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Abstract

Mental disorders are common health concerns and contribute to a heavy global burden on our modern society. It
is challenging to identify and treat them timely. Neuroimaging evidence suggests the incidence of various psy-
chiatric and behavioral disorders is closely related to the atypical development of brain structure and function.
The identification and understanding of atypical brain development provide chances for clinicians to detect
mental disorders earlier, perhaps even prior to onset, and treat them more precisely. An invaluable and neces-
sary method in identifying and monitoring atypical brain development are growth charts of typically developing
individuals in the population. The brain growth charts can offer a series of standard references on typical neu-
rodevelopment, representing an important resource for the scientific and medical communities. In the present
paper, we review the relationship between mental disorders and atypical brain development from a perspective
of normative brain development by surveying the recent progress in the development of brain growth charts,
including four aspects on growth chart utility: 1) cohorts, 2) measures, 3) mechanisms, and 4) clinical transla-
tions. In doing so, we seek to clarify the challenges and opportunities in charting brain growth, and to promote
the application of brain growth charts in clinical practice.
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Introduction

Mental disorders, including but not limited to depres-
sion, anxiety, bipolar disorder, and schizophrenia, are
common health concerns worldwide. According to the

World Health Organization (WHO), the lifetime preva-
lence of mental disorders is high as 18.1–36.1% (Inter-
Quartile Range; Kessler et al., 2007a). Beyond cognitive
and psychological symptoms, individuals with mental
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disorders are also at increased risk of physical illness
(Whiteford et al., 2013). More than 1 billion people glob-
ally were affected by mental and addictive disorders in
2016, which accounted for 7% of the global burden of
disease (Rehm and Shield, 2019). Despite these stagger-
ing costs to both individual patients and our global com-
munity, the actual burden of mental disorders is likely
underestimated, in part due to overlap between psychi-
atric and neurological diagnoses and the grouping of
suicide and self-harm as a separate category (Vigo et al.,
2016). Moreover, it is reasonable to speculate that the
number of people suffering from mental disorders has
increased in recent years due to the COVID-19 pandemic
as well as political, economic, and climate crises (Khan
et al., 2020; Boden et al., 2021).

While identifying mental disorders and their associ-
ated risks is of great significance for disease interven-
tion and global burden relief, it is also challenging. In
general, diagnosis of mental disorders is largely based
on psychological evaluations, self-report questionnaires
and surveys, or cognitive tests (e.g. processing speed
and working memory tests). However, as highlighted by
Philip Shaw (2016), psychiatric symptoms do not always
associate with cognitive deficits. Psychological diagnos-
tic approaches may not be sufficient in assessing the
mental disorders, and more direct biologically focused
measures are needed. As the term suggests, mental dis-
orders are diseases of the mind, and for the past several
decades there has been a concerted effort on the part
of scientists to understand the neurobiological bases.
Progress in this area suggests the incidence of various
psychiatric and behavioral disorders is closely related to
the atypical development of brain structure and func-
tion (Stoner et al., 2014; Kahn et al., 2015; Wakschlag et
al., 2018). For example, abnormal structure and func-
tion in major cortical nodes of the salience network, a
large-scale brain network theorized to support the detec-
tion and filtering of stimuli from the environment (See-
ley et al., 2007; Power et al., 2011), have been observed as
common neurobiological substrates across a broad spec-
trum of psychiatric disorders and their available treat-
ments, especially the dorsal anterior cingulate cortex,
anterior insula, and the cortico-striato-thalamo-cortical
loop (Peters et al., 2016). Research on major depressive
disorder showed disrupted network connectivity in the
default mode network and the central executive net-
work (Brakowski et al., 2017). Studies on patients with
schizophrenia implicated frontal, temporal, and mesos-
triatal brain regions as key circuits in the development of
positive, negative, and cognitive symptoms (McCutcheon
et al., 2020).

The rates of many mental disorders increase during
adolescence (Lee et al., 2014). Anxiety disorders like pho-
bias and separation anxiety begin in childhood. Other
anxiety disorders, including panic, generalized anxiety,
and post-traumatic stress disorder, with onsets in the
early teens (Kessler et al., 2005; Kessler et al., 2007b;
Paus et al., 2008). Adolescence is a period of formative
biological and social transition, which is sensitive for

sociocultural processing (Nolen-Hoeksema and Girgus,
1994; Casey et al., 2008). During this period, multiple brain
areas undergo both structural changes and functional
reorganization (Blakemore and Mills, 2014). By measur-
ing cortical thickness, the thickness of the grey matter
ribbon surrounding the cortical sheet, and intracortical
myelination of individuals aged 14–24 years, Whitaker
et al. (2016) found that adolescent cortical myelination
and shrinkage were coupled and associated with the
synaptic-, oligodendroglial- and schizophrenia-related
gene expression. Therefore, developmental variation of
genetically patterned process of anatomical hubs may be
relevant to cognitive and behavioral changes, as well as
the high incidence of schizophrenia during human ado-
lescence. A pattern of results which echoes prior work
indicating that schizophrenia usually begins in late ado-
lescence (Gogtay et al., 2011). Mental disorders with child-
hood or adolescent onsets tend to be more severe, unde-
tected in the early stage, and may accrue additional co-
morbid disorders (Paus et al., 2008). High-resolution neu-
roimaging provides an unprecedented window into the
brain development, and can even provide reliable mea-
surement of abnormal conditions before the appearance
of clinical signs. If researchers can generate maps that
link across diverse neural and cognitive states, clinicians
will be able to leverage these discoveries to detect mental
disorders earlier, perhaps even prior to onset, and treat
them more precisely.

