
RESEARCH PAPER

Agreement in DNA methylation levels from the Illumina 450K array across batches,
tissues, and time

Marie Foresta,b1, Kieran J. O’Donnellb,c,d,e1, Greg Voisina, Helene Gaudreaub,c, Julia L. MacIsaacf, Lisa M. McEwenf,
Patricia P. Silveirab,c,d, Meir Steinerg, Michael S. Koborf, Michael J. Meaneyb,c,d,e,h and Celia M.T. Greenwooda,b,i,j

aLady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; bLudmer Centre for Neuroinformatics and Mental Health, McGill University,
Montreal, QC, Canada; cDouglas Hospital Research Centre, McGill University, Montreal, QC, Canada; dSackler Program for Epigenetics & Psychobiology,
McGill University, Montreal, QC, Canada; eCanadian Institute for Advanced Research, Child and Brain Development Program, Toronto, ON, Canada;
fCentre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and BC Children’s Hospital Research Institute, University of British
Columbia, Vancouver, BC, Canada; gMcMaster University, ON, Canada; hSingapore Institute of Clinical Sciences, Singapore; iDepartments of Oncology
and Human Genetics, McGill University, Montreal, QC, Canada; jDepartment of Epidemiology, Biostatistics and Occupational Health, McGill University,
Montreal, QC, Canada

ARTICLE HISTORY
Received 5 January 2017
Revised 15 November 2017
Accepted 27 November 2017

ABSTRACT
Epigenome-wide association studies (EWAS) have focused primarily on DNA methylation as a chemically
stable and functional epigenetic modification. However, the stability and accuracy of the measurement of
methylation in different tissues and extraction types is still being actively studied, and the longitudinal
stability of DNA methylation in commonly studied peripheral tissues is of great interest. Here, we used
data from two studies, three tissue types, and multiple time points to assess the stability of DNA
methylation measured with the Illumina Infinium HumanMethylation450 BeadChip array. Redundancy
analysis enabled visual assessment of agreement of replicate samples overall and showed good
agreement after removing effects of tissue type, age, and sex. At the probe level, analysis of variance
contrasts separating technical and biological replicates clearly showed better agreement between
technical replicates versus longitudinal samples, and suggested increased stability for buccal cells versus
blood or blood spots. Intraclass correlations (ICCs) demonstrated that inter-individual variability is of
similar magnitude to within-sample variability at many probes; however, as inter-individual variability
increased, so did ICC. Furthermore, we were able to demonstrate decreasing agreement in methylation
levels with time, despite a maximal sampling interval of only 576 days. Finally, at 6 popular candidate
genes, there was a large range of stability across probes. Our findings highlight important sources of
technical and biological variation in DNA methylation across different tissues over time. These data will
help to inform longitudinal sampling strategies of future EWAS.
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Introduction

Advances in DNA methylation profiling technology have facili-
tated a new wave of genome-wide association studies of DNA
methylation (EWAS). These studies provide novel insights on
the role of DNA methylation in healthy aging [1–3] and disease
[4,5]. Although there is consensus among researchers that it is
ideal to study the most-involved tissues for a trait of interest
(e.g., to study kidney biopsy tissue for kidney disease), it may
not be feasible to obtain these tissues. Among easily-accessible
tissues, such as buccal cells or existing stored blood spots, there
remains considerable debate about the choice of tissue for
EWAS [6–8], due in part to our limited understanding of
cross-tissue concordance and intra-individual stability of DNA
methylation over time.

The present study was undertaken to evaluate the stability of
DNA methylation data in commonly available tissues, as assessed
by the Illumina Infinium HumanMethylation450 BeadChip
(450K array), which provides quantitative measures of DNA

methylation at approximately 480,000 CpGs across the genome
[9]. A stable probe, here, is defined as a probe where the estimated
methylation level is extremely consistent across replicate meas-
urements. We were interested in understanding which of the
commonly available tissues for measuring DNA methylation
should be preferred, based on measures of stability. However, the
idea of a stable measurement of methylation requires context: if a
sample is split and analyzed twice, then evidently it would be
desirable to obtain estimates of methylation that are extremely
similar across such technical replicates, since one assumes the
methylation level being measured is the same, and any differences
that arise are due to the precision of the probe. An unstable probe
would be one where it is difficult to obtain a consistent estimate
of the methylation level across the technical replicates even after
the best available normalization. In contrast, if repeated samples
are taken at different times from the same person, one might
expect the true methylation levels to be similar if a small time
interval separates the two sample extractions, but one might
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tolerate increasing heterogeneity between samples as the time
interval between samplings increases, or if there was a change in
exposure or phenotypic state between samplings. Here, variability
is assumed to be due to variation in the true methylation levels
rather than variation in the measurement method. For a precise
probe, large variability between repeated samplings implies dyna-
mism in methylation levels.

We used two measures to evaluate probe stability. First, we
calculated intraclass correlation coefficients (ICCs), the most
commonly used measure for assessing agreement. To comple-
ment these results based on the ICC, we also calculated con-
trasts of interest between replicates and calculated F-statistics
comparing mean squared deviations.

