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Circadian disruption in tumorigenesis has been extensively studied, but how circadian
rhythm (CR) affects the formation of tumor microenvironment (TME) and the crosstalk
between TME and cancer cells is largely unknown, especially in gliomas. Herein, we
retrospectively analyzed transcriptome data and clinical parameters of glioma patients
from public databases to explore circadian rhythm-controlled tumor heterogeneity and
characteristics of TME in gliomas. Firstly, we pioneered the construction of a CR gene set
collated from five datasets and review literatures. Unsupervised clustering was used to
identify two CR clusters with different CR patterns on the basis of the expression of CR
genes. Remarkably, the CR cluster-B was characterized by enriched myeloid cells and
activated immune-related pathways. Next, we applied principal component analysis to
construct a CRscore to quantify CR patterns of individual tumors, and the function of the
CRscore in prognostic prediction was further verified by univariate and multivariate
regression analyses in combination with a nomogram. The CRscore could not only be
an independent factor to predict prognosis of glioma patients but also guide patients to
choose suitable treatment strategies: immunotherapy or chemotherapy. A glioma patient
with a high CRscore might respond to immune checkpoint blockade, whereas one with a
low CRscore could benefit from chemotherapy. In this study, we revealed that circadian
rhythms modulated tumor heterogeneity, TME diversity, and complexity in gliomas.
Evaluating the CRscore of an individual tumor would contribute to gaining a greater
understanding of the tumor immune status of each patient, enhancing the accuracy of
prognostic prediction, and suggesting more effective treatment options.
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INTRODUCTION

Gliomas represent 80% of all primary brain tumors and are a
heterogeneous group of lethal tumors of the central nervous
system (CNS) (1). In 2016, the newly established World Health
Organization (WHO) classification of CNS tumors added
molecular genetic features including isocitrate dehydrogenase
(IDH) and chromosomal 1p/19q status to the previous version,
which solely histologically classified gliomas into four grades
(2). Despite very comprehensive treatment protocols consisting
of debulking surgery, chemotherapy, and concomitant
radiotherapy (3), the median survival of grade IV glioblastoma
multiforme (GBM) is only 12–14 months (4). A remarkable level
of genetic, epigenetic, and environmental heterogeneity existing
within each individual glioma explains multiple mechanisms of
therapeutic resistance and forms a highly resilient disease (5). A
comprehensive model based on gliomas integrated with TME
will be of benefit to predicting prognosis and selecting drugs and
meet the demand of individualized treatment.

Cancer immunotherapies advancing from the trial stage to
established first- or second-line indications have revolutionized
the treatment of solid tumors. However, clinical trials of glioma
immunotherapy are not proceeding well. The limited response of
glioma to immunotherapy may be dependent on the tumor-
intrinsic characteristics and the brain microenvironment. The
specific TME of gliomas, characterized by the low frequency of T
cells, the high frequency of myeloid cells, and the lower
expression of cell-surface inhibitory markers, makes it
challenging for immune checkpoint blockade (ICB) to exert a
strong therapeutic effect (6–8). Meanwhile, a biomarker to
optimize patient selection is most urgently needed due to a
lack of broad ICB approval.

Circadian rhythm is a conserved phenomenon that governs a
large array of physiological and metabolic functions. The
mammalian circadian rhythm depends on a time-delayed
transcription translation feedback loop (TTFL). The aryl
hydrocarbon receptor nuclear translocator-like protein 1
(ARNTL; also named brain and muscle ARNT-like protein 1,
BMAL1) and circadian locomotor output cycles kaput (CLOCK)
constitute the positive arm (9, 10), which can promote the
expression of cryptochrome (CRY1 and CRY2) and period
(PER1, PER2, and PER3). As the negative arm of the TTFL,
CRYs and PERs form a complex to suppress the BMAL1–
CLOCK complex (11, 12). As for the second feedback loop, the
BMAL1–CLOCK complex regulates the expression of nuclear
receptors REV-ERBa/b (also known as nuclear receptor
subfamily 1, group D, members 1/2, NR1D1/2) and retinoic
acid receptor-related orphan receptors (RORs), which in turn
repress and activate BMAL1, respectively (13, 14). Over the past
several decades the connection between circadian clocks and
tumorigenesis has been well studied. Abnormal rhythms are
associated with high-grade brain tumors (15, 16). Specifically,
disruption of the circadian clock pharmacologically (REV-ERB
agonists) or genetically (CLOCK and BMAL1 short hairpin
RNAs) impairs glioma stem cell (GSC) stemness in GBM and
causes GSC cell-cycle arrest and apoptosis (17, 18). As for TME,
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high CLOCK levels in GSCs correlate with a high frequency of
microglia via the regulation of olfactomedin-like 3 and correlate
with a decreased level of activated CD8+ T cells (18).
Therapeutically, in view of cyclical expression patterns of DNA
repair genes (19), circadian rhythms influence therapeutic
sensitivity and thus play prominent roles in regulating the
antitumor efficiency of chemotherapy (20). These findings
suggest targeting clock-regulated crosstalk between TME and
cancer cells will help to develop a novel prognosis signature and
effective clock-oriented immunotherapies that may have
synergistic effects with conventional therapies to increase the
effectiveness of glioma treatment.