When it comes to the application of neuroimaging
methods in the clinical practice of adolescent mental dis-
orders, a major problem is the lack of population-level
references that characterize normal brain development.
A necessary step in the identification and study of atyp-
ical brain development is the establishment of growth
charts for typical individuals in the population. More-
over, developmental trajectories can be used to detect
the presence of sensitive periods and monitor the impact
of environments and interventions on development (Di
Martino et al., 2014a). While the research on the trajecto-
ries of healthy brain development is still in its infancy,
researchers in this area can learn from the more than
200 years’ study of physical growth charts. Growth charts
now provide detailed descriptions of the developmen-
tal process and velocity in a host of physical attributes,
including height, weight, and head circumference across
both groups and individuals. They are important tools
in child health screening and pediatric clinical work-up,
often conceptualized as a “road to health” (Cole, 2012).
If growth charts of brain were available to the broader
scientific and medical communities, studies focused on
atypical brain development would gain standard refer-
ences. It is conceivable that the efficiency of mental dis-
orders diagnosis can be largely improved with the help
of typical brain growth charts, which would be a great
achievement in brain science. The construction of brain
growth charts was limited by technologies in the past,
but now the recent convergence of new imaging tech-
nologies and the increase of computational resources
make it possible. Advances in Magnetic Resonance
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Imaging (MRI) provide opportunities to safely measure
and map the structure and functional networks of
human brain. Leveraging this approach, developmental
neuroscientists have recently begun to establish brain
growth charts (Dong et al., 2020), seeking to generate nor-
mative development curves across the lifespan (Ziegler et
al., 2014; Marquand et al., 2016; Zuo et al., 2017; Reardon et
al., 2018; Nobis et al., 2019; Bethlehem et al., 2021; Ruther-
ford et al., 2021; Liu et al., 2021).

A host of modeling methods can be employed to chart
brain growth, typical of which are Generalized Linear
Mixed Modelling (GLMM), Generalized Additive Mixed
Modelling (GAMM), and Generalized Additive Models
for Location, Scale, and Shape (GAMLSS) (Rigby and
Stasinopoulos, 2005; Zuur et al., 2009; Stasinopoulos et
al., 2018), but the comparison of statistical models is not
the purpose of this review, and detailed discussion can
be found in previous literature (McArdle and Hamagami,
1992; Rigby et al., 2013; Anderson et al., 2019; Ramires
et al., 2021). For brain growth chart research, the core
aim is to build high-quality brain development cohorts
of children and adolescents, quantify them reliably, and
explore the corresponding developmental mechanisms.
If successful, this work would allow for the establish-
ment of reliable brain growth charts for clinical applica-
tion. In the present paper, we review the recent progress
in the development of brain growth chart from four
key aspects including 1) cohorts, 2) measures, 3) mech-
anisms, and 4) translations of brain development (see
Fig. 1 for a general framework). In doing so we seek to
clarify the challenges and opportunities in developmen-
tal neuroimaging as we build towards a thorough under-
standing of brain development.

Cohorts

Brain growth charts must be built on data from represen-
tative samples. Primary growth data and related infor-
mation of WHO child growth standards 2007 comes from
8 440 individuals with diverse ethnic and cultural back-
grounds, including Brazil, Ghana, India, Norway, Oman
and the United States (USA) (WHO, 2009). The refer-
ence data of USA growth charts built by Centers for
Disease Control and Prevention (CDC) comes from five
big national survey data sets (Kuczmarski et al., 2002).
In China, the commonly used development reference
standard in clinical practice is derived with the data
of 94 302 healthy individuals aged 0–19 in nine cities
which represent north, central, and south China (Li et al.,
2009). The selection of representative samples is a crucial
and challenging problem. The UK Biobank, a population-
based cohort, collects extensive phenotypic and geno-
typic detail from over 500 000 participants (Sudlow et al.,
2015). However, the representativeness of the UK Biobank
cohort was questioned as Fry and colleagues reported a
“healthy volunteer” selection bias in UK Biobank (Fry et
al., 2017). For sampling in typical development studies,
it is necessary not only to extend sample size, but also
to select individuals strategically. For example, control

the female/male ratio, recruit participants with diverse
family economic and parents’ educational levels from
diverse areas, since these factors may potentially affect
the trajectories of individual development (Hanson et al.,
2013; Ingalhalikar et al., 2014; Noble et al., 2015).

Another major consideration for the establishment of
growth charts is their longitudinal nature. While cross-
sectional research only yields age-related individual dif-
ferences across a population rather than the dynamic
development processes within an individual, longitudi-
nal studies can help to circumvent common develop-
mental inferential errors derived from cross-sectional
data (Baltes, 1968; Kraemer et al., 2000; Howell et al., 2019).
Despite include some cross-sectional data, a key compo-
nent for the construction of WHO child growth standards
is a longitudinal cohort, in which children were exam-
ined in a sequence of 21 visits starting at birth and end-
ing at 24 months of age which allowed the detection of
growth velocity (WHO, 2009). The recommended inter-
national fetal growth standards by INTERGROWTH-21st

Project for the clinical interpretation of routinely taken
ultrasound measurements are also built on the basis
of fetal longitudinal study following the prescriptive
WHO approach (Papageorghiou et al., 2014; Ohuma et al.,
2021).

Therefore, it is important for developmental neurosci-
entists to recruit representative participants and gather
data from them repeatedly over an extended period
when constructing growth charts, including brain growth
charts. Several large-scale and multi-modal neuroimag-
ing cohorts that are suitable for the construction of brain
growth charts have been built (Volkow et al., 2018; Liu et
al., 2021), table 1 reflects a non-exhaustive list of typi-
cal brain development cohorts from prenatal to young
adults. These cohorts cover a diverse set of healthy
individuals and reflect important contributions for the
construction of brain growth charts, explorations of
developmental underpinnings, as well as genetic and
environmental factors that may influence health across
the lifespan. Since the longitudinal nature is preferred in
the research of brain growth charts, the following briefly
introduces several representative longitudinal develop-
ment cohorts from different countries/regions, which
involve different study designs, extensive age range, and
various development measurements.

