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Abstract

Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of
personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable
uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The
aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint
moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark
positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal
model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon
units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty,
and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of
perturbed variable values. Model creation and gait simulations were performed by using freely available software that we
developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of
movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact
forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In
addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle,
including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we
found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model
precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same
order of magnitude of its value, although this condition has low probability to occur.

Citation: Valente G, Pitto L, Testi D, Seth A, Delp SL, et al. (2014) Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter
Identification? PLoS ONE 9(11): e112625. doi:10.1371/journal.pone.0112625

Editor: Monica Soncini, Politecnico di Milano, Italy

Received February 21, 2014; Accepted October 20, 2014; Published November 12, 2014

Copyright: � 2014 Valente et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the EU-funded NMS Physiome project (FP7-ICT-248189), and supported in part by the EU-funded VPHOP project (FP7-ICT-
223865). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Co-author Debora Testi is
employed by BioComputing Competence Centre, SCS s.r.l. BioComputing Competence Centre, SCS s.r.l. provided support in the form of salary for author DT, but
did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these
authors are articulated in the ‘author contributions’ section.

Competing Interests: Debora Testi is affiliated to the BioComputing Competence Centre, SCS s.r.l. commercial company. This does not alter the authors’
adherence to PLOS ONE policies on sharing data and materials.

* Email: valente@tecno.ior.it

Introduction

Advances in computing power and numerical methods for

modeling and simulation of movement are expanding the use of

computational models of the musculoskeletal system in research

and clinical applications [1,2]. Calculation of muscle and joint

forces represent a challenging modeling application [3,4]. Because

musculoskeletal geometry and tissue properties can vary markedly

among individuals, the accuracy of generic models has been

questioned [5,6], particularly when studying musculoskeletal

disorders [7,8]. Conversely, subject-specific models allow inclusion

of individual musculoskeletal anatomy and properties, providing

an alternative approach to calculating muscle moment arms

[9,10], muscle and joint forces [11,12], bone and cartilage stresses

[13,14].

In general, analyses of musculoskeletal dynamics require the use

of musculoskeletal models and the application of rigid body

dynamics and optimization methods to calculate muscle forces

[2,15]. Until now, the creation of subject-specific musculoskeletal

models and simulations of movement has represented a time-

consuming process, and there has been limited modeling software

available to standardize the process and make musculoskeletal

modeling more efficient. Consequently, few attempts have been

made to create subject-specific models and study musculoskeletal

pathological conditions (e.g., [16–18]). In fact, model creation

requires data collections from different technology (e.g., MRI, gait

analysis), and processing the data to create a model of

musculoskeletal dynamics. The process involves the definition

and calculation of subject-specific modeling parameters from

imaging data, including the identification of: tissue volumes and
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densities to calculate body inertial properties; body landmark

positions to define joint reference frames and constraints; muscle

attachment points to define the geometry of muscles; and muscle

architecture parameters to calculate muscle force-generating

capacities.

Independent of the software used, there are unavoidable

uncertainties in parameter identification during the process of

model creation. These uncertainties have different sources: they

can be operator-dependent (e.g., when a user identifies body

landmark positions and point positions of musculotendon actua-

tors), or related to the unavailability of measurements in vivo, such

as maximum muscle tension and musculotendon architecture

parameters (e.g., muscle physiological cross-sectional area, fiber

length and tendon slack length). Sensitivity analyses to different

parameters have been performed to assess variations in model

predictions and determine which parameters have the most

influence (e.g., [19–21]). However, these analyses have not

assessed how the uncertainties associated with the creation of

subject-specific musculoskeletal models, and their combined effect,

may affect model predictions.

Therefore, the aim of the present study is to analyze the

sensitivity of subject-specific model predictions (i.e., joint angles,

joint moments, muscle and joint contact forces) during walking to

the uncertainties in the values for model parameters. To achieve

this aim, we first created a musculoskeletal model of the lower

limbs from MRI of a healthy subject. We then performed a

Monte-Carlo probabilistic analysis accounting for the uncertainties

associated with the creation of the model, including body

landmark positions, maximum muscle tension and musculotendon

geometry. The analysis was performed by using freely available

musculoskeletal modeling software that we developed in an effort

to standardize subject-specific model creation and generate

accurate models using an efficient workflow. The modeling

software integrates with OpenSim [22], a widely used multi-

body-dynamics solver adopted in musculoskeletal applications

(e.g., [19,23,24]).