There have been several studies of the technical variability of
measures of DNA methylation as measured by the 450K array,
and most have used ICC values to assess agreement. Leukocytes
have often been used to assess methylation replicability (see
refs. [10]) (130 individuals), [11] (10 replicate pairs in a larger
data set), and [12] (n = 24). Dried blood spots (DBS) and
peripheral blood mononuclear cells (PBMC) have also been
compared [13], and in this study, there were large sample sizes
in both tissues and for both technical replicates (n = 136 DBS;
n = 126 PBMC) and repeated samplings from individuals (n =
769 DBS; n = 280 PBMC). All previous studies found a wide
range of ICCs with many probes demonstrating low values.
There seems to be only limited study of comparisons of the sta-
bility of DNA methylation. Only a few papers have examined
the effects of storage time and duration, and these papers exam-
ined small numbers of samples, different tissue types, and
reached differing conclusions [14–17]. Only one of these papers
looked at dried blood spots [15].

We also assessed stability with regard to likely sources of
technical or biological variation, such as experimental design
(e.g., batch effects) or longitudinal sampling (e.g., age effects).
We then extended these stability analyses to salient features of
the DNA methylome, including epigenetic age, a phenotype
representative of biological age, as it has been associated with a
range of adverse health outcomes in several studies [1–3]. Stud-
ies spanning several months have also been performed in leu-
kocytes [12,18]. The former studies used ICC as a measure of
agreement over a 9 month interval and the latter ones exam-
ined correlations between repeated samplings. Agreement in
buccal cells has been examined in twins followed from birth to
18 months [19].

Our work examines agreement in two independent sample
sets and, in contrast to previous studies, includes a large num-
ber of buccal samples with technical replicates as well as DBS
and leukocytes from whole-blood. In the first data set (Dutch
data—see Methods), several assessments of DNA methylation
concordance were performed: across tissues (buccal epithelial
cells, finger-prick dried blood spots, and whole-blood samples),
technical replicates (the same biological sample divided and
analyzed separately), biological replicates (repeated samplings
of the same tissue), and a range of elapsed time intervals. The
complexity and richness of this study design enabled us to take
a broad look at the stability of DNA methylation. In the second
data set (Canadian data—see Methods), we had more technical
and biological replicates in only one tissue (buccal cells). In
addition to providing useful information on stability across

tissues and time, this study demonstrates the use of a range of
methods for assessing agreement, which can provide insightful
perspectives on the distributions of agreement in large data sets.

Therefore, in this study we investigate stability or “agree-
ment” across technical and biological replicates of DNA meth-
ylation estimates from the Illumina 450K array, and focus
particularly on whether we can identify probes with little tech-
nical replicability but interesting variability across repeated
samplings or biological replicates. Although our datasets are
smaller than others, we have a rich set of tissues and replicate
comparisons. We also examine in detail the DNA methylation
patterns across individuals at six candidate genes that are the
focus of many epigenetic studies in human psychology and psy-
chiatry: OXTR, [20,21] DRD2, [22] DRD4, [23] COMT, [24]
BDNF, [25] and SLC6A4 (alias HTTLPR) [26,27].

Results

Stability or agreement at the sample level in our two
datasets

For the Dutch data, methylation was measured in 10 individu-
als from 3 tissues (whole-blood, blood spots, and buccal cells),
with a combination of technical replicates and repeated sam-
plings across 1–4 week intervals (Table 1, see also Methods). A
global perspective on agreement between replicates can be
obtained through summarizing the methylation profiles with a
linear projection tool, such as principal component analysis,
guided principal component analysis, [28] or canonical redun-
dancy analysis (RDA) [29]. The latter method, for a series of
specified covariates or factors, estimates the proportion of vari-
ability explained by each factor relative to all covariates
included in the model, and also allows the effects of some cova-
riates to be removed (adjusted for) prior to the examination of
others. Figure 1 shows the results of RDA using random sam-
ples of 100,000 probes in these data, for both biological repli-
cates (panel a) and technical replicates (panel b). The first
component (RDA1) separates buccal cells from whole-blood
and blood spots (a and b). Individual #8 is male, and RDA2
clearly separates the samples for individual #8 from the others.

Table 1. Layout of Dutch study design. All participants except P8 were female.

Individual
Number of
samples

Biological replicates (number
of days between samplings)

Technical replicate
tissue type

P1 7 2 Buccal (15), 2 Blood Spot
(15), 2 Whole (7)

Buccal

P2 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (14)

Blood Spot

P3 6 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (13)

–

P4 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (23)

Whole

P5 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (7)

Blood Spot

P6 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (28)

Whole

P7 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (7)

Whole

P8 (Male) 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (7)

Blood Spot

P9 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (21)

Buccal

P10 7 2 Buccal (14), 2 Blood Spot
(14), 2 Whole (7)

Buccal
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Nevertheless, the first two axes of the RDA projections show
that the replicates are closer to each other than to samples from
other individuals, and that the technical replicates are closer to
each other than to the biological replicates. In panel c, the
effects of tissue type and sex are removed and the technical rep-
licate agreement is re-examined, thereby clearly showing the
strong similarity between the technical replicates.