The Generation R Study, started from 2002, is
a prospective population-based cohort study that is
designed to identify environmental and genetic factors
of growth and health from the fetus to early adult-
hood with an integrated epidemiological, clinical and
basic research approach (Hofman et al., 2004). A total
of 9 778 mothers with a delivery date from April 2002
to January 2006 were enrolled. General follow-up rates
of children until 4 years old exceed 75% (Jaddoe et
al., 2007; Jaddoe et al., 2010). Since 2009, 6–8-years old
children from the Generation R Study were invited to
participate MRI scanning (White et al., 2013). And all
children and their parents were re-invited when chil-
dren were 10, 13 and 16 years old (Kooijman et al.,
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Figure 1: Brain growth charts and utilities. Key components of building a growth chart are illustrated as circles around a growth chart on brain
volume. The four components (measure, cohort, mechanism, and translation) are seamlessly integrated into a growth chart model. A cohort is
built to characterize individual differences in brain development across a certain age range (e.g. the school age). The cohort must include large
enough and representative samples using reliable measures of the brain to achieve a valid growth chart. This chart can serve as a fundamental
resource for mechanism discovery of brain development as well as its translations into clinical and educational conditions. A growth chart is
also a ‘road to health’. The centered brain growth chart is developed based on the Chinese Color Nest Project cohort (Liu et al., 2021), consisting
of a series of seven centile curves (98%, 90%, 75%, 50%, 25%, 10%, 2%) of brain volume for Chinese Han girls from childhood to adolescence (5–18
years old). Individual brain volume measurements can be expressed as centiles by plotting them on the chart. An individual centile indicates
her brain volume, and the distance she has traveled along the growth road up to that age. It quantifies the volume/distance in terms of the
centile (low versus high). The rate at which a girl grows is termed velocity and can be expressed either in measurement units (e.g. ml/year) for
brain volume velocity, or alternatively in terms of centile change over time. The first form is the slope of the individual’s growth curve on the
chart, while, for the second, a growth curve that tracks along the centiles over time corresponds to average velocity, while if the curve crosses
centiles up or down the individual is growing faster or slower than average. More details of the development of growth references and growth
charts can be found in (Cole, 2012).

2016). In 2017, a new cohort study “Generation R Next”
was launched. The Generation R Study ubiquitously cap-
tures the growth and development of children. MRI scan-
ning allows scientists to investigate developmental neu-
robiological trajectories of children and to explore the
relationship between atypical development and physical
and/or psychological health, provides a comprehensive
dataset for developmental neuroscience community. For
instance, by investigating data from the Generation R
study, Muetzel et al. (2018) reported that higher base-
line ratings for psychiatric symptomatology could pre-
dict smaller increases in both subcortical gray matter
volume and global fractional anisotropy over time but
the reverse relationship did not hold. Therefore, future
neuroimaging studies should additionally explore the
possible downstream effects of psychopathology on the

brain, instead of being limited to explaining the brain
differences observed in psychopathology as an under-
lying neurobiological substrate. Similar long-term lon-
gitudinal development cohorts have been built by other
countries, such as the Growing Up in Singapore Towards
healthy Outcomes (GUSTO) cohort (Soh et al., 2013; Qiu,
2020) and the FinnBrain cohort (Karlsson et al., 2018). Dif-
ferent from the Generation R study, these cohorts imaged
children longitudinally from birth.

The Adolescent Brain Cognitive Development (ABCD)
study is the largest longitudinal study of adolescent brain
development and health in the USA. It aims to establish
a unique database of adolescent brain and cognitive
development, tease apart the biological and environ-
mental factors that influence or alter developmental
trajectories and to answer the pressing public health
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Table 1: A non-exhaustive summary of typical brain development cohorts from prenatal to young adults.

Longitudinal Starting Age Follow-up Duration Country Website and/or References

Generation R Prenatal From 2002∗ Netherlands https://generationr.nl (Hofman et al., 2004; White
et al., 2013)

GUSTO Prenatal From 2009∗ Singapore https://www.gusto.sg (Soh et al., 2013)
FinnBrain Prenatal From 2010∗ Finland https://sites.utu.fi/finnbrain (Karlsson et al., 2018)
HBCD Prenatal 10 years USA https://www.nimhd.nih.gov/programs/collab/

HBCD-study
YOUth-B&C Prenatal 6 years Netherlands https://www.uu.nl/en/research/youth-cohort-study

(Onland-Moret et al., 2020)
DCHS Prenatal 5 years South Africa http://www.paediatrics.uct.ac.za/scah/dclhs (Donald

et al., 2018)
CBD 6–12 years 1 year China (Fan et al., 2021; Lei et al., 2021)
devCCNP 6–18 years 2.5 years China http://deepneuro.bnu.edu.cn/?p=163 (Yang et al., 2017;

Liu et al., 2021)
cVEDA 6–23 years 1 or 2 years India https://cveda-project.org (Sharma et al., 2020; Zhang

et al., 2020)
YOUth-C&A 8–10 years 6 years Netherlands https://www.uu.nl/en/research/youth-cohort-study

(Onland-Moret et al., 2020)
ABCD 9–10 years 10 years USA https://abcdstudy.org (Barch et al., 2018; Casey et al.,

2018; Volkow et al., 2018)
Dev-CoG 9–14 years 3 years USA http://devcog.mrn.org (Stephen et al., 2021)
NCANDA 12–21 years 3 years USA http://www.ncanda.org/index.php (Brown et al., 2015)
IMAGEN 14 years From 2010∗ UK Germany

France Ireland
https://imagen-europe.com (Schumann et al., 2010;

Mascarell Maričić et al., 2020)

Cross-Sectional Age Range Subject N Country Website and/or References

PING 3–20 years 1493 USA (Jernigan et al., 2016; Taquet et al., 2021)
HBN 5–21 years 10 000 USA https://healthybrainnetwork.org (Alexander et al.,

2017)
NKI-RS 6–85 years > 1000 USA https://fcon 1000.projects.nitrc.org/indi/pro/nki.html

(Nooner et al., 2012)
PNC 8–21 years 1445 USA https://www.med.upenn.edu/bbl/philadelphianeurod

evelopmentalcohort.html (Calkins et al., 2015;
Satterthwaite et al., 2016)

