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Generation of reactive oxygen species in
1-methyl-4-phenylpyridinium (MPP+) treated
dopaminergic neurons occurs as an NADPH
oxidase-dependent two-wave cascade
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Abstract

Background: Reactive oxygen species (ROS), superoxide and hydrogen peroxide (H2O2), are necessary for
appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss,
suggesting that Parkinson’s disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars
compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to
dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons,
suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons
themselves, thus providing an early therapeutic target.

Methods: NADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic
cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-
PCR. Superoxide was measured by flow cytometric detection of H2O2-induced carboxy-H2-DCFDA fluorescence.
Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22phox,
or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II
type 1 receptor-induced NADPH oxidase activation.

Results: Nigral dopaminergic neurons in situ expressed three subunits necessary for NADPH oxidase activation, and
these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated
N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was
counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22phox, or losartan. A two-wave ROS cascade
was identified: 1) as a first wave, mitochondrial H2O2 production was first noted at three hours of MPP+ treatment;
and 2) as a second wave, H2O2 levels were further increased by 24 hours. This second wave was eliminated by
pharmacological inhibitors and a blocker of protein synthesis.

Conclusions: A two-wave cascade of ROS production is active in nigral dopaminergic neurons in response to
neurotoxicity-induced superoxide. Our findings allow us to conclude that superoxide generated by NADPH oxidase
present in nigral neurons contributes to the loss of such neurons in PD. Losartan suppression of nigral-cell
superoxide production suggests that angiotensin receptor blockers have potential as PD preventatives.
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Background
Reactive oxygen species (ROS) contribute to cellular sig-
naling, affecting most aspects of cellular function includ-
ing gene expression, proliferation, differentiation, and
migration [1,2]. Under normal physiological conditions,
such effects may be beneficial, but an excess of ROS can
negatively affect cell function and survival by damaging
cellular macromolecules: lipids, nucleic acids, and pro-
teins [3-5]. For example in response to bacterial infec-
tion in the brain, a bactericidal oxidative burst is
generated by activated microglia [6] and the superoxide
produced in this burst results in the oxidative stress,
which unabated results in progressive neuronal dis-
tresses such as those in PD [7-9]. The oxidative burst
induced in activated phagocytes such as neutrophils [10]
and microglia [11] comes from superoxide-generating
NADPH oxidase.
The NADPH oxidase enzyme consists of several subu-

nits, two of which are permanently membrane bound:
the catalytic Nox2 (gp91phox) subunit and the Nox2-sta-
bilizing p22phox subunit. Nox2 has six membrane-span-
ning domains, two hemes, and a NADPH binding site
[12]. Nox2 interaction with p22phox forms a cytochrome
b558 complex, which is necessary for NADPH oxidase
activity for production of superoxide through recruit-
ment of a small GTPase Rac2, and of p47phox and
p67phox to the plasma membrane [13]. Formation of the
NADPH oxidase complex may involve alternative iso-
forms of the component subunits [14]. The current
database of the human genome contains seven members
of the NADPH oxidase family. The members include
Nox1-5, together with two dual oxidases (Duox1 and 2)
that contain both NADPH oxidase and peroxidase-like
domains [14,15]; the tissue distribution of these seven
family members varies significantly [14]. The gene
encoding Nox5 is not present in rodents [16]. Although
several pharmacological inhibitors of NADPH oxidase
exist [17,18], their specificity, efficacy, and safety differ
widely. An alternative and potentially sounder approach
to suppression of NADPH oxidase-generated superoxide
utilizes angiotensin II type 1 (AT1) receptor blockers,
exemplified by the original compound in this class,
losartan [19,20]. This is possible because generation of
superoxide from NADPH oxidase is promoted by angio-
tensin II binding to the AT1 receptor, leading to induc-
tion of protein kinase C-induced Nox2 signaling [19].
Antagonists of the AT1 receptor such as candesartan
and losartan suppress angiotensin II-induced increases
in superoxide production and Nox2 expression [21].
Postmortem analysis of the midbrain of PD patients