This bioinformatics analysis is intended to explore circadian
rhythm-controlled tumor heterogeneity and characteristics of
TME in gliomas. The dataset of glioma in The Cancer Genome
Atlas (TCGA) was used as the training set and that in the
Chinese Glioma Genome Atlas (CGGA) was used as the
validation set throughout the study. Unsupervised clustering
identified two stable CR patterns with different characteristics
of infiltrated immune cells, activated signaling pathways and
immune response processes. PCA algorithm was used to
construct the CRscore that could not only be an independent
factor to predict the prognosis of glioma patients but also guide
them to choose suitable treatment strategies: immunotherapy or
chemotherapy. In this study, we revealed that glioma immune
landscapes regulated by two distinct circadian patterns renewed
our cognition to improving individualized therapy based on
clock within gliomas.
METHODS

Data Acquisition and Preprocessing
The RNA sequencing data of TCGA-LGG (Lower Grade Glioma;
WHO grade II–III), TCGA-GBM (glioblastoma multiforme;
WHO grade IV), and GTEx-brain in transcripts per kilobase
million (TPM) format uniformly processed by TOIL were
downloaded from UCSC xena (https://xenabrowser.net/
datapage/). The corresponding clinicopathological data were
obtained from the cBioPortal website (http://www.cbioportal.
org/). Patients without survival information were excluded in
a further study. The genomic mutation data (including
somatic mutation and copy number variation) of TCGA-LGG
and TCGA-GBM were downloaded from the Genomic
Data Commons (https://portal.gdc.cancer.gov/) using the
“TCGAbiolinks” R package (21). Somatic mutation data were
analyzed using “maftools” R package, and significant
amplifications or deletions of copy number were detected using
GISTIC 2.0. To obtain the CGGA validation set, the RNA
sequencing data and related clinicopathological data were
downloaded from the CGGA website (https://www.cgga.org.
cn). Two independent datasets, including one with 325
individuals and another with 693 individuals, were acquired.
Batch effects from non-biological technical biases were corrected
using the “ComBat” algorithm of the “sva” R package (22).
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Unsupervised Clustering for Circadian
Rhythm Genes
Six CR gene sets were concluded from the Molecular Signatures
Database (MSigDB) (23), KEGG pathways (24), REACTOME
database (25), GO biological processes (GO: 0007623
CIRCADIAN RHYTHM), WikiPathways (26), and review
literatures (27–29). The gene annotated in not less than two
CR gene sets was defined as a CR gene for further integrated
analysis and modeling. A total of 91 acknowledged CR genes
were curated and analyzed to identify distinct CR patterns (Table
S1 and Figure S1). The CR gene widely described in reviews is
defined as a core CR gene. Unsupervised clustering analysis was
applied to identify CR patterns based on the expression of 91 CR
genes from TCGA or CGGA and classify patients for further
analysis. A consensus clustering algorithm was performed using
the “ConsensuClusterPlus” R package and was repeated 1,000
times for guaranteeing the stability of classification (30).

Gene Set Variation Analysis and Gene
Ontology Annotation
To investigate the difference in biological process between CR
patterns, we performed GSVA enrichment analysis using the
“GSVA” R package (31). The gene sets of “h.all.v7.4.symbols”
and “c2.cp.kegg.v7.4.symbols” were downloaded from the
MSigDB database to run GSVA analysis (http://www.gsea-
msigdb.org/gsea/downloads.jsp). The GSVA scores among
different circadian patterns were determined using the “limma”
R package. The threshold was set as the adjusted p-value < 0.05
and the absolute (log2 Fold change, FC) > 0.1. The “clusterProfiler”
R package was used to perform functional annotation for CR-
related genes, and the top 20 GO annotations were shown (32).

Estimation of TME Cell Infiltration and
Signatures
As we did in our previous study, the “ESTIMATE” algorithm was
used to calculate Tumor Purity, ESTIMATE Score, Immune Score,
and Stromal Score (33, 34). Furthermore, we used the ssGSEA
(Single-sample Gene Set Enrichment Analysis) algorithm,
CIBERSORT algorithm (35), and xCELL algorithm (36) to
quantify the relative abundance of each type of cells infiltrating
the glioma TME. The gene sets of “TME-associated signatures”
were downloaded and analyzed using the “IOBR” R package (37).
The ssGSEA method was chosen in the process of signature score
evaluation. TIP (Tracking Tumor Immunophenotype) is a meta-
server that systematically integrates two existing third-party
methods “ssGSEA” and “CIBERSORT” for tracking, analyzing,
and visualizing the status of anti-cancer immunity and the
proportion of tumor-infiltrating immune cells across a seven-step
cancer-immunity cycle using RNA-seq or microarray data (38). The
correlations between the CRscore and the steps of the cancer-
immunity cycle were analyzed using the “ggcor” R package.

Generation of the CRscore
The construction of CRscore was performed as follows: firstly,
the differentially expressed genes (DEGs) associated with the CR
cluster phenotype were determined using the “limma” R
Frontiers in Immunology | www.frontiersin.org 3
package. Specifically, gene expression data were normalized by
voom and then fed to lmFit and eBayes functions to calculate the
differentially expressed statistics. The significance filtering
criteria of DEGs were set as an adjusted p-value < 0.05 and |
log2(FC)| ≥1.5. Then, the prognostic analysis was performed for
each DEGs using a univariate Cox regression model. A total of
719 genes with significant prognosis were extracted for further
analysis using the “randomForestSRC” R package. We also used
the “randomSurvivalForest” algorithm to rank the importance of
719 genes, and the gene with a relative importance >0.2 was
selected to construct the CR signature (39). We then curated the
expression profile of the final 50 determined genes to perform
PCA, and principal components 1 and 2 were extracted and
served as the signature score. We then adopted a formula similar
to previous studies (40), CRscore = S(PC1i + PC2i), where i is the
expression of 50 prognostic-related CR cluster DEGs.

Immuno-/Chemotherapeutic Response
Prediction
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm (41) and Immune Cell Abundance Identifier
(ImmuCellAI) algorithm (42) were used to predict response to
ICB therapy. We also used immunotherapeutic cohorts with
complete clinical information to predict patients’ response to
ICB therapy. In the GSE78220 cohort, the data of patients with
metastatic melanoma treated with pembrolizumab, an anti-PD-1
antibody, were downloaded from Gene Expression Omnibus
(GEO), and the FPKM data of gene expression profiles were
converted to the more comparable TPM value among samples.
We also used the “Prophetic” R package to predict the
chemotherapy response of each sample based on Genomics of
Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.
org/). The correlation between estimated IC50 and CRscore was
established using Spearman correlation analysis with thresholds
as |Spearman R| > 0.5 and p-value < 0.05.