Mixed Age Range Subject N Country Website and/or References

BCP 0–5 years ∼ 500 USA https://www.humanconnectome.org/study/lifespan-
baby-connectome-project (Howell et al., 2019)

NIH Pediatric 0–18 years ∼ 500 USA (Evans, 2006; Almli et al., 2007; Walker et al., 2016)
HCP-D 5–21 years > 1300 USA UK https://www.humanconnectome.org/study/hcp-lifesp

an-development (Harms et al., 2018)

Note. The design classification is only applicable to neuroimaging measurements. Accelerated longitudinal cohorts are classified as longitudinal cohorts, and all mixed

cohorts have clear cross-sectional and longitudinal portions. Asterisk indicates that this is an ongoing cohort, and how long the follow-up would last is not clear.

questions about adolescent development (Barch et al.,
2018; Volkow et al., 2018). The ABCD study plans to recruit
10 000 participants aged 9–10 years across 21 sites in
the USA for at least 10 years of follow-up. All partici-
pants received comprehensive measurements of brain
development, health biomarkers, cognitive function,
substance abuse, family, and environmental factors. MRI
was used to assess human brain function and struc-
ture development every two years (Casey et al., 2018).
Baseline tests of ABCD have yielded some important
discoveries. For instance, resting state functional con-
nectivity patterns predict individual-differences in
neurocognition (Sripada et al., 2020), brain acti-
vations found in the task functional MRI (fMRI)
(Chaarani et al., 2021) are consistent with the published
literature, and brain structure have incremental validity

for associations with psychopathology in youth (Mat-
toni et al., 2021). With the progress of ABCD study, it
is possible to demystify the longitudinal changes dur-
ing adolescent brain development and corresponding
regulatory factors, and chart typical brain development
trajectories across the second decade in life. Despite
the valuable nature of these data, interpretive issues
have arisen regarding aspects of the ABCD baseline
brain function study (Chaarani et al., 2021). In brief, the
reported effect sizes in the ABCD functional tasks show
subtle correlations with preformance on those tasks,
which may damage the validity (see also Kennedy et
al., 2021). While the cause of this issue is not yet clear,
it illustrates the importance of experimental design
and assocaited analytic approaches in developmental
neuroimaging, calling for a unfied measurement theory

https://generationr.nl
https://www.gusto.sg
https://sites.utu.fi/finnbrain
https://www.nimhd.nih.gov/programs/collab/HBCD-study
https://www.uu.nl/en/research/youth-cohort-study
http://www.paediatrics.uct.ac.za/scah/dclhs
http://deepneuro.bnu.edu.cn/?p=163
https://cveda-project.org
https://www.uu.nl/en/research/youth-cohort-study
https://abcdstudy.org
http://devcog.mrn.org
http://www.ncanda.org/index.php
https://imagen-europe.com
https://healthybrainnetwork.org
https://fcon_1000.projects.nitrc.org/indi/pro/nki.html
https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html
https://www.humanconnectome.org/study/lifespan-baby-connectome-project
https://www.humanconnectome.org/study/hcp-lifespan-development
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across multiple disciplines. A point we elaborate on in
the Measures section.

Different from the single longitudinal design, the
Chinese Color Nest Project (CCNP) is an accelerated
longitudinal cohort which tracks individuals at differ-
ent initial ages and enables the detection of a larger
age range in a shorter period of time. CCNP aims to
accumulate psychological, behavioral and brain imag-
ing data from 6–90 year-old Chinese and hence to estab-
lish the norm of the Chinese human brain. CCNP com-
prises three phases: devCCNP, matCCNP and ageCCNP.
As the development component of CCNP, the devCCNP
has been implemented in two cities (Chongqing and Bei-
jing), and it would be carried out in more areas of China
in the future. Started in 2013, devCCNP has success-
fully acquired CCNP-Southwest University (CCNP-SWU)
samples. All participants aged between 6–18 years. The
follow-up period of each participant is 30 months after
the start of the study, including MRI scans and cognitive
behavior tests at three time points (baseline, follow-up
1 and follow-up 2). The follow-ups were carried out in
the 15th and 30th month respectively (Yang et al., 2017).
Following the same study design, this project is con-
tinuing in Beijing currently (Liu et al., 2021). Using data
from devCCNP, Dong et al. (2020) established age-normed
brain templates for children and adolescents at one-
year intervals and the corresponding growth charts. They
also compared the brain templates and growth charts
between Chinese and USA school-age participants and
indicated that brain growth standards are, in part, eth-
nicity dependent. Furthermore, Zhou et al. (2021) charted
the amygdala developmental curves of children and ado-
lescents in devCCNP and compared different segmen-
tation measurements with the manual tracing method.
These two studies have important implications in pro-
moting the methodology development of the reliability
and validity in brain development research, which are
detailed in the next section.

Measures

To build a powerful brain growth chart and apply it
for clinical auxiliary diagnosis, the prerequisite is to
ensure that the selected measurements are valid. In
the measurement of individual difference, reliability is
a necessary condition for validity (Xing and Zuo, 2018).
Reliability is a relative metric involve both the between-
subject and within-subject variability. When the variabil-
ity within subjects is smaller than that between sub-
jects, it is easier to identify different individuals, and
makes the measurement more reliable (Xing and Zuo,
2018; Zuo et al., 2019). The range of reliability varies
largely in different fields. By contrast, the reliability
coefficient of WHO anthropometric measurements for
constructing the growth charts including length, height
and arm circumference is above 95% (Group, 2006), while
the reliability of general neuroimaging measurements
with fMRI is considerably lower (Zuo and Xing, 2014). The

low-reliability problem in neuroimaging has been over-
looked in the past decades. With the increasing demand
for the transformation of neuroimaging research results
into clinical practice, there is a growing consensus that
reliability should be a primary concern. In order to
achieve high reliability of human brain measurement,
the measurement targets, tools, and metrics should be
considered.