has provided evidence of microglial activation in this
pathogenic process [22-26]. This activation of microglia,
the macrophage-like, resident immune cells of the brain,
and ROS production has been associated with the

neurodegeneration characteristic of PD [27]. In response
to brain injury and immunological challenges, microglia
become readily activated and produce a wide array of
cytokines and cytotoxic factors, including ROS as well
as TNF-a, eicosanoids, IL-1b, and nitric oxide [28-30].
In one model of dopaminergic degeneration, activation
of microglia by the inflammatory factor lipopolysacchar-
ide is rapid and is followed by a delayed, progressive,
and selective destruction of nigral dopamine neurons
both in vitro and in vivo [31]. Microglial activation sig-
nificantly enhances MPP+ (1-methyl-4-phenylpyridi-
nium, a metabolite of MPTP, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) damage to dopaminergic neurons in
a primary neuron-glia cell culture model of dopaminer-
gic cell death [7]. However, this occurs not by direct
activation of microglia by MPP+, but rather as a result
of microglial stimulation by factors released from an
initial die off of dopaminergic neurons. As a result of
this sequential neuronal-glial interaction, the primary
damage to even a few dopaminergic neurons leads to
extensive microglia-enhanced neurodegeneration [7].
Importantly, these findings suggest that ROS responses
in dopaminergic neurons, themselves, are a necessary
initial step in a cascade that leads to the flagrant neuro-
nal cell loss in response to MPP+ treatment. A link
between microglia and NADPH oxidase as mediators of
neurotoxicity in experimental models of PD is further
supported by findings of a reduction in the loss of dopa-
mine neurons upon exposure to MPP+ in mesencepha-
lic neuron/glia cultures derived from Nox2-deficient
mice. In addition, these mice are partly resistant to
MPTP treatment [7,8]. The binding of MPP+ to the
mitochondrial electron transport chain complex I results
in decreased production of ATP, elevation in superoxide
generation, and subsequently cell death.
Babier et al., suggests that NADPH oxidase-induced

ROS initially developed as a universal signaling mechan-
ism in all cell types and evolved in macrophages as a
means of cellular defense [32,33]. In the CNS, cerebral
cortical neurons [34] as well as hippocampal pyramidal
neurons [35], cerebellar Purkinje cells [36,37], central
autonomic neurons of the intermediate dorsomedial
nucleus of the solitary tract [38], and neonatal sympa-
thetic neurons express various subunits of the non-pha-
gocytic NADPH oxidase [39]. While little is known
regarding the functions of these subunits in these neuro-
nal cells, two studies point to potential roles in memory
formation in the hippocampus [40] and maintenance of
growth cone dynamics by F-actin in a giant neuron of a
sea snail, Aplysia [41]. The function(s) of the NADPH
oxidase Nox2 subunit identified in hippocampal and
cortical astrocytes [42] remains undefined. Although
microglial NADPH oxidase participates in dopaminergic
neurotoxicity [43], whether it also exists in dopamine
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neurons and contributes to the ROS production in the
midbrain has not been explored [8].
In this study, we found NADPH oxidase subunits in

tyrosine hydroxylase (TH)-immunoreactive neurons of
the adult mouse nigra. In addition, expression of
NADPH oxidase in a rat nigral dopaminergic cell line,
N27, allowed us to investigate the potential role of
NADPH oxidase in generation of the MPP+ induced
ROS. We found that: i) N27 cells express all the compo-
nents of NADPH oxidase that are required for its activa-
tion; ii) that treatment of these cells with NADPH
oxidase inhibitors, or with an angiotensin II type 1
receptor blocker leads to an attenuation of MPP+
induced generation of hydrogen peroxide (H2O2, a pro-
duct of superoxide dismutation); iii) MPP+ treatment
induced a biphasic (two-wave) generation of H2O2; and
iv) NADPH oxidase inhibitors blocked selectively only
the second wave of H2O2 production. These findings
support our hypothesis that neuronal NADPH oxidase
plays an important role in neuronal stress responses,
which contribute to vulnerability of dopaminergic neu-
rons in PD.