Statistical Analyses
For comparison between two groups, statistical significance for
normally distributed variables was estimated by Student’s t-tests,
and nonnormally distributed variables were analyzed by the
Wilcoxon rank-sum test. For comparison among three or more
groups, one-way ANOVA and Kruskal–Wallis test were used for
normally or nonnormally distributed variables, respectively.
Fisher’s exact test was performed for categorical data.
Correlation coefficients were computed by Spearman and
distance correlation analyses. The “surv-cutpoint” function
from the “survival” R package was applied to stratify samples
into CR-high and -low groups. Kaplan–Meier curves and the
Log-Rank test were adopted to assess whether there were
differences in overall survival among groups. Univariate and
multivariate Cox regression analyses were utilized to evaluate the
independent prognostic value of the CRscore regarding OS,
which were revealed by forest maps. We next performed
multivariate Cox regression to establish a nomogram; the
survival predictive accuracy of prognostic models was assessed
based on the calibration plots. All statistical p-values were
January 2022 | Volume 12 | Article 797450
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two-sided, with p < 0.05 considered as statistically significant. All
statistical tests were performed in R statistical software (v4.05,
R Core Team, R Foundation for Statistical Computing,
Vienna, Austria).
RESULTS

Landscape of Genomic Variations and
Transcription Profile of Circadian Rhythm
Genes in Glioma
To investigate whether there were specific expression patterns of
CR genes in gliomas, we determined several differentially
expressed CR genes between glioma and normal samples using
the “limma” R package (Figure 1A). The genes involved in
negative transcription regulation (ID3, ID2, and KLF10), cell
metabolism (NACLU and AHCY), and cell survival (MAGED1
and TIMELESS) were upregulated in tumors when |log2FC| ≥ 1
and adj.p ≥ 0.05 were set as thresholds. Furthermore, the
comprehensive landscape of interaction among CR genes and
feature groups to which they belong was depicted in the
Figure 1B network, and we noticed that most of the CR genes
were positively correlated with each other. To investigate
whether genomic variation contributed to abnormal CR gene
expression in gliomas, we described mutations and copy number
variations (CNVs) of CR genes, respectively. In the top 10
mutations of CR genes, only PTEN exerted 11% mutant
frequency, suggesting that genetic mutations of CR genes
might not be the main cause of rhythm perturbations
(Figure 1C). The vast majority were mutations in PETN, a
common tumor suppressor gene, which could be included here
because of its expression governed by circadian rhythms. Besides,
the CNV frequency showed that CLOCK, the positive arm of
TTFL, gained copy number, while PER3, a part of negative arm
of TTFL, had a frequency of CNV deletion (Figure 1D). Thus,
we have come to know that CNV partly conduced to disturbed
rhythms of tumors. The location of CR genes with CNVs on
chromosomes is shown in Figure 1E. To explore whether the
core regulators of circadian TTFLs had unique expression
patterns in gliomas, we analyzed the mRNA levels of core CR
genes among normal, LGG, and GBM samples (Figure 1F). It
was worth noting that major factors (CRYs and PERs) of
negative arms were upregulated in LGG compared to normal,
but with relatively low expression in GBM. Given all this, the
disruption of circadian rhythms due to the high heterogeneity of
genomic variations and transcription profile covertly contributed
to tumorigenesis and progression of gliomas.

Identification of Circadian Patterns
Mediated by CR Genes
Given the aberrant expression of certain circadian regulators in
gliomas, we wondered whether there were distinctively different
CR patterns, on the whole, among individual tumors. The
unsupervised hierarchical cluster analysis was used to uncover
circadian patterns, and the TCGA cohort population was
separated into two distant clusters, termed CR cluster-A and
Frontiers in Immunology | www.frontiersin.org 4
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C). Additionally, similar results obtained in the CGGA cohort
verified our findings above (Figures S3A–C). Moreover,
principal component analysis confirmed that CR genes could
distinguish two CR clusters perfectly, in both TCGA and CGGA
cohorts (Figure 2B). Obvious discrepancy between two CR
clusters was embodied in histopathology features and patients’
prognoses. Patients in CR cluster-A were characterized by lower
grades and harmless molecular genetic features, which coincided
with particularly prominent survival advantage (Figures 2C,
S2D, E). The same results were obtained in LGG and GBM
groups, respectively (Figures S2D, S3D). We also added the
unsupervised clustering results in LGG and GBM, respectively.
Unsupervised clustering could also divide LGG patients into two
groups, and there was a significant difference in prognosis
between the two groups (Figures S2F–I). As for core CR
genes, the distribution of their transcriptome levels with
remarkable differences between two clusters corresponded with
the previous clustering (Figure 2D). ARNTL (BMAL1) and
CLOCK together constitute the positive arm of TTFLs, but
they took advantages of expression level in different patterns.
Similarly, the components of the negative arm were
expressed preferentially.

Next, to explore the global functions in two CR patterns
beyond the individual and single gene expression, we performed
GSVA enrichment analyses, which showed the activation states
of Hallmark pathways (MSigDB) in TCGA (Figure 2E) and
CGGA (Figure 2F) cohorts. Hedgehog Signaling activation,
Pancreas beta cells, and Kras Signaling Downregulation were
observed in CR cluster-A, while immune response-related
pathways consisting of “Interferon Response”, “Interleukin
Signaling”, and “Tnfa Signaling via Nfkb” and pathways
associated with malignant biological behaviors including
“Epithelial-Mesenchymal Transition” and “Angiogenesis” were
activated in CR cluster-B. KEGG pathway enrichment analyses
in TCGA (Figure S3F) and CGGA (Figure S3G) cohorts also
supported the activated immune reaction-related pathways.
From above, we identified two internally gathered circadian
patterns and functional enrichment analyses recognized CR
cluster-B closely related to the immune response.