The average statistical power of neuroscience
research is low, which reduces the probability to
detect true effect (Button et al., 2013). In determinations
of statistical power, reliability, sample size, and effect
size interplay with each other. When the reliability of
MRI metrics is limited by available methods, a large
sample size is required to enhance the statistical power
(Zuo et al., 2019). However, heavy financial burden
and the public bias on the safety have limited the
sample size of MRI research studies (Poldrack et al.,
2017). Fortunately, neuroscientists have made a lot of
efforts in popularizing open science, which make it
easier to obtain the large sample of MRI data. Here,
pioneering attempts include aggregating MRI data from
laboratories around the world (Biswal et al., 2010) or
building large-scale national projects and carrying
out associated data sharing, such as the ABCD study
(https://abcdstudy.org), Human Connectome Project
(HCP) (https://www.humanconnectome.org), and UK
Biobank (https://www.ukbiobank.ac.uk). Specially, HCP
contains the test-retest dataset for the research on
reliability (Van Essen et al., 2013). The Consortium for
Reliability and Reproducibility (CoRR), initiated in 2014,
was built to establish test-retest reliability as a standard
for methods development in human brain connectome.
Typical resting state fMRI data from 18 international
sites were opened freely, enabled researchers to estimate
reliability and reproducibility (Zuo et al., 2014). Promis-
ingly, Granville J. Matheson (2019) proposed a method
that can make better use of results from previously
published test-retest studies to enhance the reliability
of new studies. Transferring this method to neuroimag-
ing research will greatly improve the use efficiency of
test-retest datasets, and the future research designs will
be better guided.

In a previous commentary (Xing and Zuo, 2019), we
pointed out “to do a valid job, we must make tools
reliable first”. “Tools” include the approaches investi-
gators use to estimate reliability and the methods to
collect and analyze data. Improper use of reliability
assessing method may result in misleading conclusion.
Intra-Class Correlation (ICC) (Shrout and Fleiss, 1979) is
one of the most frequently used methods to evaluate
reliability in neuroimaging which quantifies the ratio of
within-subject variance to across subject variance. The
interpretation of ICC must follow the strict Gaussian
assumption. However, in practice, some researchers may
overlook this prerequisite. A recently proposed method,
named discriminability, defined as the fraction of
frequency at which the similarity across-subject mea-
surements is smaller than similarity within-subject

https://abcdstudy.org
https://www.humanconnectome.org
https://www.ukbiobank.ac.uk
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measurements, can assess the reliability of multivari-
ate data more flexibly and be used to any stage of data
processing (Wang et al., 2020). This method is based
on nonparametric energy statistics (Rizzo and Székely,
2016) and kernel mean embeddings (Muandet et al., 2016)
approaches, and it is equivalent to ICC under the Gaus-
sian assumption for univariate data (Wang et al., 2020;
Bridgeford et al., 2021; Milham et al., 2021). Methods of
data collection and analysis can contribute to low relia-
bility in neuroimaging studies. Taking MRI as an exam-
ple, anatomical MRI (aMRI), fMRI, and diffusion MRI
(dMRI) form the common modalities of MRI, and their
reliabilities are quite different. Usually, results of aMRI
and dMRI studies have higher reliability as their met-
rics have explicit structural basis in macro or micro
level. Prior work on the evaluation of brain morphol-
ogy’s test-retest reliability indicate almost perfect reli-
ability of thickness, gyrification and fractal dimension-
ality measures (Madan and Kensinger, 2017), and dMRI
metrics have also been shown high stability in neonates,
healthy adults and chronic stroke patients (Boekel et al.,
2017; Merisaari et al., 2019; Lewis et al., 2020). Conversely,
the reliability of fMRI remains a concern. Meta-analyses
have revealed poor overall reliability of fMRI-derived seed
connectivity and common task activation measures, sug-
gesting a long way to go for the implementing trans-
lations of the common task-fMRI measures into brain
biomarker discovery or individual-difference research
(Noble et al., 2019; Elliott et al., 2020).

Many factors can undermine the reliability and valid-
ity of MRI studies. For example, the low-frequency physi-
ological phenomena may influence the signal of resting-
state fMRI, and after correcting for the pressure of
end-tidal CO2 fluctuations, the reproducibility of the
resting-state fMRI measures improved significantly
(Golestani et al., 2017). The toolboxes, algorithms or
templates used for data preprocessing and analysis can
also introduce errors. Zhou et al. (2021) observed system-
atic distinctions in amygdala volumes between manual
and automatic segmentation approaches. Regarding
manual segmentation as the “gold standard”, FreeSurfer
estimated larger amygdala, volBrain underestimated
the amygdala volume, and FSL demonstrated a mixed
pattern. Accordingly, it is perhaps unsurprising that
growth trajectories of amygdala built by different meth-
ods exhibited different shapes. Nuisance regression
during data preprocessing can result in extra nuisance
(Hallquist et al., 2013; Chen et al., 2017). When band-
pass filtering of resting state fMRI data is followed by
nuisance regression of unfiltered signals, the functional
connectivity would be inflated systematically (Hallquist
et al., 2013). Further more, Dong and colleagues (2020)
confirmed the difference in morphological characteris-
tics and volumetric growth between the Chinese and
USA children across school ages. These data highlight
the necessity of both age-specific and ethnicity matched
brain templates to account for population-level shifts
in developmental trajectories. Different metrics in dif-
ferent space have diverse reliabilities too. Generally, the

reliability of surface-based (2D) metrics are higher than
that of volume-based (3D) metrics (Ghosh et al., 2010;
Tucholka et al., 2012). Independent component analysis
with dual regression, local functional homogeneity,
and functional homotopic connectivity are more reli-
able than degree centrality, eigenvector centrality, and
functional connectivity (Zuo and Xing, 2014).