Materials and methods
Animals and cell culture
Animal protocols and use were in strict accordance with
the NIH Guide for the Care and Use of Laboratory Ani-
mals and were approved by the Institutional Animal
Care and Use Committee at the University of Colorado
Denver. We used female C57BL/6J mice from Jackson
Laboratories (6 weeks old; 15-18 g) for studies of
NADPH oxidase subunit expression in the substantia
nigra. Mice were housed individually on a 12 h light/
dark cycle with food and water available ad libitum.
For all cell culture experiments, we used the N27

dopaminergic cell line derived from rat ventral mesence-
phalon at gestational day 12. This cell line is often used
to model dopaminergic neurons because it expresses the
dopaminergic markers TH and plasma membrane dopa-
mine transporter, and produces dopamine [44]. N27
cells were grown in RPMI medium (CellGro) containing
10% fetal bovine serum (CellGro), penicillin-streptomy-
cin, L-glutamine, and 1 μM angiotensin II (Sigma) in a
37°C incubator and 5% CO2. Cell counts were con-
ducted after trypsinizing N27 cells and counting cells
under a hemocytometer. To generate ROS in N27 cell
cultures, we treated N27 cells for upto 24 hours with a
range of concentrations of MPP+, a metabolite of
MPTP. The mechanism by which MPTP exerts toxicity
in vivo requires its conversion in astrocytes via monoa-
mine oxidase B to MPP+ (reviewed in [45]). Since the
N27 cultures lack astrocytes to perform this conversion,
we have treated N27 cells with MPP+ itself. Specific
dopaminergic neurotoxicity caused by MPP+ depends

on the selective uptake of MPP+ via the dopamine
transporter into the cytosol where it concentrates inside
the mitochondria.

Reagents and antibodies
MPP+, cyclohexamide (c-hex), apocynin, phenylarsine
oxide (PAO) and losartan potassium were obtained from
Sigma. Anti-p47phox and anti-Nox2 antibodies were
from Upstate Biotechnology; anti-p22phox and anti-
p67phox antibodies were from Santa Cruz Biotechnology;
and anti-TH from Pel-Freez Biologicals. Alkaline phos-
phatase conjugated anti-rabbit antibody was purchased
from Chemicon, anti-goat antibody from Jackson Immu-
noresearch Laboratories, Lumi-Phos™ WB from Pierce,
propidium iodide from Becton Dickinson, 5-(and-6)-car-
boxy-2’,7’-dichlorodihydrofluorescein diacetate (carboxy-
H2-DCFDA) substrate dye from Molecular Probes, and
Hoechst 33258, and secondary antibodies (Alexa 488
and 568) from Invitrogen.

Immunofluorescent staining
Six-week-old female C57BL/6J mice were deeply
anesthetized and transcardially perfused with saline fol-
lowed by 4% paraformaldehyde. The brains were cryo-
protected in 30% sucrose for 2 days before the frozen
midbrain region containing nigra was sectioned coron-
ally into 40 μm-thick sections. Floating sections were
rinsed, blocked for 20 minutes in 10% normal goat
serum in Tris-buffered saline (TBS) containing 1% BSA
and 0.1% Triton X-100, rinsed again, and incubated
overnight at room temperature with the following pri-
mary antibodies: mouse monoclonal anti-Nox2 (1:750),
mouse monoclonal anti-p47phox (1:200), mouse mono-
clonal anti-p67phox (1:750), or rabbit polyclonal anti-TH
(1:500). The secondary antibodies were anti-rabbit Alexa
488 (green) and anti-mouse Alexa 568 (red). Fluores-
cence was imaged in the sections using a Zeiss LSM 510
confocal microscope.
For the immunofluorescent staining of N27 cells

grown in 96-well plates, the cultures were rinsed with
PBS, fixed in 4% paraformaldehyde for 1 hour, blocked
for 20 minutes with the aforementioned goat serum pre-
paration and incubated with primary antibodies to
Nox2, p22phox, and p47phox followed by secondary anti-
bodies as described for the brain sections above.
Hoechst 33258 was used to visualize cell nuclei. Images
of immunofluorescent detection of antigens and nuclei
in N27 cells were acquired using a SPOT camera
attached to an inverted Nikon Eclipse TS100 epi-fluor-
escence microscope.