Characterization of the Immune Cell
Infiltration in Distinct Circadian Patterns
To describe immune status in different CR patterns, we utilized
four different methods (ESTIMATE, ssGSEA, CIBERSORT, and
xCELL) for evaluating immune cell infiltration (Figure 3A).
ESTIMATE algorithm showed that CR cluster-B exhibited high
Stromal and Immune Scores and low Tumor Purity, which
represented a significantly increased immune cell infiltration
and generally indicated a relatively hot tumor immune
microenvironment. However, in gliomas, components of
immune system enriched in CR cluster-B were macrophages
(ssGSEA, CIBERSORT, and xCELL), dendritic cells (ssGSEA and
xCELL), neutrophils (ssGSEA, CIBERSORT, and xCELL),
endothelial cells (xCELL), and Th2 cells (ssGSEA and xCELL),
generally considered as immunosuppressive components in
January 2022 | Volume 12 | Article 797450
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tumors. Additionally, CR cluster-B was mainly characterized by
relatively high expressions of human leukocyte antigens (HLA)
and immune checkpoint molecules (Figure 3B). On the one
hand, class I HLA, expressed on the surface of almost all
nucleated cells, could increase the possibility of presenting
more immunogenic antigens and of benefiting from ICB. High
immune checkpoint expression also implied effective anti-
immune checkpoint therapy. On the other hand, in line with
the characteristics of immune cell infiltration, class II HLA
molecules, mainly expressed on the surface of antigen-
Frontiers in Immunology | www.frontiersin.org 5
presenting cells (dendritic cells, B cells and macrophages),
and many inhibitory molecules (IL-4, IL-10, and VEGF)
were unregulated in CR cluster-B. We then examined the
specific correlation between each TME infiltration cell type and
each core CR gene using Spearman’s correlation analyses
(Figure 3C). The correlation focused on the relationship
between immunosuppressive cells (macrophages, neutrophils,
and T helper cells) and the core TTFL components (ARNTL,
BHLHE40/41, CRY2, and PER2/3). Furthermore, CR clusters
could be distinguished by different TME relevant signatures and
A B

C

F

D E

FIGURE 1 | Landscape of genomic variations and transcription profile of circadian rhythm genes in gliomas. (A) Volcano plot of differentially expressed CR genes
between normal and glioma (TCGA-LGGGBM: TCGA-LGG and TCGA-GBM) samples (Wilcoxon test: adjust p < 0.05, and |log2FC| > 1). The overexpressed genes
in gliomas were highlighted in red. (B) The interaction between CR genes in gliomas. The CR genes with different features were depicted by circles in different colors.
The lines connecting CR genes represented their interaction with each other. The size of each circle represented the differential expression of CR genes in gliomas
compared to normal. (C) The mutation frequency of CR genes in 584 patients from the TCGA cohort. Each column represented an individual patient. The upper bar
plot indicated mutation-accumulation. The bar plot on the right indicated the proportion of each variant type with the number above representing mutation frequency.
Only top 10 mutations were included. (D) The CNV frequency of CR genes in glioma patients from the TCGA cohort. The height of each column represented the
alteration frequency. The amplification frequency, pink dot; The deletion frequency, blue dot. (E) The location of CR genes with CNV alteration on chromosomes.
(F) The mRNA expression level of core CR genes among normal, TCGA-LGG, and TCGA-GBM samples. Normal, blue; LGG, pink; GBM, red. The asterisks
represented the statistical p-value (Kruskal–Wallis test: *p < 0.05; ***p < 0.001).
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A

B D

E F

C

FIGURE 2 | Identification of two circadian patterns mediated by CR genes in TCGA cohort. (A) Unsupervised clustering of 91 CR genes for 596 glioma patients in
the TCGA cohort resulted in two CR clusters. Age, gender, tissue, WHO grade, histopathology, IDH status, ATRX status, MGMT promoter status, TERT promoter
status, and survival status are shown as patient annotations. Pink represented the relatively high expression of CR genes and blue represented the relatively low
expression. (B) Principal component analyses for the transcriptome profiles of CR patterns in TCGA (left) and CGGA (right) cohorts, respectively, showing a
remarkable difference on transcriptome between two CR patterns. (C) Survival analyses for CR patterns in the TCGA cohort (left) including 379 cases in CR cluster-A
and 217 cases in CR cluster-B (Log-Rank test: p < 0.0001), and in the CGGA cohort (right) including 614 cases in CR cluster-A and 356 cases in CR cluster-B
using Kaplan–Meier curves (Log-Rank test: p < 0.0001). (D) The transcriptome of core CR genes with remarkable differences in two CR patterns corresponded with
the previous clustering. Pink represented the relatively high expression of core CR genes and blue represented the relatively low expression. (E, F) GSVA enrichment
analyses in two CR clusters showing the activation states of Hallmark pathways (MSigDB) in TCGA (E) and CGGA (F) cohorts. Activated pathways, pink; Inhibited
pathways, blue.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7974506
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TME score (Figure 3D). The above results revealed that
immunosuppressive components enriched in CR cluster-B
suggested an immunosuppressive microenvironment and
coincided with poor prognoses of patients.