How can we conduct more reliable functional connec-
tomics studies? Comparing the measurement reliability
in functional network neuroscience systematically, Jiang
et al. (2021) suggested that using a whole brain parcel-
lation to define network nodes, constructing functional
connectome in multiple slow frequency bands, optimiz-
ing topological economy of networks, and characteriz-
ing information flow are highly desirable for the reliable
individual difference measurement. In addition, exper-
imental psychology and neuropsychology approaches
may not suitable for the direct study of individual dif-
ferences in brain function (Hedge et al., 2018). Elliott et
al. (2021) proposed four critical strategies for the relia-
bility enhancement of fMRI, including “extended aggre-
gation, reliability modeling, multi-echo fMRI (ME-fMRI),
and stimulus design”. Specifically, researchers should 1)
prolong the scanning time in studies as reliability can be
greatly improved by increasing scanning time (Birn et al.,
2013; Taxali et al., 2021); 2) develop reliable mathemati-
cal models for specific brain functions, such as models to
predictive or discriminate special disorder-related brain
features (Marquand et al., 2016; Wolfers et al., 2018; Mar-
quand et al., 2019; O’Muircheartaigh et al., 2020; Taxali et
al., 2021); 3) utilize multiple echoes to separate nuisance
physiological signal from the signals of interest, includ-
ing head motion, cardiopulmonary physiology, or other
types of imaging artifact (Lombardo et al., 2016; Kundu
et al., 2017); and 4) optimize the stimulus and design
new fMRI tasks which can measure individual difference,
instead of using traditional group-targeted tasks (Elliott
et al., 2020).

Last but not least, large-scale cohorts are usually
established by pooling of multi-site data. However,
inconsistent platforms will introduce systematic differ-
ences that distort the image information, lead to spuri-
ous results, and thus damage reliability severely (Focke
et al., 2011; Chen et al., 2014). Even when standardizing
protocols and image acquisition parameters are used,
the site effects cannot be totally removed (Glover et al.,
2012). Several statistical models have been put forward
to control site effects (Jovicich et al., 2006; Chen et al.,
2014; Fortin et al., 2017). ComBat, a technique adopted
from batch-effect correction in genomics, performs great
in removing unwanted inter-site variability in multi-
modal MRI data, including dMRI maps (Fortin et al., 2017),
cortical thickness (Fortin et al., 2018), as well as func-
tional connectivity measurements (Yu et al., 2018). Other
attempts at reducing site effects include the improved
ComBat method (Yamashita et al., 2019; Maikusa et al.,
2021) and meta-analytic approach (Koshiyama et al.,
2020). With the development of new study frameworks
and methodology, we can imagine a future in which
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highly reliable laboratory neuroimaging results are used
to construct brain growth charts and guide clinical prac-
tice.

Mechanisms

Brain growth charts can quantify and display human
neurodevelopmental patterns. Understanding mecha-
nisms behind the patterns and subsequent functional
changes would provide core insights into healthy brain
development. The trajectories depicted by neuroimag-
ing show marked changes during brain development.
In the first 2 years of life, cortical grey-matter volume
increases robustly, cortical thickness peaks during this
period and decreases thereafter, the growth of cortical
white-matter volume is comparatively slower. Reach-
ing adolescence, grey-matter volume tends to decrease,
whereas white-matter volume continues to increase
(Gilmore et al., 2018). These changes are widely read as
results of synaptic pruning and myelination of axons
during ontogeny. Synaptogenesis occurs concurrently
with dendritic and axonal growth and myelination. The
number of synapses in auditory cortex reach their peaks
before the prefrontal cortex, where the increase extends
to adolescence (Huttenlocher and Dabholkar, 1997).
This trend is highly consistent with findings that pri-
mary somato/sensory and visual regions mature before
higher-order association areas (Gilmore et al., 2018). The
density of mouse in neocortex, measured by electron
micrographs, tend to increase with cortical thickness
(Schüz and Palm, 1989). More importantly, as discussed
above, there is a significant correlation between men-
tal disorders and atypical features of brain development,
while the occurrence of mental disorders in adolescence
is connected with abnormal synaptic pruning (Kesha-
van et al., 1994; Germann et al., 2021). Taken together,
these studies imply that synaptic pruning may under-
lie aspects of typical and/or atypical brain morphological
development.

However, it must be noted that these interpretations
should be considered with caution because they are still
controversial. Paus and colleagues (2008) given some
insightful explanations. They argued that the change of
synaptic density is unlikely to affect the cortical volume
or thickness as, in non-human primates, synapses reflect
a very small fraction of the cortical volume (Rakic et al.,
1986). Rather, they attributed changes in grey matter to
myelination of intra-cortical fibers, since it may result
in the change of grey matter proportion in T1 image.
Besides, the increase of white matter volume is more
likely caused by the change in axonal caliber than the
increase of myelination degree. While the precise links
across distinct features of brain development are yet
to be established, a path forward may emerge with the
aid of new technologies. Positrons Emission Tomography
(PET) imaging of synapses, for instance, has great poten-
tial. Several PET radiotracers have been developed that
allow for in vivo synapses visualization and quantifica-
tion, enable the detection of synaptic density in rodent,

non-human primate, and human brains (Finnema et al.,
2016; Becker et al., 2020). The combination of PET and MRI
may pave the way for a systematic interpretation of brain
development mechanisms.

In the process of development, the network archi-
tecture of brain undergoes profound changes in con-
junction with shifts in underlying anatomical fea-
tures. The homogeneity and physical distance are key
determinants of interregional connectivity strength in
different species’ brain including drosophila, mouse,
macaque monkey, and human (Goulas et al., 2019). The
empirical connectomes increase with the improvement
of homogeneity, while the long distance may weaken
the connectivity strength. Similar results were obtained
in our previous work, which applied the generative net-
work models to lifespan development (Zuo et al., 2017).
In this work, we also found a shift from anatomically
driven (distance) to nonspatial generative rules (homo-
geneity) of brain organization across the lifespan. The
connectome of young brains tends to be limited by the
distance between regions. With the increase of age, the
weight of nonspatial factor increases. Mental disorders
may disrupt this topological rule. Study on schizophre-
nia patients with childhood-onset revealed decreased
strength of functional connectivity over short distances
in patients, and hence the global mean connection dis-
tance was significantly larger than that of normal indi-
viduals (Alexander-Bloch et al., 2013).

