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Abstract
Purpose of Review In order to eradicate the COVID-19 pandemic, scientists around the world have been working very hard for a
year or more with the motto of designing effective drugs and vaccines against the severe acute respiratory coronavirus 2 (SARS-
CoV-2). Along with the positive results with the antiviral drugs and a few commercialized vaccines, the unresponsiveness as well
as some side effects of such therapies have also been noticed, possibly due to the emergence of the SARS-CoV-2 variants.
Therefore, current review summarized the actual effectiveness of the antivirals and vaccines which are in current use for the
treatment of the COVID-19 patients.
Recent Findings So far, some drugs have been found with hopeful results among which remdesivir and arbidol are with
momentous clinical progress. Besides drug designing, vaccine development has been a major effort whereby the mRNA-1273
(Moderna) and BNT162b2 (Pfizer-BioNTech) vaccines showed the required efficacy and have been approved by the US Food
and Drug Administration (USFDA).
Summary While a number of existing/repurposed/repositioned or new drugs and the currently used commercial vaccines against
SARS-CoV-2 apparently seem to be effective against COVID-19 mitigation, the new variants of the virus as well as the recently
increased cases raised the doubt about the usefulness of these agents. Current review figured out the efficacy of different drugs
and vaccines in terms of their action potential against SARS-CoV-2 and further recommended some useful measures which may
be useful for future remedies.
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Introduction

Shattering of public health in a timely manner especially by
the respiratory viral infections has a long history over 100
years starting from the Russian influenza (1889–1892), the
Spanish flu pandemic (1918–1920), the Asian Influenza
(1957–1959), Hong Kong Influenza in 1968, the severe acute
respiratory syndrome coronavirus (SARS-CoV) epidemic
(2002–2003), the Middle East respiratory syndrome

coronavirus (MERS) endemic, and the running coronavirus
disease (COVID-19) pandemic since the end of December,
2019 [1, 2]. Lots of reports regarding the immunogenetics
and pathogenesis of all three types of coronaviruses are avail-
able from which the dreadfulness of the SARS-CoV-2 has
been principally projected through their long spike (S) protein
as well as the immune evasion strategy and the variant strains
which could be threatening towards the usage of current vac-
cines as well as the repurposed antiviral drugs and immuno-
modulatory agents [3–7]. So far, the dreadfulness of the
SARS-CoV-2 has been noticed through the world-wide
3,698,621 deaths of people with 171,782,908 affected cases
[8]. The immune response against SARS-CoV-2 infection of
the angiotensin-converting enzyme 2 (ACE2) expressing the
alveolar epithelial type 2 cells along the lungs mainly involves
(1) the viral escape of the host interferons (IFNs that are re-
sponsible for creating the antiviral state), thereby facilitating
the uncontrolled viral replication [3, 5]; (2) recognition of viral
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RNAs by the toll-like receptors (TLRs)-3, 7/8 (7/8,3) followed
by turning off the IFN production (although the T cells get
activated) [3••]; (3) turning on the intracellular inflammatory
pathway to generate inflammatory molecules [3]; (4) recruit-
ment of neutrophils, monocytes, macrophages, and dendritic
cells (DCs) to the site of infection creating the state of cytokine
storm, i.e., the level of interleukin (IL)-6, IL-8, and IL-12 and
the tumor necrosis factor-α (TNF-α) increases [3, 4, 6, 7]; (5)
increased level of chemokines like CXCL10, CCL2, CCL3,
and CCL5) [3••]; (6) processing of viral antigens (after entry)
by the antigen presenting cells (APCs), especially by the DCs
and macrophages through MHC for T cell activation (MHC
and the T cell receptor, TCR interaction) followed by the
immunoglobulin M (IgM), IgG, and IgA production by B
cells [2, 3]; (7) presentation of the viral antigens by the DCs
to the CD4 + T cells instigating differentiation into memory T
helper 1 (Th1), Th17, and the memory T follicular helper
(TFH) effector cells [3••]; and (8) presentation of viral anti-
gens by the virus-infected epithelial cells to the CD8 + T cells
which results in cytotoxicity together with the natural killers
(NK) cells (ending in apoptosis) (Figure 1).

