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Abstract

Aims Biomarkers may provide insights into molecular mechanisms underlying heart remodelling and dysfunction. Using a
targeted proteomic approach, we aimed to identify circulating biomarkers associated with early stages of heart failure.
Methods and results A total of 575 community-based participants (mean age, 57 years; 51.7% women) underwent
echocardiography and proteomic profiling (CVD II panel, Olink Proteomics). We applied partial least squares-discriminant
analysis (PLS-DA) and a machine learning algorithm [eXtreme Gradient Boosting (XGBoost)] to identify key proteins associated
with echocardiographic abnormalities. We used Gaussian mixture modelling for unbiased clustering to construct phenogroups
based on influential proteins in PLS-DA and XGBoost. Of 87 proteins, 13 were important in PLS-DA and XGBoost modelling for
detection of left ventricular remodelling, left ventricular diastolic dysfunction, and/or left atrial reservoir dysfunction:
placental growth factor, kidney injury molecule-1, prostasin, angiotensin-converting enzyme-2, galectin-9, cathepsin L1, matrix
metalloproteinase-7, tumour necrosis factor receptor superfamily members 10A, 10B, and 11A, interleukins 6 and 16, and
α1-microglobulin/bikunin precursor. Based on these proteins, the clustering algorithm divided the cohort into two distinct
phenogroups, with each cluster grouping individuals with a similar protein profile. Participants belonging to the second cluster
(n = 118) were characterized by an unfavourable cardiovascular risk profile and adverse cardiac structure and function. The
adjusted risk of presenting echocardiographic abnormalities was higher in this phenogroup than in the other (P < 0.0001).
Conclusions We identified proteins related to renal function, extracellular matrix remodelling, angiogenesis, and
inflammation to be associated with echocardiographic signs of early-stage heart failure. Proteomic phenomapping
discriminated individuals at high risk for cardiac remodelling and dysfunction.
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Introduction

In the presence of cardiovascular risk factors, the heart
steadily remodels and its function progressively declines for
years until symptoms of heart failure (HF) present.1 Cardiac
remodelling and dysfunction should be detected at a subclini-
cal stage in order to initiate preventive measures in time.2

Echocardiography enables non-invasive assessment of cardiac
morphology and function. Over the years, echocardiographic
features of subclinical heart remodelling and dysfunction have

been validated as prognostic precursors of overt heart
disease.3–5

Exploring the network of molecular mechanisms behind
cardiac remodelling and dysfunction could help identify novel
targets for its detection, prevention, and management.
Previously, remodelling and dysfunction of the heart has
been linked to numerous molecular perturbations, including
a network of interlinked metabolic and inflammatory
derangements.6,7 The search for pathologically relevant
proteins in HF is being facilitated by high-throughput
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proteomic profiling platforms8 and by advanced analytical
approaches such as machine learning capable of dealing with
large protein networks.9,10 For instance, the HOMAGE case–
control study identified 38 proteins associated with incidence
of symptomatic HF, that is, the long-term consequence of sub-
clinical heart remodelling and dysfunction, out of 252
proteins.11 To date, however, these technological advance-
ments have been underutilized for protein-based detection
of early-stage heart disease. Indeed, when it comes to subclin-
ical heart remodelling and dysfunction, population studies so
far considered only a limited selection of proteomic markers
and neglected protein interconnectivity.

There is a need for better proteomic characterization of
the asymptomatic stages of cardiac remodelling and dysfunc-
tion as assessed by echocardiography. Clustering approaches
that integrate key proteins of echocardiographic abnormali-
ties could identify phenotypically distinct groups and provide
a protein-based classification of cardiac health in the commu-
nity. If successful, such approach could lead to a targeted pro-
teomic platform for identification of individuals at high risk
for HF.

In this population study, we therefore applied
high-throughput biomarker profiling, feature selection tech-
niques, and an unbiased clustering approach to (i) derive
from a large panel of proteins related to cardiovascular dis-
ease those associated with echocardiographic signs of heart
remodelling and dysfunction and (ii) integrate the most infor-
mative proteins in a protein-based classification system for
assessment of cardiac health.

Methods

Study participants

This study is embedded in the Flemish Study on Environment,
Genes and Health Outcomes (FLEMENGHO), which received
ethical approval from the Ethics Committee of the University
of Leuven (S64406). We recruited a random family-based
population sample within north-eastern Belgium as described
before.12 From 2005 to 2015, we invited 1851 FLEMENGHO
participants for an echocardiographic examination, of whom
1447 provided written informed consent (participation rate,
78.2%). We performed high-throughput proteomic profiling
in 575 FLEMENGHO participants above 40 years old who
were free from atrial fibrillation or a pacemaker at the time
of examination and who had optimal echocardiographic im-
age quality.