Materials and Methods

Ethics statement
This study was approved by the Bioethical Committee of the

University of Bologna, Italy (July 7, 2012). Written informed

consent was obtained from the participant.

Experimental data
One healthy subject (male; age: 31 years; height: 183 cm;

weight: 70.5 kg) volunteered to participate in this study. The

experimental data collection included lower-body MRI scans and

gait analysis data, freely available at the dedicated SimTK.org

project page (https://simtk.org) and described as follows.

Pelvis and lower limbs were imaged using a 1.5 T MR scanner

(Intera, Koninklijke Philips N.V., The Netherlands). Four series of

images were obtained at different resolutions: a full lower-body

scan (T1-weighted Magnetization Transfer, 5 mm slice thickness,

5.5 mm slice spacing, resolution of 5126512 pixels), and three

higher resolution acquisitions at the hip (T1-weighted High

Resolution Turbo Spin Echo, 5 mm slice thickness, 5.5 mm slice

spacing, resolution of 8646864 pixels), at the knee (T1-weighted

Turbo Spin Echo, 3 mm slice thickness, 3.3 mm slice spacing,

resolution of 5606560 pixels) and at the ankle (T1-weighted

Turbo Spin Echo, 3 mm slice thickness, 3.3 mm slice spacing,

resolution of 102461024 pixels) joint regions.

The subject was assessed by means of gait analysis. The

experiment was carried out using a stereophotogrammetric system

(SMART-D BTS, Milano, Italy) and two force platforms (Bertec

Corporation, USA). Twenty-nine retro-reflective markers were

attached to the pelvis, thighs, shanks and feet of the analyzed

subject. A trial of level walking at self-selected speed was carried

out. Joint neutral position was collected from a standing posture,

as well as joint flexion position from a seated posture. All data were

collected at 200 samples per second. Relevant anatomical

landmarks [25] were calibrated in standing and flexed posture

using the pointer technique illustrated in Cappozzo et al. [26].

Segmental kinematics of the pelvis and lower limbs was

reconstructed via a C.A.S.T. approach [26] with double calibra-

tion [27] to minimize soft tissue artifact propagation.

Workflow of subject-specific musculoskeletal modeling
We investigated the robustness of model predictions to the

uncertainties in the identification of the parameters needed to

create an image-based musculoskeletal model of the lower limbs,

using MRI and gait data (Figure 1). To the purpose, freely

available software that we developed, i.e., NMSBuilder and the

Probabilistic Musculoskeletal Modeling module (PMM), was used

to create the baseline subject-specific model and perform

probabilistic simulations of gait, leveraging OpenSim. Additional

details on the software system can be found in the Appendix S1.

All of the software is available at the dedicated SimTK.org project

page (https://simtk.org).

Baseline subject-specific model
The model used in this study was defined as a 7-segment, 10-

degree-of-freedom (DOF) articulated system, actuated by 84

musculotendon units, and referred to as the baseline model. The

seven rigid bodies included pelvis, thighs, shanks and feet. Each

body volume was derived from the MR images, and the inertial

properties (mass, center of mass and moments of inertia) were

calculated assuming each body composed of two parts, the bone

and soft tissue, having uniform densities of 1.42 g/cm3 and

1.03 g/cm3 [28], respectively. Each hip was modeled as a 3 DOF

ball-and-socket joint, each knee and ankle as a 1 DOF hinge joint.

Body and joint coordinate systems were identified according to the

ISB standards [29]. The hip joint was defined at the center of the

femoral head, the knee axis of rotation was defined as the trans-

epcondylar line [30], and the ankle axis of rotation was defined as

the trans-malleolar line [31]. The number and paths of the

musculotendon actuators were defined according to the generic

model proposed by Delp and co-workers [32]. The model includes

one or more lines of action per muscle, acting between origin

points on the proximal body and insertion points on the distal

body. Intermediate via-points are included to model the paths of

muscles wrapping over underlying structures. The maximum

isometric force (Fmax) of each musculotendon unit (i) was

estimated, assuming muscle fiber length proportional to muscu-

lotendon length [33], as:

Fmax i~(PCSA)i
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where PCSA is the muscle physiological cross-sectional area, Vol is

the muscle volume calculated from MRI, l0 and lMT are the optimal

fiber length (unknown) and the musculotendon length (calculated

from MRI) for the subject-specific model, respectively, l
(gen)
0 and

l
(gen)
MT are the corresponding quantities for the generic model [32],

and s is the maximum muscle tension set to 61 N/cm2 [34].
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To create the baseline model, bone and soft tissue meshes

(pelvis, thighs, shanks and feet) were segmented semi-automatically

using Amira (Visage Imaging, Berlin, Germany). NMSBuilder was

then used to create the subject-specific musculoskeletal model. The

segmented surfaces were imported in NMSBuilder as STL files,

and were divided into seven body districts, each made of bone and

soft tissue parts [35]. The data were organized into a hierarchical

structure. Different density values were then assigned to each part

as metadata attributes, to calculate the inertial properties of each

body. The necessary anatomical landmarks were virtually palpated

[36] on the body surfaces with the help of the superimposed MR

images. Subsequently, the landmark positions were used to define

the reference frames of each body and the joint positions and

orientations (in the parent and child bodies). The positions of

musculotendon origin, via and insertion points were assigned as

close as possible to those in the generic model [32]. This was done

by applying an affine registration based on the body landmarks to

initialize the musculotendon point positions, and then adjusting

the points according to a centroid approach [37] and visually

comparing their positions in the MR images. Next, the values of

maximum isometric muscle force were assigned to each muscu-

lotendon unit as metadata attributes. Finally, the C++ commands

of the OpenSim application programming interface (API) were

generated and compiled to create the baseline OpenSim model.

Probabilistic simulations of gait
A probabilistic study was performed to analyze the sensitivity of

model predictions to the uncertainties associated with the creation

of the baseline model, given the specific articulated linkage

actuated by musculotendon units represented by line segments.

Therefore, three categories of variable parameters were defined

(Figure 2), resulting in a total of 312 stochastic input variables:

1. Body landmark positions. The x-, y- and z-coordinates

of the 21 landmarks in each corresponding body reference frame

were assumed as normally distributed variables. The standard

deviations of each variable (Table 1) were calculated via an

experimental study. In this experiment, five expert modelers used

NMSBuilder to virtually palpate the landmarks on the bone

Figure 1. Workflow of subject-specific musculoskeletal modeling. The modeling software systems were applied to study the sensitivity of
model predictions to the uncertainties in parameter identification. Lower-body MRI and gait analysis data were acquired for a healthy subject.
NMSBuilder was used to create the baseline subject-specific model leveraging OpenSim. The Probabilistic Musculoskeletal Modeling module (PMM)
was used to create probabilistic simulations of gait through a Monte-Carlo analysis, by interfacing Matlab and OpenSim. The input variables were
perturbed according to their uncertainties, and the corresponding OpenSim models were created that included the different sets of perturbed
variables. Using each model and the recorded gait analysis data, simulations of gait were run to calculate the stochastic output variables.
doi:10.1371/journal.pone.0112625.g001
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surfaces three times within a time interval of two weeks. Landmark

positions affect calculation of body reference frames, inertial

tensors, joint positions and orientations, and joint kinematics.

2. Musculotendon geometry. The positions of the 89 points

of the musculotendon paths affecting moment arm lengths were

assumed as normally distributed variables. The points included

origins, pseudo-origins (most distal via point on the proximal

body), pseudo-insertions (most proximal via point on the distal

body), and insertions, according to the definition of the different

musculotendon paths. A plane approximating each musculoten-

don attachment area was calculated, so that each origin and

insertion point position could be perturbed along two directions on

the plane. Points belonging to attachment areas with large length/

width ratio were approximated by a line and perturbed along one

direction only. Conversely, each position of pseudo-origin and

pseudo-insertion points was perturbed along the three directions of

the body reference frame. Therefore, a total of 209 normally

distributed variables were defined. Mean values were assumed

those of the baseline model and standard deviations were set to

5 mm, as derived from the error in locating muscle attachment

points from the measurement of surface landmarks [38].