Among the antivirals, camostat mesylate, favipiravir, com-
bination of lopinavir plus ritonavir, remdesivir, ribavirin,
IDX-184 derivatives, Saikosaponin, arbidol, hexamethylene
amiloride, and N220 peptide have been widely reported acting
against SARS-CoV-2 infection, while several immunomodu-
latory agents such as glucocorticoids, IL-6 antagonist,

fedratinib, combination of baricitinib plus fedratinib plus
ruxolitinib, cepharanthine plus selamectin plus mefloquine
hydrochloride, dexamethasone, Lianhuaqingwen (acting both
as immunomodulatory agent and the antiviral), and
Lianhuaqingwen (acting both as immunomodulatory agent
and the antiviral) have also been reported to mitigate the seri-
ous COVID-19 infection [6, 7]. Besides the repurposed drugs,
several vaccines are under trial with the administration stage
worldwide of which mRNA-1273 (Moderna), BNT162b2
(BioNTech/Pfizer), ChAdOx1/AZD1222 (Oxford/
AstraZeneca), JNJ-78436735/Ad26.COV2.S (Johnson &
Johnson), Sputnik/Gam-Covid-Vac (Gamaleya), NVX-
CoV2373 (Novavax), BBIBP-CorV (Sinopharm),
CoronaVac (SinoVac), and BB152/Covaxin (Bharat
Biotech) vaccines are worth to note according to the registered
trials as well as their effectiveness [2, 9–17].

Most vaccines are expected to impart protection against the
SARS-CoV-2 variants (especially in the UK and in South
Africa, known as K417N/T, E484K, and N501Y mutations
within the receptor-binding domain) based on their capacity to
elicit a fairly broad humoral and cell-mediated immune re-
sponse [18]. However, the minor mutations in SARS-CoV-2
are not even unlikely to render these vaccines unsuccessful
against COVID-19 mitigation if the variants get capable to
escape the host immunity [18, 19]. Therefore, the small
chance that conceivably may make the approved vaccines less
effective against the variants should be in kept in
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Figure 1 SAR-CoV-2 infection and host immune responses. The network between the innate and adaptive immunity as well as the humoral- and cell-
mediated immunity upon SARS-CoV-2 infection has been shown. Details are given in the text.

187Curr Clin Micro Rpt  (2021) 8:186–193



consideration, and hence the required changes in the antigenic
composition of the vaccines may be necessary. As reported
earlier, the possible inactiveness of the COVID-19 vaccines
due to the strain variations may demand new formulation or
even the seasonal vaccination [2]. Along these lines, the cur-
rent review attempted to discuss the pros and cons of the
approved drugs and vaccines which are currently applied to
alleviate COVID-19.

Major Drugs and Their Effectiveness
Against SARS-CoV-2

In quest of effective drugs for the treatment of the COVID-19
patients, determining the efficacy of the antivirals included the
in silico drug design and human studies, case-control reports
and clinical trials (including the randomized controlled trials),
clinical improvement, and the frequency of mortality,
prospective/retrospective cohort designs, drug dosage and
side effects, etc. [6, 20]. So far remdesivir, lopinavir, ritonavir,
ribavirin, arbidol, ostalmovir, and favipiravir have been found
to be effective, among which only remdesivir is the authorized
drug approved by the US Food and Drugs Administration
(FDA) for the emergency use [6, 7, 20, 21]. This is to be noted
that ribavirin was the most widely used antiviral for the treat-
ment of SARS and MERS patients; however, occurrence of
hemolysis and bradycardia accompanied with the elevation of
the alanine transferase (ALT) level and hepatic toxicity in
huge numbers of patients upon usage of this drug has been
reported as well [20, 21]. The administration of the antiviral
lopinavir as well as the combination of lopinavir and ritonavir
has been reported to elicit adversarial gastrointestinal impacts,
raise of ALT level, hypokalemia, etc. [20]. Nearly similar side
effects have been reported upon usage of favipiravir and
arbidol too [20, 22].