Echocardiography

Participants refrained from heavy exercise, smoking, and
consuming alcohol or caffeinated beverages for 3 h before

the examination. Supplemental Methods detail the echocar-
diographic protocol. Two echocardiographers obtained
standardized images along the parasternal long and short
axes and from the apical four-chamber and two-chamber
and long-axis views using a Vivid 7 Pro and Vivid E9 (GE
Vingmed, Horten, Norway) interfaced with a 2.5 to
3.5 MHz phased-array probe.12,13 Using EchoPAC software
(GE Vingmed), images were post-processed by one expert
(T.K.) blinded to the participants’ characteristics with good
reproducibility.5 Using clinically recommended criteria13

and population-based thresholds predictive of cardiac
events in the community,4,5 we defined left ventricular
(LV) remodelling as having LV concentric remodelling
[relative wall thickness (RWT) > 0.42] and/or having LV hy-
pertrophy (LV mass indexed to body height2.7 > 50 g/m2.7

for men and >47 g/m2.7 for women)14; LV diastolic
dysfunction as E/e’ ratio > 8.5 [elevation of LV filling pres-
sure, confirmed by differences in durations between mitral
A flow and reverse pulmonary veins flow (Ad less than
ARd + 10 ms), tricuspid regurgitation > 2.7 m/s, and/or
elevation in left atrial (LA) maximal volume index
(>40 mL/m2) as measured by the method of disks]15; and
LA reservoir dysfunction as an LA reservoir strain < 23%.5

Besides LV remodelling, we defined the following LV
remodelling profiles: normal geometry (RWT ≤ 0.42, no LV
hypertrophy), concentric remodelling (RWT > 0.42, no LV
hypertrophy), eccentric hypertrophy (RWT ≤ 0.42, LV
hypertrophy), and concentric hypertrophy (RWT > 0.42
and LV hypertrophy).16

Proteomic measurements

We determined 92 proteins related to immune regulation,
metabolic pathways, and cardiovascular disease using a
Proseek® multiplex platform (CVD II panel, Olink Proteomics,
Uppsala, Sweden). Supporting Information, Table S1 lists the
92 biomarkers included in the CVD II panel. Fasting serum
samples were analysed by the ARCADIA unit at the University
Medical Center in Utrecht, the Netherlands. The platform
applies proximity extension assay technology,8 where each
protein gets linked to a unique pair of oligonucleotide
-labelled antibodies. Next, hybridization, amplification, and
subsequently quantification of the complementary oligonu-
cleotide strands linked to the paired antibodies enable pro-
tein quantification by quantitative real-time PCR using a
Fluidigm BioMark HD platform. Quantitation data were qual-
ity controlled and normalized using internal and external con-
trols, providing Normalized Protein eXpression (NPX) values.
NPX is an arbitrary unit on a log2 scale used to quantify rela-
tive changes in protein levels. Higher NPX corresponds to
higher protein expression. Five proteins were excluded due
to bimodal distribution, leaving 87 proteins for analysis.
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Other measurements

Details on recording medical history, lifestyle, and blood pres-
sure are in Supplemental Methods.

Statistical analysis

For database management and analysis, we used SAS Version
9.4 and JMP Genomics 9.0 (SAS Institute, Cary, NC, USA).
Means and proportions were compared by a large sample
z-test and χ2 test, respectively. Significance was P < 0.05 on
two-sided test.

Feature selection
First, we applied feature selection techniques to select from
the pool of 87 biomarkers those related to echocardiographic
indexes (LV RWT and mass index, E/A ratio, E/e’ ratio, and LA
reservoir strain) and echocardiographic abnormalities (i.e. LV
remodelling, LV diastolic dysfunction, and LA reservoir dys-
function as well as the LV remodelling profiles). For this, we
used partial least squares-discriminant analysis (PLS-DA)9

and eXtreme Gradient Boosting (XGBoost),10 two dimension
reduction techniques capable of dealing with large sets of in-
terrelated biomarkers.

PLS-DA constructs linear combinations that maximize the
covariance between the biomarkers and the outcome (here:
echocardiographic abnormalities). These latent factors then
replace the original features (biomarkers) in outcome estima-
tion. All 87 proteins were considered for construction of the
latent factors. Per outcome, the software selected the
PLS-DA model that predicted the outcome best at balanced
risk for under-fitting and overfitting. In detail, the number
of latent factors retained in the final PLS-DA model was the
number with the lowest predicted residuals sum of squares
(PRESS) explaining a substantial proportion of the variation
in features and outcome (max. 15 latent factors). PRESS sta-
tistics provide a summary measure of the models’ fit and
were retrieved by leave-one-out cross-validation, in which
each observation in turn was removed and models were
refitted using the remaining observations. Per protein, we
calculated the variable importance in projection (VIP) scores
of Wold, reflecting the importance of each biomarker in the
construction of the final PLS-DA model. Similar to PLS-DA,
we performed PLS analyses for prediction of main echocar-
diographic indexes on a continuous scale (i.e. LV RWT and
mass index, E/A ratio, E/e’ ratio, and LA reservoir strain).

In XGBoost, a final model is an additive combination of a
number of trees, with each subsequent tree trained on a
negative gradient of a loss function. This approach decreases
both variance and bias and thus increases prediction
performance.10 XGBoost was optimized with Tree-structured
Parzen Estimator Approach using hyperopt 0.2.5. To examine
the internals of the trained XGBoost model, we applied

Accumulated Local Effects (ALE) forked from PyALE 1.0.
Feature importance was implemented as a mean increase in
accuracy resulting from the tree splits with a given feature.
Predictive performance of XGBoost was evaluated using
10-fold cross-validation. Overall performance of PLS-DA and
XGBoost was assessed using the area under the receiver
operating characteristic curve.