Similarly, in the samples from the Canadian study, 37 males
and 30 females are clearly separated in Figure 2 (panels a and b
using an independent random sample of 100,000 probes). All
participants gave buccal swabs, so here the most important axis
of variation, RDA1, captures differences associated with sex. In
addition to the children recruited to the MAVAN study, one
male adult individual (age: »30 years) contributed DNA for
our analysis of reproducibility, and his distinct DNA

methylation profiles are captured by RDA2 in Figure 2, panel
b. Subtle trends within the children are also associated with age
in both panels a and b. The methylation samples in the Cana-
dian study were sent for processing at three different times, and
we refer to the sets of samples analyzed simultaneously as
“batches.” There was no evidence of batch effects in the RDA
plots (data not shown). Panels c and d of Figure 2 have been
adjusted for age and sex. In panel c, it is clear that these covari-
ates no longer cluster the samples. In panel d, replicate samples
from the same individual are given the same color, and it can
be seen that the replicates cluster well. Quality metrics for all
samples were good (e.g., probe call rate >95%); yet, the propor-
tion of epithelial buccal cells did vary somewhat across samples
(median 84%, range 68% to 95%). The yellow circle at the top
of Figure 2a had the lowest proportion of epithelial buccal cells

Figure 1. RDA results in the Dutch data. Based on a random sample of 100,000 probes. The symbols represent the different tissue types and the colors differentiate the
10 individuals. a. Biological replicates: repeated samplings from the same individuals. b. Technical replicates. c. Technical replicates, where RDA analysis has been adjusted
for tissue type and sex. The only male in the sample is patient 8 (P8) represented in red.
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(68%); however, there were other samples with proportions in
the low 70% range that do not appear to be outliers. The data
were adjusted for cell type mixture variability prior to analysis
(see Methods).

Through RDA, the improvements in signal to noise associ-
ated with normalization and cell type mixture adjustments can
be clearly seen (Supplemental Figures S1 – S4 and Supplemen-
tal Table S1). For example, the total variance in the data is
reduced by about 50% relative to the raw data, and the con-
strained proportion of variance, i.e., the proportion of variance
explained by the covariates of interest, increases importantly.
For example, in the Canadian data for biological replicates, the
constrained proportion increases from 59% in the raw data to
81% after normalization and cell type mixture adjustments
(Table S1).

Agreement in estimates of methylation across replicates
using ICC

To study probe-level agreement between replicates, intra-
class correlations (ICC) are a natural choice since for a cho-
sen grouping definition, they compare agreement by
comparing between replicate group variability to within rep-
licate group variability. We calculated ICC values for each
probe, comparing samples from the same individual to sam-
ples from different individuals. In sub-analyses, we looked
at tissue types separately or in combination, and we com-
pared technical and biological replicates. Figure 3 shows
ICC distributions for the Dutch data for various tissues and
combinations of tissues. Sample sizes are very small for
some ICC calculations, since for technical replicates only 3

Figure 2. RDA analysis of Canadian study. Based on a random sample of 100,000 probes. The symbols represent the sex and colors represent the age. a. Biological repli-
cates. b. Technical replicates. c. and d. Technical replicates, where RDA analysis has been adjusted for age and sex. In c, colored by age and in d, colored by individual.
(Two samples originating from the same tissue samples of an individual will be of the same color in d).
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individuals contribute to each tissue-specific analysis. Nev-
ertheless, Figure 3 shows that for any tissue type or repli-
cate type, there is a range of ICC values between zero and
one, with most probes having low values.

For both the Dutch and Canadian studies, in Table 3, we
have summarized the proportion of probes with high values of
ICC (>0.7) both overall and among those where the standard
deviation is large (>0.1, >0.2). High ICC values are usually
seen when the probes are highly variable, i.e., when the stan-
dard deviation (SD) across the samples is large. In such situa-
tions, ICC values can be very close to 1.0. In contrast, when
probes display little inter-sample variability, then the inter-
sample differences between DNA methylation levels approach
the magnitude of background variability. In fact, such non-vari-
able probes usually have methylation levels near zero or one,
and they can form a large proportion of the CpG sites assayed
in several different tissues [30]. Arguably, these probes are not
interesting for further study if there is no variability in methyla-
tion levels. Therefore, we propose that it makes most sense to

study the probe stability among subsets of probes with large
inter-sample SDs. This filter based on SD is conceptually simi-
lar to the filter used by Edgar et al., [30] although they define
variability as a percentage change in methylation levels.

Table 3 demonstrates that ICC values are substantially
higher in the limited subsets of probes with large SD, but these
comprise a tiny percentage of all probes (between 1% to 2%).
In the Dutch data, the technical replicate ICC for probes with
SD>0.1 is substantially higher for blood spots than for buccal
cells or whole-blood; however, this comparison is based on

Figure 3. Distributions of intraclass correlations in the Dutch data. For different tissue types, combinations of tissue types, and for biological versus technical replicates,
based on a random sample of 100,000 probes selected from 449,059 probes where the maximum methylation level was lower than 0.9 and the minimum methylation
level was higher than 0.1.

Table 2. Characteristics of the Canadian study, buccal samples

Type of replicates
Number of
individuals

Number of
samples

Number of
females

Biological 67 178 30
Technical, same batch 18 36 7
Technical, Batch 1 versus 3 28 58 15
Technical, Batch 2 versus 3 26 55 13
Technical, same column on a chip 1 20 0
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only 3 pairs of each tissue type. For biological replicates within
a tissue type, the majority of probes (over 95%) have ICC values
over 0.7 when SD>0.1 in both the Canadian and Dutch studies.
When we analyzed different tissues together, the percentage of
ICC values greater than 0.7 is reduced; inter-tissue methylation
differences are to be expected.