3. Maximum muscle tension. The maximum muscle

tension (s) was assumed as a uniformly distributed variable,

ranging from 35 N/cm2 to 137 N/cm2 [39]. Consequently, the

maximum isometric force of each musculotendon unit was

calculated, using equation (1), as:

Figure 2. Schematic of statistical perturbation of the input variables. To analyze the sensitivity of model predictions to the uncertainties in
parameter values, three categories of stochastic input variables were identified (for a total of 312 input variables): body landmark positions (affecting
position and orientation of body reference frames and joints, inertial tensors and joint kinematics), musculotendon geometry (position of origin/
insertion and via points defining musculotendon paths and affecting muscle moment arms) and maximum muscle tension (affecting maximum force-
generating capacity of the muscles). Each variable was assumed as normally or uniformly distributed, and a Latin Hypercube Sampling strategy was
applied to efficiently sample the variables from their distribution.
doi:10.1371/journal.pone.0112625.g002
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where i is the musculotendon unit and j the sample of muscle

specific tension within the specified range.

Uncertainties introduced by volume segmentation were not

included, being segmentation a time-consuming process and hence

performed by a single operator. The stance phase of one gait cycle

was selected to be included in the analysis, as it is the most

interesting phase from the musculoskeletal loading standpoint.

PMM allowed us to perform a Monte-Carlo analysis that included

kinematic and dynamic simulations of the stance phase of gait

(Figure 1), leveraging the OpenSim API. The baseline model was

opened in PMM, and a Latin Hypercube Sampling (LHS) strategy

[40,19] was applied to generate an efficient sampling of the input

variables from their distribution. This made possible the gener-

ation of OpenSim models that included the different sets of

perturbed variable values. Using each model, Inverse Kinematics,

Inverse Dynamics, Static Optimization (minimizing the sum of

muscle activations squared and neglecting the force-length-velocity

relationships of muscle [41]) and Joint Reaction analysis were run

to calculate the following stochastic output variables: joint angles,

joint moments, muscle forces and joint contact forces. A

convergence criterion was defined as a stopping rule for the

Monte-Carlo simulations. Five-hundred simulations ensured that

the output variables reached convergence. Specifically, over the

last 10% of the simulations, the means and standard deviations of

each output variable were within the 2% of each final mean and

standard deviation [11,19,20]. A perturbed simulation was

considered unsuccessful if joint dynamic equilibrium could not

be achieved. Specifically, unsuccessful simulations occurred if the

use of reserve actuators on any joint DOF exceeded 5% of the

peak joint moment [24] in at least one frame of the stance phase.

Preliminary analysis of the results showed that the 0.8% of the

simulations run was unsuccessful, suggesting that muscle forces

were generally able to generate the required joint moments. The

unsuccessful simulations were excluded from the subsequent data

analysis.

Data analysis
The analysis was focused on joint angles, joint moments, major

muscle forces, i.e. gluteus medius anterior (GMedA), middle

(GMedM) and posterior (GMedP), gluteus maximus anterior

(GMaxA), tensor fascia latae (TFL), psoas, iliacus, semimbranosus

(Semimem), rectus femoris (Rec Fem), vastus medialis (Vas Med),

lateralis (Vas Lat) and intermedius (Vas Int), medial (Med Gas) and

Table 1. Standard deviations of the body landmark positions measured experimentally.

Standard Deviation (mm)