We assessed associations between echo abnormalities and
proteins selected in PLS-DA and XGBoost, while accounting for
age, sex, body mass index (except for LV remodelling), heart
rate, systolic blood pressure, total cholesterol, antihyperten-
sive treatment, current smoking, and history of diabetes
mellitus (with Holm–Bonferroni correction for multiple
testing).

Protein network
Next, we performed a weighted network analysis on all 87
biomarkers using NetworkX 2.5. The Weighted Gene
Co-expression Network Analysis 1.69 was used for the
scale-free analysis.17 We constructed a network from all
proteins with edges weighted by the Pearson’s correlation
coefficients produced from Pandas 1.1.4. We power trans-
formed the network, selecting the smallest power degree
(β = 5) with scale-free fitting index ≥ 0.9. We used Louvain
modularity (python-louvain 0.14) to identify distinct protein
groups in the network.18

Unsupervised clustering for protein-based phenomapping
To identify protein-based phenogroups, we conducted
model-based clustering on individuals using the set of
biomarkers that were important in both PLS-DA (VIP > 1.3)
and XGBoost (top 10 feature importance) for detecting echo-
cardiographic abnormalities. Clustering methods were taken
from the scikit-learn library (0.23) and used within a Python
3.8 environment.19 We fitted a Gaussian mixture using an
expectation maximization algorithm,20 with each component
having its own covariance matrix. Gaussian mixture produces
a statistical model of resulting segmentation.21 The optimal
number of clusters was based on the Davies–Bouldin and
Silhouette indexes.22 We compared the clinical and echocar-
diographic characteristics of the protein-based phenogroups
and their odds for presenting cardiac remodelling and dys-
function while adjusting for potential confounders listed
before.

Results

Population characteristics

Table 1 presents the clinical and echocardiographic charac-
teristics by sex. Mean age was 57.8 ± 10.9 years. The study
sample included 297 women (51.7%). LV remodelling, LV
diastolic dysfunction, and LA reservoir dysfunction were
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present in 194 (33.7%), 102 (17.7%), and 155 (27.0%) partic-
ipants, respectively.

Key proteins of heart remodelling and
dysfunction

Figure 1 outlines the most important biomarkers selected by
PLS-DA (VIP > 1.3) and/or XGBoost (top 10 biomarkers) for
detection of echocardiographic signs of LV remodelling, LV
diastolic dysfunction, and LA reservoir dysfunction. Area under
the receiver operating characteristic curve of identifying the
echocardiographic abnormalities ranged between 0.78 and
0.90 for the PLS-DA models (Supporting Information,
Figure S1) and between 0.72 and 0.83 for the XGBoost models

(Supporting Information, Figure S2). Overall, 13 proteins were
found important in both PLS-DA and XGBoost modelling for
at least one of the three echocardiographic profiles:
placental growth factor (PGF), kidney injury molecule-1
(KIM-1), galectin-9, cathepsin L1 (CTSL1), prostasin (PRSS8),
tumour necrosis factor (TNF)-related apoptosis-inducing
ligand receptor 2 (TRAIL-R2), TNF receptor superfamily
member 0A (TNFRSF10A) and 11A (TNFRSF11A), matrix
metalloproteinase-7 (MMP-7), angiotensin-converting en-
zyme-2 (ACE2), interleukins 6 (IL-6) and 16 (IL-16), and protein
α1-microglobulin/bikunin precursor (AMBP) (Figure 1). The
Venn diagram in Figure 2 illustrates the overlap between the
13 selected biomarkers. PGF, CTSL1, KIM-1, and galectin-9
were consistently identified as important for detecting all
three echo abnormalities.

Table 1 Clinical and echocardiographic characteristics for men and women

Characteristics Men (n = 278) Women (n = 297) P value

Clinical data
Age, years 58.1 ± 10.7 57.6 ± 11.0 0.59
Body mass index, kg/m2 27.5 ± 3.8 26.6 ± 4.8 0.017
Systolic BP, mmHg 134.4 ± 16.5 131.6 ± 18.9 0.057
Diastolic BP, mmHg 83.3 ± 9.3 79.4 ± 9.0 <0.0001
Heart rate, b.p.m. 61.9 ± 9.1 64.6 ± 9.2 0.0004
Hypertensive, n (%) 157 (56.5) 145 (48.8) 0.066
Treated for hypertension, n (%) 94 (33.8) 94 (31.7) 0.58
Current smoking, n (%) 49 (17.6) 47 (15.8) 0.56
Drinking alcohol, n (%) 145 (52.2) 72 (24.2) <0.0001
History of CHD, n (%) 22 (7.9) 8 (2.7) 0.0049
History of diabetes mellitus, n (%) 17 (6.1) 13 (4.4) 0.35

Biochemical data
Serum creatinine, μmol/L 90.1 ± 13.3 74.4 ± 13.3 <0.0001
Total cholesterol, mmol/L 5.2 ± 0.95 5.43 ± 0.96 0.0020
Blood glucose, mmol/L 5.08 ± 1.09 4.88 ± 0.60 0.0086