The last column of Table 3 focuses particularly on probes
where the mean methylation level is in the middle of the
range—i.e., probes where the mean beta value lies between the
25th and 75th percentiles of the distribution of the average betas.
These probes with intermediate levels of DNA methylation
might be of particular interest for transcription factor mediated
remodeling of the DNA methylome, e.g., Stadler et al., [31] a
plausible mechanism to explain environmental influences on
the epigenome [32]. Here, we see substantially more agreement
in technical replicates than biological replicates. Furthermore,
in the Dutch study, there is more agreement among biological
replicates for buccal cells than for whole-blood or blood spots.
This may be due to less variation in cell type mixtures across
samplings.

By restricting our attention to probes with large inter-indi-
vidual standard deviations, or to those with mean methylation
levels in the 25th to 75th percentile, we are essentially focusing
on variable probes. We performed similar analyses excluding
the probes called “invariant” by Edgar et al. [30] for whole-
blood and buccal cells. In the Dutch study, we excluded the
intersection of the invariant probes for whole-blood and buccal
cells (excluding 72,981 probes), and in the Canadian study we
excluded all the invariant probes for buccal cells (excluding
120,009 probes). ICC distributions were very similar to those
seen in Figure 3 and Table 3, although slightly higher, as would
be expected (Supplement Figure S5 and Table S2).

Technical replicate stability versus biological replicate
variability using contrasts

Figure 3 and Table 3 demonstrate the challenges associated
with obtaining extremely precise measures of methylation lev-
els that are also variable across different samples using this
technology. To further explore the relationships between tech-
nical, biological, and inter-sample variability at the probe level,

we constructed contrasts of interest across replicates within
each study participant (see Methods). The resulting sums of
squared differences were normalized and transformed into F-
statistics using the residual error from complete ANOVA mod-
els containing terms for all individuals and replicate types (see
Methods section for more details on the ANOVA models).
This strategy allowed us to obtain F-statistics without requiring
the direction of change to be consistent across individuals.

Smoothed histograms of these F-statistics are shown in
Figure 4 for the two studies. Technical replicates are clearly
more in agreement than biological replicates (the F-distribu-
tions are shifted to the left); for example, a paired Wilcoxon
signed-rank test for the 485,512 probes gives P<2.2e-16 for
smaller values from whole-blood technical replicates in the
Dutch study. Buccal cells from the Dutch study look more sta-
ble than the other cell types. Results were essentially indistin-
guishable when over 100,000 probes with poor quality
characteristics or those located on X-Y chromosomes were
removed (see Methods, data not shown).

In the Canadian study, the technical replicate agreement
along a column on a single chip is dramatically better (the F-
distributions are shifted to the left) than any of the other com-
parisons; this specific contrast was constructed from technical
replicates from a single (adult) sample. This sample was split in
twenty parts and distributed on 20 chips, all analyzed in the
same batch. All positions on the chip were covered (some twice
and some only once). We tested the null hypothesis of no linear
trend across the rows of the chip. Such trends have been previ-
ously demonstrated [33]. In contrast, technical replicates in the
same batch are relatively comparable to technical replicates in
different batches. Agreement between biological replicates is
visibly reduced (shifted to the right) compared to agreement
between technical replicates in the Canadian study.

If a probe cannot measure methylation precisely, hence pro-
ducing unstable results, it should show poor technical replicate
agreement in more than one tissue or type of replicate. Since the
F-statistic contrasts were constructed to be orthogonal, we used
Fisher’s method to combine corresponding P values across con-
trasts, to obtain probe-level P values assessing stability. For the
Dutch study, we examined the overlap in probes showing evi-
dence of poor replicability via significant P values (P<0.05)

Table 3. ICC summary statistics for both studies, overall and in subgroups defined by either standard deviation (SD) or mean DNA methylation level.

Study and subset
% of ICC >0.7 out
of 485552 probes

% of ICC >0.7 when SD>0.1
(% probes with SD>0.1)

% of ICC>0.7 when SD>0.2
(% probes with SD>0.2)

% of ICC >0.7 among probes
with mean methylation
in 25–75th percentiles

Dutch study, Technical replicates
Buccal 21.644 53.64 (1.42) 83.69 (0.13) 29.42
Blood Spot 21.603 89.57 (1.10) 90.61 (0.09) 29.56
Whole 21.379 67.22 (1.31) 89.08 (0.10) 28.02

Dutch study, Biological replicates
Buccal 15.859 94.90 (1.42) 99.85 (0.13) 25.79
Blood Spot 10.157 96.85 (1.10) 99.55 (0.095) 17.43
Whole 13.948 97.38 (1.31) 99.79 (0.104) 22.96
All tissue types 1.726 72.68 (1.01) 88.79 (0.078) 3.07

Canadian study, Technical replicates
Same batch 15.283 99.12 (2.48) 99.97 (0.69) 26.08
Batch 1 versus 3 14.827 98.60 (2.50) 99.93 (0.68) 25.45
Batch 2 versus 3 15.572 99.27 (2.42) 99.90 (0.67) 27.31
All replicates 14.653 99.59 (2.37) 99.93 (0.63) 25.26

Canadian study, Biological replicates
All replicates 9.491 99.59 (2.37) 99.96 (0.63) 15.96
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across the three tissues, for technical replicates (Figure 5a). For
the Canadian study, Figure 5b displays a similar Venn diagram
of overlap between probes demonstrating instability within or
between batches across technical replicates. Using log linear
analysis, the amount of overlap seen in Figure 5 is substantially
more than expected under independence (estimated
P value = exp¡589.71 for the Dutch study and P = exp¡991.97 for
the Canadian study). We also used Kolmogorov-Smirnov tests
to compare the distribution of P values between the overlapping
probes and other significant probes from the same tissue. Most
of the distributions of P values are not significantly different,
except for the P values from whole-blood, where P values of the
probes that were significant across all three tissues types tend to
be smaller than the P values of the probes that were significant
for whole-blood. (Supplementary Figure S6 and Table S3).