Generation of Circadian Gene Clusters
and Functional Annotation
To further validate CR regulation patterns and investigate the
potential biological behavior of CR patterns, we determined 719
genes, which were DEGs between CR cluster-A and -B and also
Frontiers in Immunology | www.frontiersin.org 7
related to prognosis of glioma patients using the “limma” R
package and univariate Cox regression analysis (Figure 4A).
Then, we performed unsupervised clustering analyses based on
the obtained CR-related DEGs. Consistent with the clustering
grouping of previous CR patterns, the unsupervised clustering
algorithm also revealed two distinct CR-related signatures
termed CR gene cluster-A and -B, respectively (Figure 4B,
Figures S4A, B). This confirmed that two distinct CR patterns
did exist in gliomas. Survival analysis for CR gene clusters in the
TCGA cohort using Kaplan–Meier curves suggested survival
A B

C D

FIGURE 3 | Characterization of the immune cell infiltration in distinct circadian patterns. (A) Heatmap of TME cell infiltration characteristics in two CR patterns
assessed by four different methods. (B) Heatmap showing the differences of immune-related gene expression in two CR patterns. Upregulation, pink;
Downregulation, blue. (C) The correlation between TME infiltration cell type and each core CR genes using spearman analyses. Negative correlation, blue; Positive
correlation, pink. (D) CR clusters were distinguished by different TME relevant signatures and TME score (Wilcoxon test: ***p < 0.001).
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advantages in CR gene cluster-A no matter in all glioma samples
(Figure 4C) or in TCGA-LGG and TCGA-GBM, separately
(Figure S4C). Next, the “clusterProfiler” R package was used to
perform GO enrichment analysis for Gene Set 1 that were
upregulated in gene cluster-B (Figure 4D), and Gene Set 2
upregulated in gene cluster-A (Figure 4E). GO’s annotations for
Gene Set 1 fell into several categories including antigen
presentation, inflammation, and immune responses, while the
annotations for Gene Set 2 focused on neurotransmitter
transmission and other major duties of CR genes controlling
Frontiers in Immunology | www.frontiersin.org 8
the brain. These analyses confirmed that gene cluster-B was
significantly associated with immune-relevant signatures,
whereas gene cluster-A was associated with regulations of
synaptic transmission. Besides, the expression of core CR
genes (Figure S4D), the infiltration of immune cells (Figure
S4E), and Hallmark (Figure S4F) as well as KEGG (Figure S4G)
pathways in two CR gene clusters were consistent with the
previous clustering results. The results of secondary clustering
verified that there were indeed two CR-based patterns
in gliomas.
A

C

D E

B

FIGURE 4 | Generation of circadian gene clusters and functional annotations for CR-related genes. (A) Volcano plot of CR pattern-related DEGs between CR
cluster-A and -B (Wilcoxon test: adjust p < 0.05, and |log2FC| > 1.5). (B) Unsupervised clustering of CR pattern-related DEGs to classify patients of the TCGA cohort
into different subtypes, termed CR gene cluster-A and -B, respectively. The gene clusters, CR clusters, and other parameters were used as patient annotations. (C)
Survival analysis for CR gene clusters in the TCGA cohort including 368 cases in gene cluster-A and 228 cases in gene cluster-B using Kaplan–Meier curves (Log-
Rank test, p < 0.0001). (D) Functional annotation for CR-related genes upregulated in gene cluster-B (Gene Set 1 in B) using GO enrichment analysis. The length of
the bar plots represents the number of genes in that category. The color depth represented q-value. (E) Functional annotation for CR-related genes upregulated in
gene cluster-A (Gene Set 2 in B) using GO enrichment analysis. The length of the bar plots represents the number of genes in that category. The color depth
represented q-value.
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Construction of the CRscore and
Exploration of Its Immunological
Relevance
Considering the intratumoral heterogeneity and complexity of
circadian disruption, based on 50 prognostic-related CR cluster
DEGs, we developed a score termed CRscore using the PCA
algorithm. The general distribution of CRscore, CR clusters, gene
clusters, and molecular pathological parameters in the TCGA
cohort were described in the heatmap (Figure 5A). Low CRscore
crowded in CR cluster-B and gene cluster-B (Figure 5B).
Considering that the immune microenvironment of LGG and
GBM might differ, we explored the immunological relevance of
CRscore separately in LGG and GBM. The correlation was
supported by TME-related pathways and immune cell
infiltration analyses and even more pronounced in LGG
(Figures 5C, D). Next, we explored the indicating effect of
CRscore in the anti-tumor immune process (Figure 5E) and
discovered that CRscore was likely to be associated with the
recruitment of immune cells. Some steps including priming and
activation of immune cells; recruiting Th1, Th22 cells, and
macrophages; and tumor killing effect were positively
correlated with CRscore in both LGG and GBM. Peculiarly, in
steps significantly correlated with the CRscore, a low score in
GBM is related to recruitment of immunosuppressive cells
(neutrophils, eosinophils, basophils, Tregs, and MDSCs). A low
score in LGG indicated enhanced recruitment of anti-tumor
immune cells (CD8+ cells, Th1 cells, and DCs).

Evaluation of the Prognostic Potentiality of
the CRscore
After having identified the CRscore as an intrinsic pattern closely
linked to the immune process, we sought to determine whether
the CRscore could accurately predict outcomes of glioma
patients. Firstly, the overlap among tissue types, CR clusters,
gene clusters, and CR groups was described in Figure 6A. The
596 patients in the TCGA cohort were assigned to two groups
(CR-high and -low) based on CRscores using the cutoff value
(0.4) obtained with the “survminer” R package. Survival analysis
indicated that the CR-high group had prolonged survival time in
the TCGA cohort as well as in LGG or GBM (Figure S5A), which
was further validated in the CGGA cohort (Figures 6B, S5B).
The area under the ROC curves (AUC) at 5 years (Figure 6C)
and time-dependent AUC (Figure 6D) of the CRscore compared
with other histological or molecular indicators in the TCGA and
CGGA cohort, respectively, verified the predictive efficiency of
the CRscore. When the CRscore was evaluated as a categorical
variable (high or low CRscore) in the Cox regression model, the
CRscore was determined to be an independent and robust
prognostic factor. Univariate and multivariate analyses of
clinicopathological characteristics and CRscore in the TCGA
and CGGA cohort are shown in Figures 6E, F, respectively.
Furthermore, we established a prognostic nomogram to predict
3-, 5-, and 10-year overall survival based on the stepwise Cox
regression model. WHO grade, CRscore, and age were included
in the prediction model (Figure 6G). The C-index of the
nomogram was 0.864 (95% CI, 0.840–0.888). Nomogram
Frontiers in Immunology | www.frontiersin.org 9
prediction and actual observation in the TCGA cohort reached
an excellent agreement at the 3-, 5-, and 10-year survival
probability after calibration (Figure 6H). Net decision curve
and the net reduction analyses demonstrated the superiority of
this nomogram in predicting prognosis (Figures 6I, J).