LV structure and volumes
Relative wall thickness 0.40 ± 0.07 0.38 ± 0.06 0.012
Mass index, g/m2.7 46.5 ± 11.2 41.2 ± 10.6 <0.0001
EDV index, mL/m2 57.6 ± 12.6 47.0 ± 8.6 <0.0001
ESV index, mL/m2 23.0 ± 7.4 18.1 ± 4.36 <0.0001
LV remodelling, n (%)a 144 (58.3) 103 (41.7) <0.0001

LV systolic function
Ejection fraction, % 60.4 ± 6.6 61.5 ± 6.2 0.027
Global LS, %b 18.5 ± 2.3 20.0 ± 2.1 <0.0001

LV diastolic function
E peak, m/s 0.67 ± 0.15 0.76 ± 0.16 <0.0001
A peak, m/s 0.64 ± 0.15 0.70 ± 0.17 <0.0001
E/A ratio 1.10 ± 0.36 1.14 ± 0.37 0.22
TDI e’, cm/sc 9.91 ± 2.83 10.1 ± 2.81 0.45
E/e’ ratio 7.15 ± 1.95 7.93 ± 2.27 <0.0001
LV diastolic dysfunction, n (%) 38 (13.7) 64 (21.6) 0.013

LA volume and function
Maximal volume, mL/m2 33.4 ± 9.6 30.5 ± 8.6 0.0001
Minimal volume, mL/m2 14.5 ± 5.8 13.0 ± 5.4 0.0016
Emptying fraction, % 57.1 ± 8.7 58.4 ± 8.3 0.087
Reservoir strain, %b 28.6 ± 8.2 30.6 ± 9.0 0.0059
LA reservoir dysfunction, n (%) 81 (29.1) 74 (24.9) 0.25

BP, blood pressure; CHD, congenital heart disease; EDV, end-diastolic volume; ESV, end-systolic volume; LA, left atrial; LS, longitudinal
strain; LV, left ventricular; TDI, tissue Doppler imaging.
Values are mean ± standard deviation or number of subjects (%).
aLV remodellingwas defined as having LV concentric hypertrophy (relativewall thickness> 0.42) and/or LV hypertrophy (LVmass ≥ 50g/m2.7

in men and ≥ 47 g/m2.7 in women).
bData on global LS and LA strain were available in 544 and 558 participants, respectively.
cAverage of septal, lateral, inferior, and posterior mitral annular sites.
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Summary data of the PLS-DA models for protein-based
identification of echocardiographic abnormalities are pre-
sented in Table 2, and corresponding V-plots are shown
in Supporting Information, Figure S3. ALE plots in
Supporting Information, Figure S4 illustrate the separate
probabilistic effect of the five most important biomarkers
on the outcome prediction in the XGBoost models.

Supporting Information, Figure S5 presents the
multivariable-adjusted associations between the echocardio-
graphic abnormalities and the 13 biomarkers selected

by PLS-DA and XGBoost. Multiple logistic regression
confirmed most biomarkers selected by PLS-DA and
XGBoost for LV remodelling. Higher risk for LV diastolic
dysfunction also remained independently associated with
higher levels of PGF, KIM-1, CTSL1, PRSS8, TRAIL-R2,
MMP-7, and TNFRSF11A (but not galectin-9) after
correction for multiple testing. For LA reservoir dysfunction,
only its association with galectin-9 and MMP-7 survived
multiple testing correction (Supporting Information,
Figure S5).

Figure 1 Biomarkers of cardiac remodelling and dysfunction. The heat map presents the biomarkers that were important in partial least
squares-discriminant analysis (PLS-DA) (VIP > 1.3) and eXtreme Gradient Boosting (XGBoost) modelling for detecting echocardiographic abnormalities.
The 13 proteins in bold were found important in both PLS-DA and XGBoost analyses for at least one of the three echocardiographic phenotypes. For
PLS-DA, red dots are positive and blue are negative correlations. Larger dots reflect greater VIP score (for PLS-DA) or greater feature importance (for
XGBoost). ACE2, angiotensin-converting enzyme-2; AMBP, α1-microglobulin/bikunin precursor; AUC, area under the receiver operating curve; CTSL1,
cathepsin L1; IL-6, interleukin-6; IL-16, interleukin-16; KIM-1, kidney injury molecule-1; LA, left atrial; LV, left ventricular; MMP-7, matrix metallopro-
teinase-7; PGF, placental growth factor; PRSS8, prostasin; TNFRSF10A, tumour necrosis factor receptor superfamily member 10A; TNFRSF11A, tumour
necrosis factor receptor superfamily member 11A; TRAIL-R2, tumour necrosis factor-related apoptosis-inducing ligand receptor 2; VIP, variable impor-
tance in projection.
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Supporting Information, Table S2 presents the summary
data of the PLS models for protein-based prediction of
echocardiographic indexes on a continuous scale. Of note,
in the prediction of the continuous echocardiographic in-
dexes, PLS selected 11 of the 13 proteins (all but MMP-7
and IL-16) that were identified previously as important in
both PLS-DA and XGBoost modelling for detection of at
least one of the three echocardiographic profiles (LV
remodelling, LV diastolic dysfunction, and/or LA reservoir
dysfunction).