To identify probes with good technical replicate stability and
yet large biological replicate variability, we filtered probes to
retain only those with technical replicate F-statistics less than
1.0 in the Dutch study. For buccal cells, 49,430 probes were
removed, 93,053 for whole-blood, and 124,398 for blood spots.

Supplementary Figure S7 shows smoothed histograms of the
biological replicate F-statistics after applying this filter, and in
fact there is little difference in the distribution of F-statistics.
We also repeated this analysis after removing the invariant
probes presented by Edgar et al. (2017) [30], and results were,
again, very similar (Supplement Figures S8 and S9).

The effects of inter-sampling time of DNA methylation
within a single tissue

Using our ANOVA-based approach, we examined the F-statis-
tics associated with each probe as a function of the elapsed time
between samplings within a single tissue. In the Dutch study,
there is a range of times between repeated samplings only for
whole-blood (Table 1) and, therefore, our analyses are
restricted to this tissue. These biological replicates were sam-
pled between 7 and 28 days apart, and we saw no relationship
with time within a tissue type (Figure 6a). However, in the
Canadian study’s buccal cell replicates, the variability of the
75th percentile of the ANOVA sums of squares (across all

Figure 4. Summary smoothed histograms of F-statistics by replicate type. An F statistic was constructed for each methylation probe and each type of replicate using
carefully constructed contrasts (see Methods section for more details). The null hypothesis for each F statistic is that the within-sample, between replicate differences in
methylation demonstrate no excess variability. a. Dutch study. b. Canadian study.
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probes) increased at longer time intervals (Figure 6b) and there
were several individuals sampled up to 576 days apart with a
notable increase in variability between replicates.

Across all probes, RDA analysis (Figure 7) shows the stron-
gest correlation between age and elapsed time effects on meth-
ylation levels. Although speculative, it appears that the effects
of age or time in the Canadian study are associated with batch,
such that several batch 2 samples are separated along RDA1.
The children analyzed in batch 2 have comparable ages to those
sampled for other batches. However, the time elapsed between
repeated samplings is shorter for comparisons between batch 2
and 3. Average elapsed times between sampling for biological
replicates was 504 days for children assessed in batches 1 and 3,
320 days for those assessed in batches 2 and 3, and 477 days for
children whose repeated samplings were both in batch 3.

In the Dutch study, there were approximately 18 months
between sampling with blood spots versus whole-blood. After
combining these two blood preparations and then calculating
ICCs, the percentage of probes with ICC>0.7 was 97.7% of
probes with SD>0.1, 14.96% of probes with means in the inter-
quartile range, and 8.5% of all probes. These values are very
similar to those in Table 3 for either whole-blood or buccal cells
when calculated separately, indicating comparable agreement
despite the change in sample preparation and the elapsed time.

We examined the overlap between probes showing signifi-
cant results in the linear regressions for elapsed time and the
probes identified by Horvath [3] as being associated with age.
The epigenetic clock is a cross-tissue predictor of biological age
that has been associated with a range of health outcomes. Out
of 4249 sites associated with time between samples (P<0.01) in
the Canadian data, there were only 3 probes in common with
Horvath’s 353 age-sensitive probes (P value = 1.0 for Fisher’s
exact test of independence). However, the interval for all

longitudinal samples collected within the Canadian study falls
within the standard error (SE) of the epigenetic clock predictor
(3.6 years). In line with this, in the Dutch study we found no
significant differences in epigenetic age or age acceleration with
longitudinal whole-blood, dried blood spot, or buccal samples.
There was a significant correlation between estimates of age
acceleration, as assessed in both whole-blood and dried blood
spots (r�0.693, P = 6.995e-4). In contrast, the correlation
between epigenetic age acceleration as determined in buccal
cells was not as strongly or significantly correlated with age
acceleration measures determined in dried blood spots
(r�0.468, P = 0.0372) or whole-blood (r�0.513, P = 0.0207).
This is not surprising since Horvath used whole-blood in devel-
oping his predictor. Note that here we defined age acceleration
as the residuals from a linear model of DNA methylation age
regressed on chronological age (as suggested by Horvath in the
FAQ of his online age calculator [3]). Furthermore, correlations
between chronological age and epigenetic age were high for all
three tissues (0.92 for buccal samples, 0.94 for blood spots, and
0.95 for whole-blood).

Variability of candidate gene DNA methylation across
individuals (OXTR, DRD2, DRD4, COMT, BDNF, and
SLC6A4—alias HTTLPR)

Figure 8 shows the –log10 P values from the F-statistics for var-
iability across probes in 6 candidate genes, for different tissues
and replicate types. In this Figure, highly replicable probes are
associated with small values on the Y-axis. At some genes, such
as DRD4 or SLC6AC, almost all F-statistics for variability (all
probes, all tissues, both technical and biological replicates) are
under 1.0, indicating good replicability. In contrast, at BDNF,
there are many probes that show poor agreement between bio-
logical replicates from blood spots.

