 50 nm (inset), respectively. (C) SEM image of
PC NDs. Scale bar is 200 nm. (D) Emission spectra of Cur, PTX/Cur mix, and PC NDs. (E) UV-vis absorption spectra of Cur, PTX, PTX/Cur mix, and PC NDs. (F) FTIR
spectra of Cur, PTX, and PC NDs. (G) XRD spectra of Cur, PTX, and PC NDs.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 7476374

Zuo et al. Self-Assembly Engineering Nanodrugs Against TNBC

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


results were also observed in MDA-MB-231 cells (Figures 4C,D).
At 48 h, the IC50 values in 4T1 cells were 16.52 ± 0.16 µM for free
PTX, 4.05 ± 0.13 µM for PTX/Curmix, and 3.87 ± 0.14 µM for PC
NDs. Similarly, the IC50 values in MDA-MB-231 cells at 48 h
were 7.34 ± 0.19 µM for free PTX, 2.79 ± 0.10 µM for PTX/Cur
mix, and 2.58 ± 0.11 µM for PC NDs. Moreover, to our expect,
cells incubated with Cur have shown little to no decease on cell
viability due to its low concentration (Supplementary Figure S4).
These results suggest that combining PTX and Cur provided a
significantly greater decrease in TNBC cell viability, relative to
PTX alone, which might be related to Cur-induced sensitization
of the TNBC cells to PTX (Saha et al., 2012; Yoshida et al., 2017).
The small differences between the PTX/Cur mix and PC NDs

might be the result of long treatment time, which has given
enough time for cells to uptake nearby drugs. It is also worth
noting that the PC NDs had less effect on MCF-10A cells than
free PTX (Figures 4E,F), which might be related to preferred pH-
related drug release in cancer cells (vs in normal cells). When
considered together, these results suggest that the PC NDs
provided a greater decrease in TNBC cell viability (vs PTX
alone), as well as less toxicity in normal cells.

The BALB/c mice bearing 4T1 tumors were treated using
saline (control group), free Cur, free PTX, free PTX/Cur mix, and
PC NDs (Figure 5A). Relative to control group, decreased tumor
growth and lower tumor weights were observed at the end of
treatment using free PTX, free PTX/Cur mix, and PC NDs

FIGURE 2 | Drug release profiles of PC NDs in PBS of different pH values during 48 h (A) PTX and (B) Cur release of PC NDs in neutral and acidic PBS.

FIGURE 3 | Cellular uptake of PC NDs in 4T1, MDA-MB-231, and MCF-10A cells. (A) Quantitative analysis of the internalization of Cur and PC NDs in 4T1, MDA-
MB-231, and MCF-10A cells through FACS. Statistical significance: *p < 0.05 vs control and p < 0.05 vs Cur.(B) CLSM images of 4T1 and MDA-MB-231 cells after
incubation with PC NDs for 2 h. Scale bars are 200 μm.
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FIGURE 4 | Cytotoxicity of PTX, PTX/Cur mix, and PC NDs in 4T1, MDA-MB-231 and MCF-10A cells after 24 and 48 h incubation. Cell viability of (A) 4T1 cells, (C)
MDA-MB-231 cells, and (E) MCD-10A cells after 24 h incubation. Cell viability of (B) 4T1 cells, (D) MDA-MB-231 cells, and (F) MCD-10A cells after 48 h incubation.
Statistical significance: *p < 0.05 vs control and p < 0.05 vs PTX.

FIGURE 5 | In vivo anti-TNBC effect of PC NDs. (A)Dosage regimen of treatment for 22 days (B) Tumor image, (C) Tumor volume, and (D) tumor weight. Statistical
significance: *p < 0.05 vs PTX in (C); *p < 0.05 vs control and p < 0.05 vs PTX in (D).
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(Figures 5B–D), although free Cur did not significantly influence
tumor growth. Furthermore, the PC NDs appear to provide
substantially more promising results (vs the other
formulations), based on a tumor growth inhibition rate of
80.36%. Interestingly, free PTX provided considerable anti-

tumor effects, while mice were suffered from a decrease in
body weight and abnormal high levels of liver and kidney
enzymes (ALT, AST, BUN, and CRE) (Figures 6A–F). In
contrast, the PC ND group only exhibited a small decrease in
body weight after 21 days of treatment and no histopathological

FIGURE 6 | Biosafety profile of PC NDs. (A) Body weight, (B) ALT, (C) AST, (D) ALP, (E) CRE, (F) BUN, and (G) H and E staining image of heart, liver, lung, spleen,
and kidney from each group. Scale bars are 50 µm. Statistical significance: *p < 0.05 vs control and p < 0.05 vs PTX.
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changes in the liver, spleen, kidneys, heart, and lungs (Figures
6A–G) (Edwards et al., 2017; Farhood et al., 2019). Moreover, we
observed severe lung metastasis in the PTX and PTX/Cur mix
groups, which was not observed in the PC ND group
(Supplementary Figure S5) (Sesarman et al., 2018; Tan and
Norhaizan, 2019). Thus, co-delivery of PTX and Cur via the PC
NDs might improve the efficacy of treatment for TNBC (vs free
PTX alone), with less systemic toxicity observed in our mouse
model, although the underlying mechanisms remain unclear.

In summary, we created biocompatible and carrier-free
nanodrugs composed of PTX and Cur via a simple
nanoprecipitation method. The PC NDs were preferentially taken
up by TNBC cells and we also observed pH-related drug release. The
cytotoxicity assay revealed that the PC NDs had a greater effect on
TNBC cells (vs free PTX), as well as less toxicity in normal cells. The
in vivo data also clearly indicated that the PC NDs had considerably
greater therapeutic efficacy than the free PTX/Cur mixture, with no
signs of systemic toxicity. Therefore, the PC NDs might be a
promising carrier-free strategy for safely and effectively delivering
PTX and Cur to treat TNBC. Further studies are needed to
determine whether this nanotherapeutic strategy holds clinical value.
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