Supporting Information, Figure S6 outlines the biomarkers
selected by PLS-DA and/or XGBoost for detection of the dif-
ferent LV remodelling profiles (summary data of the PLS-DA
models are available in Supporting Information, Table S3).
Supporting Information, Figure S7 summarizes the proteins
that were important in both PLS-DA and XGBoost modelling
for each of the three LV remodelling profiles. Notably, ACE2
was consistently identified as important for detecting all
three LV remodelling profiles.

Protein interconnectivity

Supporting Information, Figure S8 shows the weighted
network of the 87 biomarkers, which formed three modules.
Most of the 13 biomarkers that were important in PLS-DA
and XGBoost for detection of echocardiographic abnormali-
ties were located within one module. The complex protein in-
terconnectivity illustrates why protein measurements should
never be interpreted in isolation.

Protein-based phenomaps of cardiac health

Using unsupervised clustering, we constructed biomarker-
based phenogroups to evaluate the potential value of the
selected set of 13 biomarkers for targeted proteomic
screening. Two clusters were constructed based on the
lowest Davies–Bouldin index and the highest Silhouette index
(indicating most optimal clustering) (Supporting Information,
Figure S9). As such, the study sample was divided into two
distinct phenogroups, with each cluster grouping individuals
with a similar biomarker profile. Supporting Information,
Table S4 presents the clinical and echocardiographic charac-
teristics of the two phenogroups. The prevalence of LV
remodelling, LV diastolic dysfunction, and LA reservoir
dysfunction was significantly higher in Cluster 2 (n = 118) as
compared with Cluster 1 (n = 457) (P < 0.0001 for all; Figure
3A and 3B). Even after accounting for important confounders,
individuals belonging to Cluster 2 remained at higher risk for
presenting LV remodelling [odds ratio (OR) with 95% confi-
dence interval (CI); 2.44, 1.51–3.94], LV diastolic dysfunction
(OR: 2.04, CI 1.12–3.73), and LA reservoir dysfunction (OR:
1.67, CI 1.03–2.70) as those located in Cluster 1 (Table 3).

Discussion

We investigated the usefulness of proteomic profiling for
detection of echocardiographic signs of heart remodelling
and dysfunction in the community. By combining high-
throughput proteomic profiling with feature selection
algorithms capable of handling large protein networks, we
identified 13 pathologically relevant proteins associated with
echocardiographic signs of early-stage HF. Next, unsupervised
clustering on this focused set of proteins enabled
protein-driven identification of individuals at high risk for
heart remodelling and dysfunction.

High-throughput proteomic profiling allows exploring the
network of molecular mechanisms behind subclinical heart
remodelling and dysfunction. Using supervised feature selec-
tion, we first identified 13 proteins associated with echocar-
diographic abnormalities. These proteins reflect pathological
processes behind cardiac remodelling and dysfunction

Figure 2 Biomarkers of cardiac remodelling and dysfunction. The Venn di-
agram presents the 13 biomarkers that were important in both partial
least squares-discriminant analysis and eXtreme Gradient Boosting model-
ling for detecting at least one of the echocardiographic abnormalities (i.e.
LV remodelling, LV diastolic dysfunction, and LA reservoir dysfunction).
ACE2, angiotensin-converting enzyme-2; AMBP, α1-microglobulin/bikunin
precursor; CTSL1, cathepsin L1; Gal-9, galectin-9; IL-6, interleukin-6; IL-16,
interleukin-16; KIM-1, kidney injury molecule-1; LA, left atrial; LV, left ven-
tricular; MMP-7, matrix metalloproteinase-7; PGF, placental growth fac-
tor; PRSS8, prostasin; TNFRSF10A, tumour necrosis factor receptor
superfamilymember 10A; TNFRSF11A, tumour necrosis factor receptor su-
perfamily member 11A; TRAIL-R2, tumour necrosis factor-related
apoptosis-inducing ligand receptor 2.
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related to renal function (KIM-1, PRSS8, and ACE2), angiogen-
esis (PGF), extracellular matrix remodelling (galectin-9, CTSL1,
and MMP-7), and inflammation and oxidative stress

(TNFRSF10A, TRAIL-R2, TNFRSF11A, IL-6, IL-16, and AMBP).
These proteins may represent novel targets for the detection
and management of cardiac remodelling and dysfunction.

Table 2 Summary data for the biomarkers predicting echocardiographic signs of cardiac remodelling and dysfunction by partial least
squares-discriminant analysis

LV remodellinga LV diastolic dysfunction LA reservoir dysfunction

Number of latent factors 3 4 3
% of variation explained by latent factors

For predictors (biomarkers) 39.5 44.8 40.9
For outcome (echo index) 24.6 33.7 19.3

AUC 0.82 0.90 0.78
P value <0.0001 <0.0001 <0.0001
Top markers responsible for
outcome prediction (VIP > 1.3)

+:
ACE2
PGF
KIM-1
Gal-9
CTSL1
PRSS8
IL-16
AMBP
�:

RAGE
ADAM-TS13

TIE2
GH

+:
BNP
CTSL1
Gal-9
KIM-1
MMP-7
PGF

TNFRSF11A
TRAIL-R2

�:
TIE2

TNFRSF10A

+:
CTSL1
IL-6
Gal-9
KIM-1
MMP-7
PGF
PRSS8
SPON2

TNFRSF10A
TNFRSF11A
TRAIL-R2

�:
GDF-2

ACE2, angiotensin-converting enzyme-2; AMBP, α1-microglobulin/bikunin precursor; AUC, area under the receiver operating characteris-
tic curve; CTSL1, cathepsin L1; Gal-9, galectin-9; IL-6, interleukin-6; IL-16, interleukin-16; KIM-1, kidney injury molecule-1; LA, left atrial;
LV, left ventricular; MMP-7, matrix metalloproteinase-7; PGF, placental growth factor; PRSS8, prostasin; TNFRSF10A, tumour necrosis fac-
tor receptor superfamily member 10A; TNFRSF11A, tumour necrosis factor receptor superfamily member 11A; TRAIL-R2, tumour necrosis
factor-related apoptosis-inducing ligand receptor 2; VIP, variable importance in projection.
aLV remodelling was defined as having LV concentric remodelling (relative wall thickness > 0.42) and/or LV hypertrophy (LV mass ≥ 50 g/
m2.7 in men and ≥ 47 g/m2.7 in women).

Figure 3 Prevalence of subclinical cardiac remodelling and dysfunction by biomarker-based phenogroups. An unsupervised clustering algorithm con-
structed the two phenogroups (‘clusters’) based on 13 proteins found important in feature selection modelling of echocardiographic signs of subclinical
heart remodelling and dysfunction. LA, left atrial; LV, left ventricular.
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Biomarkers related to renal function

Our analysis indicates early involvement of renal biomarkers
related to tubular cell damage (KIM-1), and homeostasis of
fluid and electrolytes (PRSS8 and ACE2) in cardiac remodel-
ling and dysfunction, even in the absence of symptomatic car-
diac or renal deterioration. Previous experimental and clinical
studies identified KIM-1 as a promising biomarker for renal
proximal tubule injury that is relevant in cardiovascular
diseases.23 Indeed, worsening of tubular damage biomarkers
such as KIM-1 predicted adverse events including cardiac
death and HF hospitalization in 263 patients with chronic
HF.24 In addition, PRSS8 and ACE2 play an important role in
blood pressure homeostasis and electrolyte balance via regu-
lation of the renin–angiotensin–aldosterone and kallikrein–
kinin systems.25,26 In line, our study suggests that assessment
of these markers may help to identify asymptomatic patients
at risk for developing the cardiorenal syndrome.

Biomarkers of angiogenesis and extracellular
matrix remodelling

Other pathways associated with cardiac remodelling and dys-
function were angiogenesis and extracellular matrix remodel-
ling. The observed increase in PGF might indicate its
involvement already in early stages of cardiac remodelling
and dysfunction in response to pressure overload and ischae-
mia. In experimental setting, administration of exogenous
PGF after acute myocardial infarction stimulates angiogenesis
and improves ventricular remodelling and function.27

Similarly, endogenous PGF was required for adaptive

angiogenesis and HF prevention by inducing cardiac hypertro-
phy after pressure overload in mice.28

Galectin-9 belongs to a family of carbohydrate-binding
proteins and is produced by the extracellular matrix. Among
the galectins, galectin-3 is the most studied with regard to in-
volvement and progression of HF so far, whereas the role of
galectin-9 in HF progression requires further investigation.
Through its cytoplasmic control of AMPK, galectin-9 is impor-
tant for efficient ubiquitination during lysosomal damage and
may thus affect various health conditions impacted by AMPK,
including obesity, diabetes, and immune responses.29

Similarly, CTSL1, an important lysosomal protein-processing
enzyme, may also regulate the lysosomal degradation
response to stress (i.e. pressure overload) that may alter
cardiac function.30 Previous studies also reported CTSL1
activity in extracellular matrix degradation, another mecha-
nism of cathepsin participation in the development of cardio-
vascular diseases.31 Thus, lysosomal protease dysfunction
may impair the autophagy–lysosomal pathway, adversely
affecting protein degradation.30

Matrix metalloproteinase-7 is one of the metalloproteases
degrading a wide range of extracellular matrix proteins, such
as collagen IV, fibronectin, and laminin.32 MMP-7 can also
cleave other MMPs, including MMP-1, MMP-2, and MMP-9,
leading to their activation, implicating MMP-7 as key regula-
tor of extracellular matrix composition and, therefore, cardiac
remodelling.

Biomarkers of inflammatory and oxidative stress
axis

Among markers reflecting inflammation and apoptosis, TNF
family members and IL-6 and IL-16 were related to echocar-
diographic signs of cardiac remodelling and dysfunction
in our cohort. TNFRSF10A and TRAIL-R2, receptors for
TNFSF10/TRAIL, are members of the death receptor super-
family and modulate apoptosis. High levels of TRAIL-R2 were
associated with incident diabetes, cardiovascular mortality,
myocardial infarction, and ischaemic stroke in a large cohort
of 4742 individuals recruited from the general population.33

Another TNF superfamily member, TNFRSF11A, activates nu-
clear factor-κB and participates in a wide variety of processes
controlling cell proliferation, apoptosis, and vascular calcifica-
tion. Associated with LA reservoir dysfunction in our study,
IL-6 significantly predicted atrial fibrillation incidence in
971 participants of the Heart and Soul Study.34 Another
biomarker highlighted in our analysis was AMBP, a precursor
of α1-microglobulin, which is up-regulated during increased
oxidative stress and can also be taken up intracellularly.35

α1-Microglobulin can protect against excessive intracellular
oxidative stress and localize to the mitochondria to protect
mitochondrial function.