Generation of SARS-CoV-2 Variants

In order to understand the genetic variability among the
SARS-CoV-2, first it is worth to note that the when the virus
infects host cells, the spike (S) glycoprotein which is com-
posed of the receptor-binding subunit S1 (whose receptor-
binding domain, RBD specifically interacts with the host sur-
face receptors facilitating the viral attachment) and the mem-
brane fusion subunit S2 (fuses host and viral membranes,
releasing the viral genome into host cells) recognizes and
binds to ACE2 (is the cellular receptor of SARS-CoV-2)
[2–4, 6, 23]. The RBD plays a key factor of virus-receptor
interactions, the host ranges, and the degree of infectivity
(Figure 2) [23]. Studies on the extent of molecular differences
among SARS-CoV-2 and other related coronaviruses
unraveled that the SARS-CoV-2 can mutate which in turn
results in the several SARS-CoV-2 variants during the

ongoing pandemic as well as causing the irregular and com-
plicated impacts on COVID-19 transmissibility and severity
[23]. Since December 2019, so far more than 245,000 SARS-
CoV-2 genomic sequences have been analyzed (based on the
differences in two single nucleotide polymorphisms within the
open reading frames ORF1ab and ORF8) which revealed the
presence of only L type and S type (evolutionary older and
less aggressive) variants among which L type was more prev-
alent than S type [24, 25]. However, further analysis (based on
the amino acid changes) pondered the presence of A, B, C, V,
G, GR, GH, T, and O variants [24–26]. As an example, the
shifting from the original D614 form to the G614 variant (due
to D614G mutation which replaces glycine in the spike pro-
tein) has been recently reported which influences the SARS-
CoV-2 binding affinity to ACE2 receptor [24, 27, 28].
Another example can be drawn which is a tri-nucleotide mu-
tation (G28881A, G2882A, and G28883C) imparting two
protein-level missense mutations, generating a cluster of over
300 variants [23].

How Do the SARS-CoV-2 Variants Hinder the Actions of
Drugs?

As reported earlier, among the viral structural proteins, the
most important drug target appears to be the ACE2 receptor
(fused to an immunoglobulin Fc domain) so that the mutation
within the ACE2 receptor is very much likely to inhibit the
actions of saikosaponin (which binds to the spike glycopro-
teins and blocks the viral entry) and, arbidol, which is known
to interfere with the membrane fusion, thereby restricting viral
entry in to the host cells [6]. Moreover, the anti-ACE-2 anti-
body is known to block the viral entry and replication in Vero
E6 cells since ACE2-Fc has the capacity to neutralize anti-
body which may further inactivate the virus [6, 29, 30]. Thus,
the mutations within the ACE2 receptor discontinue the viral
neutralization by the specific antiviral drugs. The occurrence
of the intronic mutations (rs2106809 and rs2285666) may
instigate the expression and regulation of ACE2 [31].
Besides, the evolutionary genetic linkages of a number of
ACE2 polymorphisms have been reported to be linked with
the pathogenesis of numerous non-communicable diseases in-
cluding the cardiovascular disease (CVDs), hypertension, and
diabetes mellitus [31]. Within the human ACE2 (hACE-2),
amino acid sites 30–41, 82–84, and 353–357 are involved in
the interaction with the SARS-CoV-2 spike (S) protein where-
by the amino acid residues at the positions of 31, 35, 38, 82,
and 353 are of significance as they are variable; and the effect
of ACE2 variation due to the mutations/variation of these
residues has been extrapolated towards the susceptibility to
the SARS-CoV-2 [32]. Such evidences have been brought
up through the animal studies like the variation at the M82N
position in rat ACE2, M82S, and K353H mutation in mouse
ACE2 and the Y217N mutation in monkey (causing ACE2
expression to be decreased and thereby reducing the viral
entry) [32]. Thus, the changes in amino acid residues may
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result in the lower affinity towards the viral binding; and such
generic variation in the ACE2 gene can impact the suscepti-
bility towards coronaviruses [32, 33].

Along with ACE2, the RBD is also well and widely known
to be the prime target for other drugs [6, 29]. The S1-RBD:
ACE-2 interaction is usually blocked by the antiviral hesper-
idin resulting in the restriction of viral entry [6]. Hence the
mutation within the RBD sites is likely to cancel the action of
hesperidin and chloroquine [10]. As stated elsewhere, the in-
teraction between the RBD of the spike (S) protein and the
hACE-2 augments the viral fusion into the host [34]. The
positions of the amino acid residues within the S protein are
also important since their mutations may lead to the genera-
tion of SARS-CoV-2 variants [34, 35]. Within the S protein,
the extracellular N-terminus domain, the S1 subunit, the S2
subunit, the fusion peptide (FP), the heptapeptide repeat se-
quence 1 (HR1), the HR2 sequence, a transmembrane (TM)
domain spanning across the viral membrane, and an intracel-
lular C-terminal domain have been studied well [27, 36].
Indeed, the RBD within the S1 subunit binds to the hACE2
receptor; and FP mediates the anchoring of the target mem-
brane [27, 35, 36]. Thus, the S1 and FP sites are of great
interest for the study of the drug/vaccine development as they
serve as potential targets. Besides, the HR region is also im-
portant for the research on therapeutic drugs against SARS-
CoV-2 [35, 36].