X Y Z

Body
landmarks

SACRUM 0.7 0.6 1.8

RASIS 1.6 0.4 2.6

RPSIS 0.8 0.3 2.1

LASIS 1.2 0.6 2.3

LPSIS 0.9 0.4 2.8

RGT 1.0 1.4 1.1

RME 0.4 0.7 1.3

RLE 0.6 1.6 1.3

RHC 0.6 0.8 1.5

RHF 2.2 0.8 0.3

RTT 3.5 1.3 4.2

RLC 0.7 3.5 1.2

RMC 0.5 1.5 0.6

RMM 1.6 0.9 0.5

RLM 0.7 0.5 0.3

RCA 1.1 1.0 0.3

RFM 0.8 1.6 0.1

RSM 0.8 0.7 1.0

RVM 0.7 0.7 0.4

RPAI 0.6 1.4 0.1

RPAII 0.6 0.5 0.0

Values were measured through virtual palpation using NMSBuilder by 5 operators in 3 trials each. X, Y and Z indicate antero-posterior, cranio-caudal and medio-lateral
directions of the body reference frames, respectively. Body landmark acronyms indicate: sacrum (SACRUM), right anterior superior iliac spine (RASIS), right posterior
superior iliac spine (RPSIS), left anterior superior iliac spine (LASIS), left posterior superior iliac spine (LPSIS), right great trochanter (RGT), right medial epicondyle (RME),
right lateral epicondyle (RLE), right hip center (RHC), right head of fibula (RHF), right tibial tuberosity (RTT), right lateral tibial condyle (RLC), right medial tibial condyle
(RMC), right medial malleolus (RMM), right lateral malleolus (RLM), right calcaneus (RCA), right first metatarsus (RFM), right second metatarsus (RSM), right fifth
metatarsus (RVM), right superior plantar aspect of calcaneus (RPAI), right inferior plantar aspect of calcaneus (RPAII).
doi:10.1371/journal.pone.0112625.t001
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lateral (Lat Gas) gastrocnemius, soleus, tibialis anterior (Tib Ant),
and joint contact forces, i.e. hip, knee and ankle force magnitude.

First, all quantities were expressed in percentage of the stance

phase, and the force values were normalized to the subject body-

weight and thus expressed in multiples of body-weight (BW). The

data were then post-processed to evaluate the statistical variability

in the output variables and the correlations between output and

input variables. The variability was analyzed as maximum and

mean standard deviation (among the output samples at each time

step), and range (difference between maximum and minimum

values at each time step) during the stance phase of gait. A

correlation analysis was performed that evaluated the statistically

significant (p,0.001) coefficients of determination (R2) between all

output and input variables.

Results

The joint angles and joint moments were relatively insensitive to

the expected variation in musculoskeletal parameters. We found

that the maximum standard deviation among joint angles during

the stance phase of gait was only 1u, and the maximum range was

7u (Figure 3). Similarly, the maximum standard deviation among

joint moments from perturbation of model parameters was only

1.4 Nm, and the maximum range was 9.1 Nm (Figure 4). Joint

contact forces and muscle forces presented a more marked

variability compared to joint angles and joint moments. Joint

contact forces showed a maximum standard deviation of 0.26 BW

and a maximum range of 2.14 BW at the knee (Figure 5, Table 2).

Although the standard deviations of joint contact forces were 10

times smaller than the corresponding force values, the maximum

ranges presented the same order of magnitude. Muscle forces

showed larger variability in Soleus, Med Gas, Rec Fem and Psoas
(Figure 6, Table 2), resulting in a maximum standard deviation of

0.23 BW and a maximum range of 1.54 BW in Soleus.
Given the relatively small variability in joint kinematics and

kinetics, we analyzed only the correlations between joint contact

forces and input variables during the stance phase of gait. Among

these correlations, only 6.3% showed significant R2 (p,0.001). In

Figure 3. Variability in joint angles due to the perturbation of model variables. Bands represent mean values 61 standard deviation (in
degrees) during the stance phase of gait.
doi:10.1371/journal.pone.0112625.g003

Figure 4. Variability in net joint moments due to the
perturbation of model variables. Bands represent mean values
61 standard deviation (in Nm) during the stance phase of gait.
doi:10.1371/journal.pone.0112625.g004
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addition, 1.3% showed significant R2 greater than 0.2 and never

exceeding 0.7, where only seven input variables out of 312 were

involved (Figure 7). The hip contact force mostly correlated with

the point positions defining the geometry of GMedA, Iliacus and

Psoas, and with the maximum muscle tension in the early stance

phase. The knee contact force mostly correlated with the

geometric definition of Vas Lat, Iliacus and GMedA, and with

that of Med Gas, Rec Fem and Soleus for a less extended portion of

stance phase. The ankle contact force mostly correlated with the

geometric definition of Soleus and with the maximum muscle

tension for a less extended portion of stance phase. The significant

R2 between joint contact forces and body landmark positions were

all less than 0.1 during the stance phase. These results (Figure 7)

showed a weak correlation between output and input variables,

Figure 5. Variability in joint contact forces due to the perturbation of model variables. Bands represent mean values 61 standard
deviation (in BW) during the stance phase of gait.
doi:10.1371/journal.pone.0112625.g005