ROS measurements
Flow cytometry with carboxy-H2-DCFDA detection
identified intracellular H2O2, which was used as a
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surrogate marker for superoxide generation. Oxidation
of this non-fluorescent substrate generates a green fluor-
escent product. Because the cell membranes are perme-
able to the esterified form of carboxy-H2-DCFDA, cells
uptake it freely. The dye becomes trapped in the cells as
a result of deacetylation by intracellular esterases and
thus becomes available to oxidation by intracellular
H2O2. Since superoxide is relatively short lived because
it is rapidly dismutated to H2O2, intracellular H2O2

levels are therefore a more reliable indicator of intracel-
lular ROS burden. For the flow cytometry assay, cells
were trypsinized using 0.25% trypsin-EDTA solution
(CellGro) and resuspended in growth medium. Cells
(5.0 × 106) were delivered into 5 mL polystyrene tubes,
pelleted, and then incubated for 25 minutes at 37°C
with carboxy-H2-DCFDA mixed isomers reagent diluted
to 2 μM in PBS supplemented with 0.5% FBS (PBS-
FBS). Cells were then pelleted again and incubated with
growth media for 10 minutes at 37°C and washed twice
with PBS-FBS. In the final step, cells were pelleted,
resuspended in propidium iodide solution for 10 min-
utes, and carboxy-H2-DCFDA fluorescence emitted by
10,000 live cells was quantified using BD FACScan flow
cytometer.

Reverse Transcription PCR and Western blotting
Total RNA was collected from N27 cells following the
Trizol protocol (Invitrogen). Messenger RNA was
reverse transcribed using random primers to cDNA with
Superscript II (Invitrogen). PCR was performed using
NADPH oxidase subunit gene specific primers that
yielded PCR products ranging between 400 and 500 bp.
The following primer sets were designed based on the
following accession numbers: rat Nox1 [GenBank:
NM_053683] forward: 5’-AGCCATTGGATCACAAC
CTC-3’/ reverse: 5’-TGAGGCTCCTGCAACTCCT-3’;
rat Nox2 [GenBank:NM_023965] forward: 5’-GTGGAG
TGGTGTGTGAATGC-3’/reverse: 5’-AGGATGAGT-
GACCACCTTGG-3’; rat Nox3 [GenBank:NM_001
004216] forward: 5’-TCTGTAGCATGCCGAGACTG-3’/
reverse: 5’- AATGAACGCCCCTAGGATCT-3’; rat
Nox4 [GenBank:NM_053524] forward: 5’-TGTCTGCT
TGTTTGGCTGTC-3’/reverse: 5’-AGCAGCAGCAG-
CATGTAGAA-3’; rat p22phox [GenBank:AJ295951] for-
ward: 5’-TTGTTGCAGGAGTGCTCATC-3’/reverse: 5’-
CGACCTCATCTGTCACTGGA-3’; rat p40phox [Gen-
Bank:NM_001127304] forward: 5’-ATGGAAGCTCCAA-
GAGCAGA-3’/reverse: 5’- AATTGTCCTTCTGG
GTGACG-3’; rat p47phox [GenBank:NM_053734] for-
ward: 5’-AGCTCCCAGGTGGTATGATG-3’/reverse: 5’-
TGTCAAGGGGCTCCAAAT-3’; and rat p67phox [Gen-
Bank:NM_001100984] forward: 5’-TCATGCATGCCAA-
GAAAGAG-3’/reverse: 5’-CCCTTCTGTCCGTTG
AACAT-3’. PCR products were separated by

electrophoresis on 1% agarose gels and visualized with
ethidium bromide. Specificity of each primer set was
confirmed by amplification of a single band of expected
size.
For Western immunoblots, whole cell lysates were

made in cell lysis buffer (Promega) supplemented with
1% SDS, sonicated and separated on precast 4-12% SDS-
PAGE gels (Invitrogen). Proteins were then transferred
to PVDF membranes and blocked with 5% milk in TBS
with 1% Tween-20 (TBST). The membranes were then
incubated overnight at 4°C with the following primary
antibodies: anti-p47phox, anti-Nox2 (both 1:1000), and
anti-p22phox and anti-p67phox (1:500 and 1:200, respec-
tively). Membranes were then rinsed, incubated in alka-
line phosphatase-conjugated secondary antibodies
(1:10,000), and a chemiluminescent signal was detected
using Lumi-Phos™ WB.