Discussion

The present study assessed agreement between replicates in
Illumina 450K array methylation data across tissues, time,
batches, and in both technical and biological replicates. We
found expected relationships, such as more agreement for tech-
nical than biological replicates, and more agreement within,
rather than between, batches. Results did not vary much by tis-
sue type, although there appeared to be a small increase in bio-
logical stability for buccal samples. These results could suggest
that buccal cells may be a useful tissue to study variability in
DNA methylation. In sensitivity analyses (see Methods), we
repeated all analyses after excluding over 100,000 probes with
poor quality characteristics or with DNA methylation levels
near either zero or one, and found very similar results. The
number of technical replicates available in one of our two stud-
ies (the Dutch study) was small; estimates of stability would be
improved by repeating this work in larger samples, and in the
more recent EPIC array from Illumina.

The ICC measure was developed to measure inter-rater
agreement with any number of raters. The ICCs in Figure 3
span the entire range between zero and one across probes, with
many probes showing ICC values near zero. Not surprisingly,
when a probe has very little variability in DNA methylation

Figure 5. Venn diagram of overlap between probes demonstrating instability.
Number of probes showing evidence of poor replicability via significant P values
(P<0.05) a. across the three tissues for the technical replicates of the Dutch study.
b. within or between batches of the technical replicates from the Canadian study.
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Figure 6. Association between sums of squares and elapsed time. For each individual in the Dutch study (a) or the Canadian study (b), the 75th percentile, across all
probes, of the sums of squares measuring agreement is shown as a function of the time elapsed between the biological replicates. Note that we only used whole-blood
samples in the Dutch study, since it was the only tissue for which there was a range of elapsed times between repeated samplings.

Figure 7. RDA analysis of elapsed time among biological replicates based on random sample of 100,000 probes. a. Dutch study; b. Canadian study. We are looking at
the difference in DNA methylation between two samples from an individual (taken at two different time points), therefore there is only one point per individual. For panel
b, we have colored the individuals based on their age at the second time point. The shape of the symbol in panel b represents the batch corresponding to first time point
(since all samples for the second time point were collected in the third batch of analyzed samples).
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level across individuals or across time, it is difficult to achieve a
high ICC, since the inter-individual variability is of the same
order of magnitude as the error in measurement. Among
probes with more variability across individuals, the ICC values
are much higher. As has been recommended by others (see
refs. [10, 13, and 30]), it can be beneficial to restrict analysis to
only probes where the true methylation levels are variable, since
the burden of multiple testing will be reduced. However, when
we excluded either probes showing very poor technical stability
or probes identified as invariant [30], our results changed only
minimally.

ICC estimates are also strongly influenced by the estimates
of residual variability used in their calculations, and these can
be affected by experimental factors such as batch and chip (see
for example ref. [13]). Here, we have examined agreement
between methylation levels across tissues and replicate types
after use of a common normalization strategy and adjustments

for cell type mixture to evaluate probe stability after realistic
data preprocessing steps.

In our analyses, we have used two ways of assessing
probe stability. Comparing these results provides the oppor-
tunity for more sensitive or nuanced assessments of vari-
ability. Through the use of the statistical F distribution, we
could obtain P values for instability for each probe. Further-
more, by careful construction of our contrasts, results could
be combined across orthogonal comparisons to get a single
measure of probe instability incorporating several aspects,
such as different batch comparisons, different tissue types,
or different contrasts. These F-statistics give a more opti-
mistic view of the agreement than the ICCs, since most of
the F-statistics are very small, indicating good agreement
relative to background noise. Nevertheless, shifts in the dis-
tributions indicate that many probes are subtly altered
between replicates of different types.

Figure 8. Replicate agreement at 6 candidate genes in the Dutch study. Agreement is shown by -log10 P values derived from F-statistic measures of variability at 6 can-
didate genes. Each color represents a different probe in the candidate gene. The number of probes present in a gene is indicated in parenthesis beside the name of the
gene. Different types of replicates or tissues are indicated along the X-axis.
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When examining which probes are most susceptible to
change with time, the age of the participants is correlated with
the elapsed time. In the Dutch study, where samples from the
same tissue were taken only a maximum of 28 days apart, the
effects of age on DNA methylation may be expected to have
less correlation with elapsed time than in the Canadian study.
In support of this hypothesis, in Figure 7a (the Dutch study),
the second RDA component is strongly correlated with elapsed
time, whereas in Figure 7b (the Canadian study), elapsed time
has a larger contribution to variability and hence is associated
with RDA1. Also in line with our expectations, elapsed time
and age appear to be less associated in the Dutch study (based
on the wider angle between the projection arrows in Figure 7a
versus 7b). These trends were captured through analysis of
100,000 probes. Our individual probe analyses did not identify
specific probes showing sensitivity to time.

The RDA linear projection analysis method leads to excellent
graphical displays for identifying outliers or samples that are not
behaving as expected. In Figure 1c, the RDA analysis of technical
replicates where tissue type and sex have been subsumed
(adjusted for) prior to calculating the projections, RDA2 delin-
eates samples from P9 and P10. In fact, P10 was pregnant at the
time of her DNA extraction contributing to this analysis. Within
RDA, the ability to adjust for factors having known strong effects
not of primary interest (here for example, tissue type and sex)
means that factors with subtle effects may be easier to visualize.