Landscape of Tumor Somatic Mutation in
Two CR Groups
Given that the aim of exploring the value of the CR pattern on
treatment and the response to ICB are closely related to somatic
mutation, we decided to analyze differences in somatic mutation
between CR-high and -low groups in the TCGA cohort using the
“maftools” R package. As shown in Figure 7A, the CR-low group
presented more extensive tumor mutation burden (TMB), on the
whole, than the high-score group. Differences in CRscores
between wild-type and mutant groups of each gene inversely
proved the negative correlation between mutation and score
(Figures 7B, C). The mutation occurrence varied between two
groups. In detail, genetic mutations of IDH1, TP53, ATRX, and
CIC mainly appeared in the CR-high group, while TTN, PTEN,
and EGFR appeared in the CR-low group (Figure 7D).

The Role of the CRscore in the Prediction
of Therapeutic Benefits
Newly identified predictors, such as TIDE (Figure 8A) and
ImmuCellA (Figure 8B), are widely used to evaluate the
immune response. Our analysis revealed that a lower CRscore
was not only associated with a poorer response to ICB but also
more prone to immune escape. In anti-PD-1 immunotherapy
cohort (GSE78220), a survival benefit trend was observed in
patients with high CRscore (Figures 8C–E). To further
understand the effects of the CRscore on drug response, we
assessed the association between the CRscore and the response to
drugs in cancer cell lines. Using the Spearman correlation
analysis, we identified twenty-two drugs targeting various
pathways (Figure 8G) significantly correlated between
CRscores in the Genomics of Drug Sensitivity in Cancer
(GDSC) database (Figure 8F). Among them, twenty agents
with lower IC50 in the CR-low group might be beneficial to
low CRscore patients, while two agents might be beneficial to
patients with high scores (Figure 8H). Together, these results
implied that CR pattern played a crucial role in mediating the
immune response and was also correlated with drug sensitivity.
Thus, the CRscore might be a potential biomarker for
establishing appropriate treatment strategies.
DISCUSSION

Circadian disruption is associated with tumorigenesis and tumor
progression through effects on cancer cell biological properties,
including proliferation, DNA repair, apoptosis, metabolism, and
stemness. Emerging evidence indicates that circadian clock also
plays an influential role in the TME. Abnormalities of clock
components (e.g., CLOCK, ARNTL/BMAL1, PER, CRY, RORs,
and REV-ERBa) in tumors could reshape TME by regulating the
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FIGURE 5 | Construction of the CRscore and exploration of its immunological relevance. (A) An overview of the association between CRscores and other patient
annotations in TCGA cohort. (B) Comparison of CRscores between gene cluster A and B in the TCGA cohort, p < 0.001 (left); Comparison of CRscores between
CR cluster A and B in the TCGA cohort, p < 0.001 (right). (C) The correlations between CRscore and TME relevant signatures in LGG as well as GBM of TCGA
cohort, respectively (p > 0.05). Pink represented positive correlation and blue represented negative correlation in LGG; purple represented positive correlation and
green represented negative correlation in GBM. (D) The correlations between CRscore and ssGSEA scores of TME cells in LGG as well as GBM of the TCGA
cohort, respectively (p > 0.05). Pink represented positive correlation and blue represented negative correlation in LGG; purple represented positive correlation and
green represented negative correlation in GBM. (E) The correlations between CRscore and steps of the cancer immunity cycle in LGG (right) as well as GBM (left) of
TCGA cohort, respectively.
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expression and secretion of soluble factors including HIF1a,
ARNT, VEGF, OLFML3, and other unidentified factors (27).
These factors modulated TME biology, including endothelial cell
biology such as promoting angiogenesis and antiangiogenic
therapy resistance, the infiltration of myeloid cells, as well as
the infiltration and activation/suppression of lymphocytes. Clock
components in immune cells, in turn, affected tumor growth.
BMAL1 in macrophages inhibited the production of ROS and
HIF1a, and affected tumor growth through regulating
macrophage alternative polarization (43) RORa and RORg in
Frontiers in Immunology | www.frontiersin.org 11
T cells (Th17 cells and CD8+ T cells) could modulate their
differentiation and activation, which affected tumor growth and
the antitumor immune response (44–46). The above studies
pointed out the importance and necessity of studying the
clock-regulated crosstalk between TME and cancer cells.

On the basis of the CR gene list concluded from six gene sets,
we performed the first unsupervised clustering in glioma patients
from TCGA and CGGA cohorts, respectively, and identified two
CR clusters with different composition and expression of core CR
genes, which were considered as different CR patterns. The CR
A B