Figure 6. Variability in the major muscle forces due to the perturbation of model variables. Bands represent mean values 61 standard
deviation (in BW) during the stance phase of gait. Muscles shown are: medial (Med Gas) and lateral (Lat Gas) gastrocnemius, soleus, tibialis anterior
(Tib Ant), gluteus medius anterior (GMedA), middle (GMedM) and posterior (GMedP), gluteus maximus anterior (GMaxA), tensor fascia latae (TFL), psoas,
iliacus, semimembranosus (Semimem), rectus femoris (Rec Fem), vastus medialis (Vas Med), lateralis (Vas Lat) and intermedius (Vas Int).
doi:10.1371/journal.pone.0112625.g006
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without a marked influence of specific input variables. The

sampled input variables and the complete set of post-processed

output variables are available at the dedicated SimTK.org project

page (https://simtk.org).

Discussion

In this study, we analyzed the sensitivity of the predictions of an

MRI-based musculoskeletal model (i.e., joint angles, joint

moments, muscle and joint contact forces) during walking to the

unavoidable uncertainties in parameter identification, i.e., body

landmark positions, maximum muscle tension and musculotendon

geometry (Figure 1).

Overall, the unavoidable uncertainties in parameter identifica-

tion during the process of model creation have a moderate effect

on model predictions during gait. In fact, we found that the main

outcomes of model predictions, i.e., joint contact forces and

muscle forces, had a maximum standard deviation of 0.26 BW

across the stance phase of gait (Figure 5 and 6, Table 2). In

addition, there were no critical parameters that markedly affected

model predictions. We performed a correlation analysis between

joint contact forces and input variables (Figure 7), and found few

significant R2, whose values never exceeded 0.7. The input

variables involved were the point positions defining the geometry

of few musculotendon actuators that presented larger force-

generating capacities and the maximum muscle tension in limited

portions of the stance phase.

Although we found that subject-specific models are not

markedly sensitive to the uncertainties in parameter identification,

there is no conclusive answer to the robustness of subject-specific

models. In fact, the precision of model predictions should be

evaluated with regards to specific applications. For example, we

found ranges (differences between maximum and minimum of the

predicted value) that reached 2.1 BW in joint contact forces at the

knee during the gait cycle (Table 2). In this case, the result could

be affected by an uncertainty in the same order of magnitude of its

value, although this condition has low probability to occur.

Therefore, one should be aware of the uncertainty in musculo-

skeletal force predictions according to their intended application

(e.g., investigation of risk of bone fracture and bone stress

distribution).

To our knowledge, this is the first study investigating how the

combined effect of the uncertainties in model parameters affects

the predictions of a subject-specific musculoskeletal model, using a

probabilistic approach. Therefore, this represents the most

extended sensitivity analysis of musculoskeletal modeling predic-

tions, providing an overall scenario of robustness of subject-specific

musculoskeletal models to the uncertainties in parameter identi-

fication. Consequently, only partial or indirect comparisons with

the literature were possible. We found an effect of anatomical

landmark positions on predicted joint moments weaker than that

showed in a previous probabilistic study limited to inverse

dynamics results [21]. The uncertainties that we assigned to the

landmark positions (Table 1) were lower than those in the prior

study (i.e., standard deviations of 2 mm for all landmarks in each

direction). We evaluated experimentally the standard deviations of

the distribution by using an accurate method for landmark virtual

palpation [36] implemented in NMSBuilder, which allowed us to

Table 2. Variability in joint contact and muscle forces.

Standard Deviation (BW) Range (BW)

Mean Max Mean Max

Joint
Contact
Forces

Hip 0.13 0.25 0.75 1.51

Knee 0.11 0.26 0.84 2.14

Ankle 0.10 0.23 0.62 1.58

Muscle
Forces

Med Gas 0.05 0.14 0.33 0.95

Lat Gas 0.03 0.10 0.21 0.67

Soleus 0.08 0.23 0.54 1.54

Tib Ant 0.02 0.10 0.11 0.68

GMedA 0.05 0.09 0.32 0.66

GMedM 0.04 0.08 0.25 0.51

GmedP 0.05 0.10 0.31 0.59

GMaxA 0.03 0.06 0.17 0.40

TFL 0.01 0.03 0.08 0.17

Psoas 0.05 0.15 0.33 0.89

Iliacus 0.07 0.13 0.42 0.79

Semimem 0.01 0.03 0.04 0.19

Rec Fem 0.07 0.14 0.44 0.88

Vas Med 0.01 0.04 0.07 0.24

Vas Lat 0.02 0.07 0.11 0.35

Vas Int 0.01 0.02 0.04 0.13

Standard deviations and ranges of the magnitudes of joint contact forces and the major muscle forces are reported as mean and maximum values across the stance
phase of gait.
doi:10.1371/journal.pone.0112625.t002
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improve the uncertainty in the identification of landmark