Studies targeted at interareal connectivity changes
in the brain indicated that the organization of cerebral
cortex follows certain patterns (Margulies et al., 2016;
Haak et al., 2018; Huntenburg et al., 2018). Margulies et
al. (2016) discovered a principal gradient in human brain,
which is anchored from primary sensory/motor regions
to transmodal association regions and may explain how
cognition arise from the topographical organization of
large-scale functional networks. A recent review (Syd-
nor et al., 2021) supports the existence of principal gra-
dient at macrostructural, microstructural, functional,
metabolic, transcriptomic, and evolutionary levels of
analyses. Intriguingly, cortical development from child-
hood to adolescence approaches the gradient architec-
ture observed in adults. Unimodal cortices reach their
mature positions early in development, while high order
association cortex matures later. Primary gradients in
the neonatal connectome runs between sensorimotor
and visual anchors (Bernhardt et al., 2020). Evidence
from Dong et al. (2021) indicated a shift of gradients
between childhood and adolescence. In children, sim-
ilar with neonates, the gradient was anchored within
the unimodal cortex. In participants who have reached
the age of adolescence, the principal gradient transi-
tions into an adult-like spatial mode, in which the pri-
mary cortex is anchored at one end and the transmodal
cortex at the other end. For individuals with mental
disorders, there could be some atypical connectivity
transitions between sensory and higher-order default
mode regions relative to typically-developing individu-
als (Hong et al., 2019). The protracted development of the
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association cortex gives rise to an extended window of
plasticity, also makes them preferentially vulnerable to
environmental or other negative factors (Buckner and
Krienen, 2013; Sydnor et al., 2021), which could be the
potential reason why many mental disorders are associ-
ated with impaired higher-order cortex and emerge dur-
ing adolescence.

Translations

The establishment of brain growth charts is only the
beginning of the research on brain development empha-
sized in this review. The ultimate purpose is to under-
stand the genetic and environmental factors that modu-
late brain development, help the diagnosis of mental dis-
orders, and finally serve the health policy to better brain
development.

There are two common strategies for the study of
atypical brain development trajectories. The first strat-
egy is to screen the individuals with mental disorders
from common large-scale cohorts, which are not spe-
cially built for psychiatric studies. In addition to the
longitudinal cohorts introduced earlier, several cross-
sectional cohorts can be used, such as the National
Consortium on Alcohol and Neuro Development in Ado-
lescence (NCANDA) (Brown et al., 2015), the Pediatric
Imaging, Neurocognition, and Genetics Data Repository
(PING) (Jernigan et al., 2016), and the Philadelphia Neu-
rodevelopmental Cohort (PNC) (Calkins et al., 2015). The
age range of individuals in these large-scale cohorts
is suitable for the study of adolescent mental disor-
ders. Importantly, these cohorts include both healthy
and abnormal individuals, which can be classified into
none, mild, moderate, and severe groups according to the
psychosis spectrum. In this case, brain charts of differ-
ent disease processes can be explored dynamically. By
referring to the normative brain development trajectory,
investigators can not only identify patients with men-
tal disorders from healthy individuals, but also predict
the severity stratification (Gur et al., 2014). What’s more,
these cohorts collected bio-samples for genetic analysis,
which can assist the further examination of epigenetic
changes. A series of studies leveraged data from the PNC
cohort are best examples of identifying atypical devel-
opmental trajectories in psychiatric patients with the
help of growth charts. An early study showed that indi-
viduals with psychotic symptoms were neurocognitively
delayed across the age range and such delay was related
to symptom severity (Gur et al., 2014). Kessler et al. (2016)
found that intrinsic connectivity networks of individu-
als with attention-deficit/hyperactivity disorder (ADHD)
displayed a “shallow maturation” pattern when com-
pared with the normal brain growth trajectory. Despite
these discoveries, we cannot ignore the cross-sectional
nature of these cohorts. Utilizing longitudinal cohorts,
there is a chance to provide more compelling evidence
about the brain growth charts’ profit to detect mental
disorders. Jalbrzikowski et al. (2019) combined data from
a longitudinal study and three cross-sectional cohorts

including PNC, illustrated that connectivity of amygdala
with many regions (prefrontal cortices, striatum, occipi-
tal cortex, and thalamus) represented a downward trend
with age in normative trajectories, but this phenomenon
could not be observed in youth with psychosis spectrum
disorders. Similarly, Shaw et al. (2018) conducted a study
using longitudinal data from four cohorts to character-
ize the growth trajectories of the cerebellum, described a
slow first and fast afterwards growth trend of cerebellar
white matter in ADHD patients.

Another strategy is to establish the cohorts related
to specific mental disorders, from which we can directly
explore the related developmental patterns. The Brazil-
ian High Risk Cohort Study (BHRC) is a longitudinal study
that follows the individuals with high risk of suffering
mental disorders (ADHD, anxiety disorders, obsessive
compulsive disorder, psychosis, and learning disorders)
and tries to identify the developmental trajectories and
causal pathways for these diseases (Salum et al., 2015).
EU-AIMS Longitudinal European Autism Project (LEAP)
is a largescale, multi-center, multi-disciplinary observa-
tional cohort on biomarkers for autism spectrum dis-
order (ASD) (Charman et al., 2017). With the aid of this
cohort, Zabihi et al. (2019) demonstrated highly individ-
ualized patterns of deviations in cortical thickness in
ASD patients and these deviations are correlated with
severity of repetitive behaviors and social communica-
tive symptoms. A similar dataset, the Autism Brain Imag-
ing Data Exchange (ABIDE), shares MRI data and pheno-
typic information of individuals with ASD (Di Martino
et al., 2014b). Based on this dataset, a brain age predic-
tion model found smaller brain age in ASD patients, sug-
gesting the delayed brain development of these patients
(Wang et al., 2021). What’s more, the datasets have been
used to construct the age-dependent computer aided
diagnosis system for ASD (Haghighat et al., 2022). Reason-
ably, these methods can be extended to other mental dis-
orders to decode the atypical brain development trajec-
tories related to psychiatry (Wolfers et al., 2018; Wolfers
et al., 2019).