Major COVID-19 Vaccines

The research and designing/development of COVID-19 vac-
cines is going on with a very high speed; and the entire vac-
cine development process including the required clinical trials
has been amazingly shortened to 15–18months instead of 10–

15 years [2, 17]. As a result, simultaneous marketing of sev-
eral vaccines has been started from the beginning of 2021 [2,
17]. So far approximately 164 candidate vaccines are in the
process of development of which 24 have been brought in the
advanced stages of vaccine development [17•]. Those vac-
cines against SARS-CoV-2 are currently under clinical trials,
whereas some of them are being administered into the target
population worldwide which have been derived from any of
the platforms of the inactivated/live attenuated viruses
(ClinicalTrials .gov identif ier NCT04412538 and
NCT04324606), virus coated or protein subunit vaccines
(representative trial NCT04405908), replicating/non-
replicating viral vectors (NCT04341389), DNA vaccines
(NCT04368988), RNA vaccines (NCT04405076,
NCT04368728), and others with the major objective to pro-
voke the elicitation of antibodies which neutralize the spike
protein of the virus [2, 9].

Major COVID-19 Vaccines Commercially Being Used

Among the major vaccines that are currently administered
among the population worldwide, the mRNA vaccines, i.e.,
Pfizer-BioNTech (BNT162b1) and Moderna (mRNA 1273)
vaccines, are under phase III trial with the observable efficien-
cy (94%) [2, 10, 11]. As reported earlier, the mRNA encoding
the spike (S) protein is protected by a submersible lipid nano-
particle; and once administered into the host, the expression of
the spike protein occurs as a result of the host immune re-
sponse as shown in Figure 3 [2]. The prophylactic DNA vac-
cine, INO-4800 is now under the phase I clinical trial
(NCT04336410), has been prepared on the basis of the
codon-optimized spike protein sequence to which an IgE lead-
er sequence is attached, and the digested DNA is included into
the expression plasmid pGX0001 resulting in the production
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of S protein reactive and the RBD-binding IgG as well as the
required T cell responses [2]. The viral vector vaccine,
ChAdOx1 nCoV-19 (Oxford/AstraZeneca), the double-
stranded (ds) DNA encoding the spike protein (kept in a safe
virus as shown in Figure 3), has been assessed in four clinical
trials across three continents, and the vaccine showed 70.4%
effectiveness after two dose administrations against symptom-
atic COVID-19 [12]. JNJ-78436735/Ad26.COV2.S (Johnson
& Johnson) also follows the similar physiology as ChAdOx1
nCoV-19 vaccine (Figure 3); and it is a recombinant,
replication-incompetent adenovirus serotype 26 (Ad26) vec-
tor vaccine which encodes and stabilizes SARS-CoV-2 spike
protein [13]. The vaccine has been found to elicit the required
immune responses including the spike (S) protein-specific re-
sponsiveness of CD4+T cells, CD8+ cells, and the T helper
cell 1 (Th1) in more than 60% cases ( NCT04436276); and the
vaccine has been found to be effective up to 72% [13].
Generation of vigorous antibody responses (neutralizing
antibodies inhibiting the virus binding to its receptor) to the
spike protein of the SARS-CoV-2 by the administration of the
Sputnik V/Gam-Covid-Vac (Gamaleya) is also made of ds
DNA encoding the spike protein which has also been ob-
served in the earlier phase clinical trials with proven efficacy
(91%) of this vaccine expressing the spike protein as shown in
Figure 3 [14].