positions. Similarly, we found a weaker effect of musculotendon

geometry on predicted muscle forces compared to a previous study

[42] that used a fixed-size perturbation (610 mm) applied to each

musculotendon point position along each direction of the local

reference frames. Differently from that study, we assigned an

uncertainty (standard deviation of 5 mm) derived from the range

of landmark location errors [38], we adopted a probabilistic

approach to analyze all possible configurations of musculotendon

point positions, and we constrained the muscle attachment points

to vary on the bone surfaces. In addition, our results generally

confirm the weak influence of maximum muscle tension on the

calculated muscle forces, when minimizing a cost function in static

optimization problems [20,43,44]. We additionally found that the

maximum muscle tension played a more relevant role on joint

contact forces during transient phases of the gait cycle (Figure 7).

Differently from previous studies, our approach explored the range

of maximum muscle tension found in the literature [39] using a

uniform distribution, rather than an arbitrary-size perturbation of

a baseline value. However, the portions of stance phase showing

larger correlations were not biomechanically relevant, as most

muscles were inactive or exerted low forces.

The results of our study are affected by some limitations. We

limited the study to a healthy subject and we investigated only the

task of level walking as the most common daily activity. Model

robustness might be different in pathological conditions and for

other motor tasks such as sit-to-stand, stair ascent or descent.

Although further investigations might extend our findings, the

healthy subject included in this study can be considered

representative of physiological conditions, and adding greater

complexity was beyond the aim of the study. We did not include

musculotendon parameters describing force-length-velocity rela-

tionships (i.e., optimal fiber length, tendon slack length and

pennation angle). Changes in these parameters, and particularly in

tendon slack length of some muscles, can markedly affect model

dynamics predictions [20,44]. However, measurements and

corresponding uncertainties of these parameters are difficult to

obtain in vivo and even by dissection studies [2]; in addition, the

lack of implementation of musculotendon force-length-velocity

relationships has a small influence on force predictions during

walking [41]. Further, we did not consider the uncertainty

introduced by representing the musculotendon units by deform-

able line segments in the model. However, our aim was to analyze

the effect of the uncertainties in the parameters identifying a

specific state-of-the art model, and including more accurate muscle

path representation (e.g., [45]) would have introduced large

computational costs and additional uncertainty not compatible

with our analysis.

This study has relevant potentials within the computational

biomechanics community. We assessed robustness of musculoskel-

etal models to the uncertainties in parameter identification using a

probabilistic approach. Although in presence of the limitation

regarding the impossibility to validate muscle forces, our results

confirm that musculoskeletal models represent a promising tool

that is heading towards clinical applicability, particularly to

improve treatment of orthopaedic and neurological diseases

[1,15]. The analysis has been facilitated by the use of an efficient

workflow (Figure 1), whose software tools allowed us to reduce

time and effort. The freely available modeling software may

provide a marked contribution to create subject-specific models

and simulations of movement more efficiently, saving time and

effort, and without necessarily requiring high skilled expertise.

In summary, our study revealed that the uncertainties in

parameter identification of subject-specific musculoskeletal models

have a moderate effect on model predictions, and there are not

specific parameters considered crucial for the degree of model

robustness. However, the precision of model predictions should be

considered carefully with regards to the intended application. In

fact, model predictions such as joint contact forces may present

maximum ranges of variability that are in the same order of

magnitude of their values.

Figure 7. Significant R2 between joint contact forces and input
variables during the stance phase of gait. Correlations between
hip, knee and ankle joint contact forces and input variables: only
statistically significant (p,0.001) R2 exceeding 0.2 at least in one frame
during the stance phase of gait are plotted.
doi:10.1371/journal.pone.0112625.g007
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