Table 3 Multivariable-adjusted risk for echocardiography-based
subclinical cardiac remodelling and dysfunction by
biomarker-based phenogroups

Cluster 2 versus Cluster 1 Adjusted OR (95% CI) P value

Risk for echocardiographic
abnormality

LV remodelling 2.44 (1.51–3.94) 0.0003
LV diastolic dysfunction 2.04 (1.12–3.73) 0.021
LA reservoir dysfunction 1.67 (1.03–2.70) 0.038

Risk for no. of echo abnormalities
≥1 abnormality 2.04 (1.16–3.60) 0.014
≥2 abnormalities 2.06 (1.20–3.52) 0.0083
3 abnormalities 4.23 (1.91–9.36) 0.0004

CI, confidence interval; LA, left atrial; LV, left ventricular.
Two clusters were constructed by an unsupervised clustering
algorithm from 13 proteins found important in feature selection
models for echocardiographic signs of subclinical cardiac remodel-
ling and dysfunction. Odds ratios (ORs) reflect the odds for individ-
uals belonging to Cluster 2 (n= 118) to present echocardiographic
signs of cardiac remodelling and dysfunction relative to the individ-
uals of Cluster 1 (n = 457). ORs were adjusted for age, sex, body
mass index (except LV remodelling), heart rate, systolic blood pres-
sure, total cholesterol, antihypertensive treatment, current
smoking, and history of diabetes mellitus.
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Interestingly, most of the proteins highlighted in our
study were identified in previous proteomic studies as
predictors of symptomatic HF. Indeed, Ferreira et al.
recently published a post hoc analysis on the association
between targeted proteomics profiles (n = 252) with
incident HF defined as the first hospitalization for HF using
nested matched cases and controls selected from three
different cohorts.11 Of note, eight out of the 13 proteins
identified in our study overlapped with the biomarkers
reported by Ferreira et al. In contrast, our study identified
proteomic signatures associated with the early changes in
cardiac function and remodelling that precede HF symp-
toms by years to decades.

Protein-based classification of cardiac health

Besides unravelling the molecular mechanisms behind car-
diac remodelling and dysfunction, proteomic profiling may
also aid the characterization of early-stage HF in the commu-
nity. Here, we provided a pipeline to integrate the most path-
ologically relevant proteins extracted from high-throughput
proteomic data into a protein-based classification system
for assessment of cardiac health. Indeed, we applied
unbiased clustering to integrate the key proteomic
markers of subclinical echocardiographic abnormalities into
protein-driven phenomaps. This approach distinguishes phe-
notypically distinct groups and may provide a protein-based
classification system of cardiac health in the community. In-
deed, we found that the phenogroups constructed from the
13 proteins provided a clinically meaningful classification for
cardiac risk stratification in asymptomatic individuals
(Supporting Information, Table S2). Participants belonging to
the second cluster were characterized by an unfavourable
cardiovascular risk profile (older individuals, high prevalence
of obesity, hypertension, and diabetes mellitus) and higher
risk of presenting cardiac remodelling and dysfunction than
the other cluster, even after adjustment for important risk
factors.

Our findings may lead to better proteomic characteriza-
tion of asymptomatic stages of cardiac remodelling and dys-
function. Of note, our study illustrates a pipeline to derive
clinically meaningful classifiers of cardiac health from
high-throughput proteomic data. As such, the proposed
protein-based clustering may be a first step towards a
protein-based screening platform integrated within the clin-
ical decision-making process for identification of individuals
at high risk for HF. Future studies should further validate
the usefulness of integrative proteomic profiling to identify
individuals at high risk for cardiac dysfunction. Future trials
should also unravel the clinical relevance of the highlighted
set of proteins in HF prophylaxis and therapy. Effective trans-
lation of our findings may thus facilitate the development of
strategies for better diagnosis, prevention, and treatment of

HF. Conjointly, protein-driven screening, preventive and
reactive strategies may help tackling the ever rising HF
epidemic.

Our study has strengths and limitations. First, although all
echocardiographic measurements are prone to error, two
experienced observers recorded the echocardiographic
images using a standardized protocol and images were
post-processed by a single observer with good reproducibil-
ity. Second, technical variability may have affected the prote-
omic measurements. However, the panel used in this study
has been thoroughly validated regarding ranges, assay speci-
ficity and precision, repeatability and reproducibility, and
endogenous interference (https://www.olink.com/resources-
support/document-download-center/). Third, despite the
relatively large population sample, our findings remain to
be externally validated in a large-scale and racially diverse
cohort. In line, our study findings should be extrapolated with
caution to other ethnicities than white Europeans. Fourth,
one should not infer causality from our cross-sectional
observations.