Other Potential COVID-19 Vaccine Candidates

NVX-CoV2373 (Novavax), a recombinant SARS-CoV-2
nanoparticle vaccine (nanoparticles are coated with synthetic

spike proteins), composed of trimeric full-length spike glyco-
proteins and Matrix-M1 adjuvant has been found to elicit the
IgG anti-spike protein response as well as the secondary T-cell
responses [15]. The efficacy has been estimated up to 96%. A
scheme of such nanoparticle-based vaccine has been elucidat-
ed in Figure 4. BBIBP-CorV (Sinopharm), the chemically
inactivated (by employing β-propiolactone so that the virus
cannot replicate although the viral proteins remain intact)
SARS-CoV-2 vaccine has been reported to trigger the produc-
tion of neutralizing antibodies as well with 79% efficacy [16].
Like BBIBP-CorV, the Corona Vac (developed by Sinovac) is
another inactivated virus platform vaccine (employing β-
propiolactone) which targets the spike protein, thereby hinder-
ing the viral entry into the host cells with a 50% efficacy [17•].
On the contrary, the BBV152/Covaxin, using the same plat-
form, has been noticed with 81% efficacy in terms of immu-
nogenicity [17•].

Mutations Within SARS-CoV-2 Spike (S)
Protein and the Effectiveness of the COVID-19
Vaccines

Proper vaccination is expected to stimulate immune responses
which may neutralize SARS-CoV-2. However, the enduring
supervision has unraveled the occurrence of variants resulting
from the mutations in the viral spike (S) protein which serves
as the principal target of neutralizing antibodies [2, 6, 18, 19].
This is to be noted that even a small number of mutations may
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render the virus avoid the host protective immunity meaning
that the vaccines are ineffective [18].

Indeed, the genetic reassortment and drifting are not un-
common in the influenza viruses [1]. Similarly, in SARS-
CoV-2, such genomic changes have been identified as well
[17, 18]. Moreover, it is really arduous to determine the safety
and efficacy of the ongoing under-trial vaccines until any vac-
cine shows the full clinical effectiveness (in terms of antibody
production, T-cell response, and the elicitation of cell-
mediated immunity) in phase III considering the vaccine pri-
mary and secondary dosage, vaccine storage conditions, as
well as the underlying conditions of the individuals from a
large population [17•]. In addition, the SARS-CoV-2mutation
with a varying changeable epitope may take place which may
render the existing vaccines incompatible against SARS-
CoV-2 due to the amino acid changes in the ACE2-RBD
receptor [17, 23–25].

The study conducted by Garcia-Beltran et al. (2021) re-
vealed that 5 strains with the RBD mutations (K417N/T,
E484K, and N501Y) were extremely resistant to neutraliza-
tion by the BNT162b2 and mRNA-1273 vaccines [18]. The
adenovirus-based vaccines AZD1222 (AstraZeneca) and JNJ-
78436735 (Johnson & Johnson), the nanoparticle-based vac-
cine NVX-CoV2373 (Novavax), and the inactivated protein
vaccine Cor also revealed the decreased efficacy due to muta-
tions within the viral spike (S) protein [18]. Considering such
mutations and the therapeutic possible vaccine-resistant
SARS-CoV-2 variants, Kruse (2020) proposed the ACE2-Fc
therapy which is capable to repel the viral entry using a solu-
ble version of the viral ACE2 receptor fused to an

immunoglobulin Fc domain (ACE2-Fc) [30]. Such therapy
is expected (1) to deliver a neutralizing antibody which can
avoid any viral escape with the concomitant recruitment of the
host protective immune cells for long term, (2) to augment the
decreased ACE2 levels along the lungs during SARS-CoV-2
spread, and (3) thus to directly mitigate the acute respiratory
distress syndrome (ARDS) [30].

Conclusion

Although the results of the randomized clinical trials of the
currently used vaccines as well as some repurposed drugs
seem to be operative among the COVID-19 patients, re-
searchers require to employ continuous surveillance to ob-
serve the long-term immunity as well as the safety concerns.
Because of the growing variants of SARS-CoV-2, substituting
the existing vaccine’s spike (S) protein with the redecorated
molecule for achieving the necessary changes in specific ami-
no acid or by inserting newfangled molecule(s) to the prevail-
ing vaccine formulation may be an effective strategy to main-
tain the sustainability of the vaccines’ potential against the
new SARS-CoV-2 strains. Constant genomic analysis togeth-
er with watching the host protective immunity against the new
variety of the vaccine(s) against the emerging variants may
improve designing new vaccines with required modifications,
i.e., swapping the currently used vaccine’s spike protein with
a remodeled molecule consisting of new amino acid or other
novel molecule(s) resulting in a multivalent vaccine may be
operative against the new variants of SARS-CoV-2.
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