As many others have observed, substantial batch effects can
be seen in data from the Illumina 450K array, even after imple-
menting an initial normalization step [34]. Many studies incor-
porate into their analytic pipelines complex, multi-step
adjustments for residual unexplained variability in the DNA
methylation distributions (see refs. [35,36]). These strategies
would not be appropriate here, given our sample sizes, but also
since we are explicitly studying agreement across replicates
rather than examining associations with a phenotype. Never-
theless, there is always the risk that the incorporation of many
additional covariates into models, to capture non-specific con-
founding, will also remove some of the signals that are of inter-
est. As is well known, the best approach for eliminating
confounding due to batch effects is to implement an excellent
study design upfront, where samples are allocated either ran-
domly or in a balanced way across batches and chips.

It is worth speculating on reasons for observing an unstable
probe, i.e., a probe with poor precision of measurement. Several
types of poorly-performing probes have been highlighted: for
example, probes where there are SNPs in the probe binding
region are often excluded from consideration, [37] as are
probes demonstrating non-specific probe binding. Both situa-
tions make it more difficult to interpret any results. Probes may
also be removed from analysis when the methylation levels are
not variable across individuals—methylation is always zero or
one. Probe reliability has been associated with genomic features
such as shores and islands, although this association may be
confounded by the variability across individuals [10,13]. We
were curious whether there could be additional poorly-per-
forming probes, that give inconsistent estimates of methylation
(after normalization) for unknown reasons; these probes would
be expected to show poor technical replicability in multiple tis-
sues. In the samples analyzed here, three different methods

were used for extraction of DNA; the method of extraction has
been shown to have an influence on the precision of the meth-
ylation estimates [38]. There is also the possibility that some
aspects of the probe design give rise to less reliable results.
Therefore, further studies of the stability of measures of meth-
ylation measures, whether across tissues, across DNA extrac-
tions, or by comparing probe characteristics after adjusting for
inter-sample variability, are warranted.

Methods

Studies, participants, and samples

Data were drawn from two studies:

(1) The Dutch study was conducted in the Netherlands and
is part of the Leiden Consortium Individual Development
(L-CID). DNA methylation was measured in 10 healthy
individuals (9 females, 1 male) who contributed 2–3 sam-
ples of each of whole-blood, buccal swab, and dried blood
spots [39]. Written informed consent was obtained for all
participants and the study was performed in accordance
with the Helsinki Declaration of 1975. The study included
a total of 69 samples, 23 from each tissue type. Technical
replicates were created by splitting a single extraction into
two aliquots for analysis on the 450K arrays. For each tis-
sue type, there were 3 pairs of technical replicates in the
data (i.e., 3 individuals contributed a sample that was split
for a technical replicate analysis). No individual contrib-
uted technical replicates for more than one tissue type
(Table 1). Repeated samplings from the same individual
were taken between 1 and 4 weeks apart. The plating
scheme is provided in Supplement Figure S10.

(2) The second set of replicate measurements, from Canada,
includes 93 of the children participating in the Maternal
Adversity, Vulnerability and Neurodevelopment
(MAVAN) study [40]. Ethical approval for biosampling
and molecular analyses was provided by the Douglas
Hospital Research Institute’s Institutional Review Board
and written informed consent was obtained from their
parent or legal guardian. All samples taken from the par-
ticipants in this study are buccal swabs. Some samples
were taken from the same child at different ages; these
replicates were henceforth referred to as “biological rep-
licates.” The number of days between the samplings var-
ied from 265 days to 576 days (median 498). Three
different sets of samples were sent for methylation profil-
ing at different times, referred to as batch B1, B2, and B3.
The 45 samples from batch B1 were run in February
2012, the 33 samples from batch B2 in January 2013,
and the 173 samples from batch B3 in December 2013.
Note that in this manuscript, we use “batch” to describe
these sets of samples, and not Illumina production
batches. A large set of technical replicates were also
assayed, where a single sample was split in two and ana-
lyzed, sometimes in the same batch, and sometimes in a
different batch. In total, there were replicate samples for
93 individuals from the MAVAN study, consisting of
between 2 and 4 replicates per individual. In addition,
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one adult male contributed 20 technical replicate sam-
ples to the third batch (B3) (Table 2). The number of
samples per batch and per type of replicate can be found
in Supplement Table S4.

Extraction, storage, Illumina 450K array analysis

Genomic DNA (gDNA) was extracted from dried blood spots
using the Gensolve DNA recovery kit (IntegenX) and purified
using the QiaAmp DNA micro kit (Qiagen). Buccal swabs sam-
ples were extracted using the Masterpure system (Epicentre,
USA) and whole-blood samples were extracted using Chemagic
DNA Blood Kit (Perkin Elmer). gDNA purity and concentration
was assessed using a NanoPhotometer P300 (Implen, Germany).
gDNA (750 ng) was bisulfite converted using the EZ-DNA
Methylation Kit (Zymo Research, USA) and 160 ng of bisulfite-
converted DNA was isothermally amplified at 37�C for 22 h,
enzymatically fragmented, purified, and hybridized on the Infin-
ium 450K array (Illumina, USA) [9].

Quality evaluation

First, based on Illumina’s recommendations, we evaluated the qual-
ity at different steps of the experiment by examining the control
probes for bisulfite conversion, dye bias, extension and hybridiza-
tion probes, non-polymorphic and negative controls, specificity for
type I or II probes, staining and target removal step, and summariz-
ing this information into a quality score. From the original IDAT
file datasets, one Dutch sample was excluded from the analysis
(sample_name: “10005833147_R05C02”) and two Canadian sam-
ples were excluded (WG0014691_9407201099_R04C01 and
WG0014729_9388306122_R02C01).