C

D

G H

I

J

E F

FIGURE 6 | Evaluation of the prognostic potentiality of the CRscore. (A) The overlap among tissue types, CR clusters, gene clusters, and CR groups. (B) Survival
analyses for CR groups in the TCGA cohort (left) including 357 cases in the CR-high group and 239 cases in the CR-low group (Log-Rank test, p < 0.0001), and in
the CGGA (right) cohort including 507 cases in the CR-high group and 463 cases in the CR-low group using Kaplan–Meier curves (Log-Rank test, p < 0.0001).
(C) Predictive accuracy at 5-year of CRscore compared with other histological or molecular indicators in TCGA (left) and CGGA (right) cohort, respectively. The
accuracy was equal to the area under the ROC curves (AUC). (D) Time-dependent AUC of CRscore compared with other histological or molecular indicators in
the TCGA (left) and CGGA (right) cohort, respectively. (E, F) Univariate and multivariate analyses of clinicopathological characteristics and CRscore with overall
survival in the TCGA (E) and CGGA (F) cohort, respectively. (G) Nomograms for predicting the probability of patient mortality based on WHO Grade, CRscore,
and age. (H) Plots depicted the calibration of nomograms. (I) Net decision curve analyses demonstrating the benefit for predicting overall survival on nomogram.
(J) The net reduction analyses demonstrated in how many patients the nomogram could be avoided without prognosis of miscalculation.
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cluster-B showed a unique immune status characterized by
high infiltration of immune cells, high expression of immune-
related genes, and highly activated immune-related pathways,
which suggested that circadian rhythms might affect the
biological behavior of tumor itself, as well as the infiltration
and function of immune cells, thus affecting the prognosis.
Considering that the pro-tumoral pathway was activated and
the immunosuppressive cells were infiltrated, it was reasonable
that the outcomes of the patient were relatively poorer in CR
cluster-B. CSNK1E, shown to phosphorylate PERs, and PERs
were all downregulated in the CR cluster-B group, which were all
negatively correlated with the infiltration of most immune cells.
BHLHE40/41 repressing CLOCK-ARNTL’s transactivation of
PER1 corresponds to the opposite expression of BHLHE40/41
and PER1 at mRNA levels. In view of the correlation between
RORg (RORC) and Th17/T cells has been confirmed by
experimental studies (45, 46), correlations among genes or
between a single gene and a certain type of immune cell might
uncover the mechanism of circadian rhythms regulating
tumor immune microenvironment, which needed to be
explored further.

To construct a CR-based prognostic signature, a second
unsupervised clustering was performed based on the DEGs
Frontiers in Immunology | www.frontiersin.org 12
between CR cluster-A and -B. Two distinct CR gene clusters
(CR gene cluster-A and -B) proved that two stable CR patterns
did exist in gliomas. Next, we constructed CRscore by using PCA
algorithm and established the relationship between CRscore and
immune signatures. Analyses of immune components and anti-
tumor processes provided the reason why prognoses of patients
in low score group were poor. CRscore was negatively associated
with recruitment and infiltration of immune cells, as well as the
pathways related to TME. However, there were some subtle and
critical differences between LGG and GBM. In LGG, a lower
CRscore was related to enhanced recruitment of immune cells
but diminished killing tumor effect, characterized by immune
disability. In GBM, a lower CRscore represented recruitment of
immunosuppressive cells, characterized by immune suppression.
Therefore, in both LGG and GBM, CRscore was negatively
correlated with prognosis. More accurate prognostic evaluation
method was established by univariate and multivariate regression
analysis as well as nomogram and validated.

As neo-antigens result from mutations, the more neo-
antigens that are present, the higher the TMB. With more neo-
antigens present, there may be an increased probability that
some of the neo-antigens presented by MHC proteins will be
immunogenic (47, 48). This is the root of the hypothesis that
A B

C D

FIGURE 7 | Landscape of tumor somatic mutation in two CR groups. (A) Differences of TMB in CR-high and -low groups in TCGA cohort (Wilcoxon test: p < 0.001).
(B) Top 20 most frequent mutations in patients from TCGA cohort and the distribution of mutations in CR high and low groups. (C) Differences in CR scores between
wild-type and mutant groups of each of the top 20 genes in the TCGA cohort (Wilcoxon test: ns, P>0.05; *p < 0.05; **p < 0.01; ***p < 0.001). (D) Differences in the
frequency of top 20 mutations between CR-high and -low groups in the TCGA cohort (Fisher’ exact test: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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cancers with high TMB are more likely to benefit from ICBs. Yet,
approximately 60% of patients with high TMB do not respond to
ICBs (49). Similarly, in this study, the CR-low group with more
extensive TMB did not gain advantages in ICB treatment, and
even the opposite result was obtained. Our results confirmed the
theory that TMB had limitations as a predictive biomarker,
especially when used in isolation (50). As mentioned above,
patients with lower CRscores not only tended not to respond to
ICBs but also were more prone to immune escape when using
TIDE and ImmuCellA to evaluate the immune response. In other
Frontiers in Immunology | www.frontiersin.org 13
cancer cohorts treated with ICB (GSE78220), the CR-low group
showed a higher progression disease ratio. However, in drug
sensitivity analysis, the CR-low group was sensitive to more
drugs, suggesting another treatment strategy. Recent advances of
the glioma TME highlight the complex and immunosuppressive
environment within the tumor that underlies the resistance to
immunotherapy. According to the characteristics of glioma, ICB
strategies different from other solid tumors need to be developed
urgently. Macrophages found within the glioma tend to be
immunosuppressive and are associated with poor survival,
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FIGURE 8 | The role of the CRscore in the prediction of therapeutic benefits. (A, B) The relative distribution of TIDE (A) in TCGA (p > 0.001) and CGGA (p > 0.001)
cohorts and ImmuCellAI (B) in TCGA (p = 0.17) and CGGA (p > 0.001) cohorts were compared between CR score high versus low groups, respectively. (C) The
proportion of patients’ response to PD-1 blockade immunotherapy in CR-high or -low groups. PD, progressive disease; CR, complete response; PR, partial response
(Fisher’ exact test: p = 0.013). (D) Survival analyses for low (8 cases) and high (19 cases) CR score patient groups in the anti-PD-1 immunotherapy cohort (GSE78220)
using Kaplan–Meier curves (Log-Rank test: p = 0.0066). (E) The correlation of CRscore with clinical response to anti-PD-1 immunotherapy. (F) The correlation between
CRscore and the estimated IC50 for drugs evaluated by the Spearman analysis. Each point represents a drug. (G) Pathways targeted by candidate drugs. (H) The box
plots of the estimated IC50 for candidate drugs in CR-low and -high groups (Wilcoxon test: ***p < 0.001).
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suggesting that tumor-associated macrophage or microglia
(TAM)-targeting therapies (alone or in combination with other
therapies) altering TAM characteristics or abundance may
improve immunotherapeutic outcomes (6, 51). Strategies to
enhance therapy response to ICB might thus involve the
mechanism-driven combination of ICB and targeting of TAMs.