In conclusion, we identified a set of proteins associated
with subclinical echocardiographic abnormalities, which may
represent key targets for the detection, prevention, and
management of early-stage HF. Protein-based clustering of
individuals provided a classification system of cardiac health
that may facilitate early detection of cardiac remodelling
and dysfunction in the community. Future studies should
validate the usefulness of integrative proteomic profiling for
the management of early-stage HF.
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Table S1. Cardiovascular disease-related protein biomarkers
of the Olink Cardiovascular II panel included in the study.
Table S2 Summary Data for the Biomarkers Predicting Echo-
cardiographic Indexes of Cardiac Structure and Function by
Partial Least Squares Analysis.
Table S3 Summary Data for the Biomarkers Predicting
Echocardiography-Defined Profiles of Left Ventricular (LV) Re-
modelling by Partial Least Squares-Discriminant Analysis.
Table S4 Clinical and Echocardiographic Characteristics by
Biomarker-Based Phenogroups.
Figure S1. Receiver-Operating Characteristic (ROC) Curves for
Protein-Based Detection of Echocardiographic Abnormalities
by Partial Least Squares-Discriminant Analysis (PLS-DA). Area
under the ROC curve (AUC) was 0.82 for LV remodelling, 0.90
for LV diastolic dysfunction and 0.78 for LA reservoir dysfunc-
tion.
Figure S2. Receiver-Operating Characteristic (ROC) Curves for
Protein-Based Detection of Echocardiographic Abnormalities
by XGBoost Modelling. Area under the ROC curve (AUC)
was 0.73 for LV remodelling, 0.83 for LV diastolic dysfunction
and 0.72 for LA reservoir dysfunction.
Figure S3. Biomarker Associated with Cardiac Remodeling
and Dysfunction in Partial Least Squares-Discriminant Analy-
sis (PLS-DA). V-plots were generated from PLS-DA models
for discrimination between normal and abnormal echocardio-
graphic phenotypes. Markers with a VIP score above 1.3 were
considered influential. Correlation coefficients were scaled
and centered. LA, left atrial; LV, left ventricular; VIP, variable
importance in projection.
Figure S4. Accumulated Local Effects for XGBoost with opti-
mized hyperparameters, trained on all 87 biomarkers, shown
for 5 most important biomarkers consistently selected for all
three echocardiographic abnormalities. Each row belongs to
a model trained on the corresponding label. Each ALE plot
shows the effect of a single variable on given outcome,
aligned to 0 and controlled for correlated variables and inter-
action effects. Only predictor values with data available (see
the rug plot in each figure) should be considered. All variables
exhibit a sharp non-linear effect at a corresponding threshold
value. The absolute effect of a single variable is relatively low
since the outcome prediction is based on adding the effects
of many variables.
Figure S5. Multivariable-Adjusted Associations Between

Echocardiographic Profiles of Cardiac Remodeling and Dys-
function and Proteins Selected in Feature Selection Modeling.
We show per echocardiographic phenotype the proteins se-
lected by both partial least squares-discriminant analysis
and XGBoost modeling for discrimination of the particular
phenotype. Odds ratios (95% CI) are expressed per doubling
in protein level and were adjusted for age, sex, BMI (except
for LV remodeling), heart rate, systolic and diastolic blood
pressure and antihypertensive treatment. An asterisk (*) indi-
cates that the P value remained <0.05 after Holm-Bonferroni
correction for multiple testing.
Figure S6. Biomarkers of Echocardiography-Defined Profiles
of Left Ventricular Remodelling. The heat map presents the
biomarkers that were in PLS-DA (VIP > 1.3) and XGBoost
modelling for detecting the LV remodelling profiles. Partici-
pants with normal LV geometry were the reference group
(i.e. relative wall thickness (RWT) ≤ 0.42 and no LV hypertro-
phy; n = 328). For PLS-DA, red dots are positive and blue are
negative correlations. Larger dots reflect greater VIP score
(for PLS-DA) or greater feature importance (for XGBoost).
AUC, area under the receiver-operating curve; VIP, variable
importance in projection.
Figure S7. Biomarkers of Echocardiography-Defined Profiles
of Left Ventricular Remodelling. The Venn diagram presents
the biomarkers that were important in both PLS-DA and
XGBoost modelling for detecting at least one of the LV re-
modelling profile (i.e. LV concentric remodelling without hy-
pertrophy, LV eccentric hypertrophy and LV concentric
hypertrophy).
Figure S8. Network of 87 Established and Potential Protein
Markers of Cardiovascular Disease from Weighted Network
Analysis. Louvain modularity was used to identify distinct
groups of proteins in the network. The node size represents
the weighted node connectivity. The 13 biomarkers in bold
were found important in both PLS-DA and XGBoost analyses
for one or more echocardiographic phenotypes. Supplemen-
tal Table S1 lists the full names and abbreviations of the 87
biomarkers.
Figure S9. Selection of the Optimal Number of Phenogroups
in Unsupervised Clustering. Both Davies-Bouldin index (DBI;
lower is better) and Silhouette index (SI; higher is better) in-
dicated 2 as the optimal number of phenogroups (‘clusters’).
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