Regardless of the study strategy, the description of
atypical growth patterns is inextricably linked with the
need to create reference maps of normative develop-
mental trajectories. An extraordinary work (Bethlehem
et al., 2021) recently aggregated MRI data from more than
one hundred thousand healthy and clinical individuals
in over 100 cross-sectional and longitudinal studies. The
age of individuals ranges from 115 days post-conception
to 100 years postnatal years, reflecting the largest ever
dataset of lifespan development. Brain growth charts
were modeled based on this large-scale dataset, and sev-
eral novel brain developmental milestones were iden-
tified. Importantly, new patterns of neuroanatomical
differences across typical neurological and psychiatric
disorders emerging during development were revealed
(e.g. ASD, ADHD, and anxiety disorders). However, as the
authors suggested, the growth charts built in their work
are more suitable for the use of scientific research rather
than clinical utility because of the relatively limited use
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of longitudinal imaging in the dataset and methodolog-
ical issues associated with combining multiple datasets
which may blur the underpinning of brain development.
The availability of MRI technology, the accumulation of
longitudinal research data and the advance on develop-
mental population cognitive neuroscience would speed
up the application of brain growth charts in clinical prac-
tice in the future.

Concluding Remarks

We reviewed the prevalence of mental disorders and
the relationship between mental disorders and atypi-
cal brain development. In this context, the significance
of typical brain growth charts for clinical reference was
emphasized. In view of how to build reliable brain
growth charts, cohorts, measures, and underpinnings
of brain development were discussed. We also intro-
duced the translational applications of brain growth tra-
jectories in clinical studies and practice about mental
disorders.

In the Cohorts section, we mainly introduced three
large-scale development cohorts. As listed in table 1
and Liu et al. (2021), there are many other neuroimag-
ing cohorts that are applicable for the research on brain
development. Review on the brain development mea-
surements revealed the severity of the low reliability
problem faced by MRI research. In particular, it posed a
great challenge to task fMRI. The importance of appropri-
ate templates, toolboxes, preprocessing procedures, and
metrics in future data analysis was pointed out. Other
considerations like different machines, scanning proto-
cols, magnetic field strength, and study sites can also
influence the reliability of MRI studies. How to minimize
the adverse effects of these factors on reliability is still a
topic of intense study.

The exploration of brain developmental mechanisms
would help us understand typical and atypical devel-
opment better. We reviewed the brain development at
cellular level and macro functional network level, dis-
cussed the debates on the role of synaptic pruning
in brain morphological changes, and put forward a
promising method to solve controversies. The changes
in neurochemical transmission and the regulation of
genetics could be potential developmental mechanisms
as well. For instance, changes in hormone level have
a substantial impact on brain structure and func-
tion (Vijayakumar et al., 2018; Gracia-Tabuenca et al.,
2021). Barendse et al. (2020) observed that increased
testosterone levels over time were related to increases
in white matter cross-section in the inferior fronto-
occipital fasciculus in adolescence. During development,
genes like microcephaly make a chief contribution to the
enlargement of the human brain (Gilbert et al., 2005).
Genome-wide association studies of brain imaging phe-

notypes also demonstrated the widespread genetic
architecture of brain (Elliott et al., 2018). Development
is influenced by genetics, stochastic processes, envi-
ronment, and culture (Thompson and Moreno, 2018).
These factors may act on abovementioned mechanisms,
change the brain development trajectories, promote or
hinder brain health and thereby lead to better behavioral
performance or symptoms of psychiatric illness.

Finally, although this review takes mental health as
a starting point to introduce the implication of typi-
cal brain growth charts, the range of “growth charts”
can further extend to lifespan, and the utility of brain
growth charts should not be limited to mental health,
they are also meaningful for other aspects of brain
health (e.g. educational or neurological conditions). Brain
growth charts can be valuable under educational set-
tings for monitoring different levels of normal develop-
ing across school ages, and understanding the individual
differences in brain and mind development during the
educational implementation. It would provide evidence-
based supports for teaching activities, motivating more
scientific policy-making in education. Studies based on
the developing human connectome project (dHCP) pro-
vides important insights for newborn brain develop-
ment (Ciarrusta et al., 2020; Fenchel et al., 2020; Eyre
et al., 2021). When comparing premature infants’ brain
microstructure to term neonates, researchers found
strikingly heterogeneous deviations from typical devel-
opment in preterm infants, and greater deviations were
associated with more extreme prematurity and pre-
dicted poorer cognitive abilities (Dimitrova et al., 2020;
O’Muircheartaigh et al., 2020). Ageing has been proved to
be the primary factor of most irreversible neurodegener-
ative diseases (Hou et al., 2019). Nobis et al. (2019) illus-
trated that the rate of hippocampal volume loss would
speed up once arriving middle age. As the measurement
of hippocampal volume has been proved useful to diag-
nose and track progression in Alzheimer disease (Schuff
et al., 2009; Feng et al., 2021), it is meaningful to depict the
change trajectory of hippocampus in middle-aged and
elderly people, and the same hold true for other brain
regions. Several cohorts have been launched to detect
the development course and brain mechanisms of neu-
rodegenerative diseases and seek feasible treatments for
them, e.g. Pre-symptomatic Evaluation of Experimental
or Novel Treatments for Alzheimer Disease (PREVENT-
AD) cohort (Breitner et al., 2016; Tremblay-Mercier et al.,
2021), the Open Access Series of Imaging Studies (OASIS)
(Marcus et al., 2007; Marcus et al., 2010), and Beijing Aging
Brain Rejuvenation Initiative (BABRI) (Yang, C et al., 2021;
Yang, Y et al., 2021). Once established typical brain devel-
opment charts across the lifespan, these cohorts would
function better for the understanding of atypical brain
ageing. Early detection and effective treatment of dis-
eases would be possible with the help of brain develop-
ment charts.
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