Although we reviewed the databases and literatures to curate a
catalog of 91 recognized CR genes, a series of newly identified or
side CR genes need to be incorporated into the model to optimize
the accuracy of the CRscore. Besides, the CR patterns and the
CRscore were identified by using retrospective datasets; thus, the
role of CR score in immunotherapy needs to be confirmed by more
indicators, and more prospective cohorts of glioma patients
receiving immunotherapy are needed to validate our findings.

In conclusion, we comprehensively evaluated and verified the
CR patterns among 1,566 glioma samples based on recognized
CR genes, and systematically correlated these patterns with TME
characteristics. This integrated analysis indicated that circadian
rhythm upset laid a critical foundation for understanding
crosstalk between TME and tumor cells in gliomas. More
broadly, evaluating the CRscore of the individual tumor will
contribute to enhancing our cognition of the characteristics of
TME and provide important insight into therapeutic efficacy.
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Supplementary Figure 1 | Six CR gene sets were concluded from five datasets
and review literatures. The gene annotated in not less than two circadian gene sets
was defined as a CR gene. A total of 91 acknowledged CR genes were concluded
here. The number of pick circles connected by lines indicated the number of times a
CR gene appears in different gene sets; The number of genes sharing the same
annotation pattern was marked at the top of the corresponding bar chart. The bar
chart on the left showed the number of circadian genes in each gene set.

Supplementary Figure 2 | Identification of two circadian patterns mediated by
CR genes in TCGA cohort. (A) CDF plot showing a real random variable of its
probability distribution based on consensus scores for each k (from 2 to 6, indicated
by different colors) in TCGA cohort. (B) Consensus matrices of TCGA cohort for
each k (k = 2–6), displaying the clustering stability using 1000 iterations of
hierarchical clustering. (C) Survival analyses for CR patterns in TCGA cohort using
Kaplan–Meier curves for OS when k = 3–6 (Log-Rank test: P < 0.0001). (D) Kaplan–
Meier curves for OS of TCGA-LGG cohort (upper) including 372 cases in CR
cluster-A and 72 cases in CR cluster-B (Log-Rank test: P < 0.0001), and TCGA-
GBM (lower) including 7 cases in CR cluster-A and 145 cases in CR cluster-B (Log-
Rank test: P = 0.0085). (E) The proportion of representative clinical parameters of
patients in CR cluster A and B relevant to Figure 2A (Fisher’ exact test: P <0.001).
(F) Consensus matrices of TCGA-LGG cohort for k = 2, displaying the clustering
stability using 1000 iterations of hierarchical clustering. (G) Kaplan–Meier curves for
OS of patients in TCGA-LGG cohort when k = 2. (H) Consensus matrices of TCGA-
GBM cohort for k = 2, displaying the clustering stability using 1000 iterations of
hierarchical clustering. (I) Kaplan–Meier curves for OS of patients in TCGA-GBM
cohort when k = 2.

Supplementary Figure 3 | Verification of two circadian patterns in CGGA cohort
and functional annotations of CR clusters. (A) CDF plot showing a real random
variable of its probability distribution based on consensus scores for each k (from 2
to 6, indicated by different colors) in CGGA cohort. (B) Consensus matrices of
CGGA cohort for each k (k = 2–6). (C) Kaplan–Meier curves for OS of CGGA cohort
when k = 3–6 (Log-Rank test: P < 0.0001). (D) Kaplan–Meier curves for OS of LGG
patients in CGGA cohort (upper) including 476 cases in CR cluster-A and 120 cases
in CR cluster-B (Log-Rank test: P < 0.0001), and GBM patients in CGGA cohort
(lower) including 138 cases in CR cluster-A and 236 cases in CR cluster-B (Log-
Rank test: P < 0.0001). (E) Unsupervised clustering of 91 CR genes for 970 glioma
patients in CGGA cohort resulted in two CR clusters. Age, gender, tissue, WHO
grade, IDH status, 1p/19q codeletion status, MGMT promoter status, and survival
status are shown as patient annotations. (F, G)GSVA enrichment analyses in TCGA
(F) and CGGA (G) cohorts showing the activation states of KEGG pathways in two
CR clusters. Activated pathways, pink; Inhibited pathways, blue.

Supplementary Figure 4 | Generation of circadian gene clusters and functional
annotations of CR gene clusters. (A) Consensus matrices of TCGA cohort for k = 2.
(B) CDF plot showing a real random variable of its probability distribution based on
consensus scores for each k (from 2 to 6, indicated by different colors) in TCGA
cohort. (C) Kaplan–Meier curves for OS of TCGA-LGG patients (left) and TCGA-
GBM patients (right), respectively. (D) The mRNA expression level of core CR genes
in gene cluster A and B. Gene cluster A, blue; Gene cluster B, pink. The asterisks
represented the statistical p value (Wilcoxon test: ns, P >0.05; *, P <0.05; ***,
P <0.001). (E) The ssGSEA score of TME cells in two CR gene clusters of TCGA
cohort. (Wilcoxon test: ns, P>0.05; **, P <0.01; ***, P <0.001). (F, G) GSVA
enrichment analyses in TCGA cohort showing the activation states of Hallmark
pathways (MSigDB) (F) and KEGG pathways (G) in two CR gene clusters. Activated
pathways, pink; Inhibited pathways, blue.

Supplementary Figure 5 | Survival analyses for CR groups. (A) Survival analyses
for CR groups in TCGA-LGG and TCGA-GBM using Kaplan-Meier Curves (Log-
Rank test, P <0.0001 in LGG; P <0.0001 in GBM). (B) Survival analyses for CR
groups in LGG and GBM from CGGA cohort using Kaplan-Meier Curves (Log-Rank
test, P <0.0001 in LGG; P =0.0068 in GBM).
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