Normalization and transformations

We used funtooNorm [39] to normalize the methylation data
and to remove technical biases due to batch, chip, and position
while retaining inter-tissue differences. This is partially because
our data sets were small, but primarily because our goal was to
assess agreement prior to introducing any widespread align-
ments that could affect signal as well as noise.

Both the blood and buccal samples contain mixed cell types,
but the component cell types and mixture proportions differ
substantially between the two tissues. Therefore, we performed
cell-type mixture adjustment for the whole-blood and blood
spot samples using Houseman’s reference-based method [41].
For the buccal samples, we used Surrogate Variable Analysis,
which has been shown to be the best-performing method across
a range of situations [42,43]. DNA methylation values (after
cell type mixture adjustment) were shrunk slightly away from
the boundaries using the formula [(99)�B+0.5]/100 to avoid
values too close to zero or one.

Quality filtering

In the Dutch data, only 0.257% of the probes have detection
P values greater than 0.01 in at least 10% of the samples, and a
very similar value (0.220%) was seen in the Canadian data.
Since only a small number of probes would therefore be

assumed to have poor quality signals, our primary analysis
includes all probes. However, a sensitivity analysis was per-
formed excluding probes for either quality or variability. In the
Dutch data, 59,104 probes were removed due to detection P
values (>0.01 in more than 10% of the samples), bead counts
(less than 3 beads per signal in at least 10% of the samples),
and mean methylation levels (mean methylation level-2 stan-
dard deviations >0.9 or mean methylation level+2 standard
deviation <0.1 was between 0.1 and 0.9). In the Canadian data,
82,211 probes were removed (we did not have the bead count
information; the other 2 criteria were identical).

Analyses

We calculated intraclass correlations (ICCs) by fitting random
effect models where the agreement within or between individu-
als was distinguished between tissues (in the Dutch data) or
between batches (for the Canadian data). In order to calculate
the ICCs, we fit random effect models with the individual ID as
the random effect. In the case of exactly two replicates per per-
son (e.g., the technical replicates), this calculation is equivalent
to what is known as ICC1 (single raters absolute) from Shrout
and Fleiss [44]. The random effect method for calculating ICCs
is generalizable when the number of replicates is not the same
across all individuals. Any negative variance component esti-
mates were set equal to zero. For graphical purposes in Figure 3,
the ICC values are plotted only for a subset of 100,000 probes.
These were randomly selected from the probes where the mini-
mum methylation level (across samples) was greater than 0.1
and the maximum methylation level was less than 0.9.

We also performed analyses of variance with carefully con-
structed contrasts to examine which probes were more variable
in which replicate types, tissue types, or batch types (depending
on the study design). A contrast is a linear combination of vari-
ables for which the sum of the coefficients is zero and which is
designed to highlight a particular comparison between samples.
Here, we compare the methylation levels between samples
from the same individual, focusing on whether the samples rep-
resent biological or technical replicates. For each individual, we
constructed contrasts matching the samples provided. For
example, in the Canadian study, there were individuals who
provided samples at two different times, and where the second
sample was split and analyzed in two different batches (batch 1
and batch 3) for a total of three samples. For each of these indi-
viduals, we constructed a contrast to compare the biological
replicates as (-1.0, 0.5, 0.5) for (time 1 sample, first time 2 sam-
ple, second time 2 sample), and a contrast to compare the tech-
nical replicates (batch 1 versus batch 3) using (0.0, -1.0, 1.0).
Such contrasts were built for each individual separately, result-
ing in a comprehensive set of contrasts, because we are inter-
ested in the differences in methylation for a type of replicate
sample within individuals, and not in the differences in means
between individuals. All contrasts were constructed to be
orthogonal, and therefore we could obtain P values for effects
of interest—e.g., for a technical replicate contrast—by summing
the sums of squares for this contrast across individuals. This
allowed construction of F statistics allowing assessment of sta-
tistical significance for probe variability.
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For a global and visual assessment of agreement, we per-
formed canonical redundancy analysis (RDA) analysis, which
constructs projections of the data into dimensions explained by
covariates [29]. This approach combines multiple regression
and principal component analysis to establish relationships
between two sets of variables: response variables, in this case
methylation levels, and explanatory variables or covariates.
This approach was initially developed for ecological studies
[45] and was designed to quantify the effects of covariates on
high dimensional data, allowing global inference about the
covariates. Each RDA analysis was performed using a different
random sample of 100,000 probes, and when we repeated anal-
yses with different random samples of probes, similar results
were obtained (data not shown). RDA analyses were also per-
formed to compare the agreement between replicates prior to
normalization with funtooNorm, and again with data normal-
ized by funtooNorm but prior to adjusting for cell type
mixtures.

We explored the effect of time in several ways. First, we used
linear regressions. For each probe, we tested the association
between the change in DNA methylation levels and elapsed
time, adjusting for age. For both data sets, a subset of probes
showed slope coefficients that were quite large in absolute
value, suggesting that those probes may be more susceptible to
changes over time. However, this approach assumes that the
direction of change of the DNA methylation level is the same
across individuals, which may not be the case if a probe is sim-
ply inconsistent over time. Therefore, our presented results are
based on the previously described ANOVA results with specific
contrasts.

Data availability

The raw methylation measures are not available due to patient
confidentiality. However, we provide the F-statistics and the
ICC measures for different subgroupings, and for both datasets
at https://doi.org/10.5281/zenodo.996561.
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