siRNA transfection
N27 cells were plated at 35,000 cells/cm2 in antibiotic-
free RPMI growth medium containing 5% fetal bovine
serum. SiRNA duplexes (siGenome On-Target Smart-
pool duplex 9 CYBA/p22phox and On-TARGETPlus
siControl Non-Target Pool; Dharmacon, Inc) were
resuspended in siRNA universal buffer (Dharmacon,
Inc) at 20 μM and stored in aliquots at -20°C. Cells (50-
60% confluent) were transfected twice at 24-hour inter-
vals with 100 nM siRNA and 2 μl Lipofectamine 2000
per ml of Opti-MEM according to the manufacturer’s
instructions (Invitrogen). After overnight transfection,
media were replaced with fresh media for 4-6 hours
before second overnight transfection. After the second
transfection, cultures were treated with MPP+ for 18
hours and ROS measured as described above. Knock-
down of p22phox expression was verified using RT-PCR
as described above.

Statistics
All data are expressed as means +/- SEM of three inde-
pendent experiments. One-way ANOVA was used for
statistical comparisons of multiple groups followed by a
Student-Newman-Keuls post-hoc test. Mean values were
considered statistically different when p < 0.05.

Results
NADPH oxidase subunits are expressed in both
dopaminergic neurons in the mouse substantia nigra pars
compacta and in the rat dopaminergic cell line N27
NADPH oxidase is present in microglia [11], astrocytes
[46], and in certain types of neurons in hippocampus
and cortex [46,47]. Here, in adult mice, we show that
dopaminergic TH immunoreactive neurons in substantia
nigra coexpress three of the NADPH oxidase subunits,
viz., Nox2, the catalytic subunit responsible for
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superoxide generation, as well as the two subunits,
p47phox and p67phox, necessary for Nox2 activation (Fig-
ure 1). The expression was predominantly cytoplasmic,
no nuclear localization was observed, and negative con-
trol staining by omitting the primary antibody did not
produce detectable immunoreactivity (data not shown).
While all TH-immunoreactive neurons expressed these
subunits, occasionally cells lacking TH expressed some
subunits, suggesting that dopaminergic neurons are not

the only cell type in substantia nigra capable of assem-
bling the NADPH oxidase enzyme. Non-TH immunor-
eactive cell candidates that express NADPH oxidase
may include other neuronal cell types, or more likely
microglia and astrocytes [48], which when activated are
known to express high levels of this enzyme [11,49].
Expression of mRNA for all the subunits of NADPH

oxidase, including NADPH oxidase subunits p22phox,
p47phox, and p67phox, as well as the cytosolic regulatory

Figure 1 Dopamine neurons in the adult female C57BL/6J mouse substantia nigra express Nox2, p47phox and p67phox subunits of the
NADPH oxidase. Immunofluorescent histochemical staining revealed the presence of Nox2, p47phox and p67phox (green) in the neurons
positive for TH (red). Merged images indicate co-labeling (yellow). Occasionally cells positive for a subunit were not dopaminergic neurons (TH-

cells). To illustrate such an example, arrows in the top row point to a Nox2+/TH- cell and arrowheads in the middle row indicate a cell that is
p47phox+/TH-. Scale bars equal 20 μm.
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NADPH oxidase subunit p40phox mRNA, which is less
involved in superoxide production, and the four Nox
homologues is present in the nigral dopaminergic neu-
ronal cell line N27 (Figure 2A). Western blotting and
immunofluorescence histochemistry of Nox2, p22phox,
and p47phox confirmed the translation of these mRNAs
in N27 (Figure 2B-D). The presence of p67phox was con-
firmed by fluorescence immunoreactivity in nigral dopa-
minergic neurons in Figure 1.

The dopaminergic neurotoxin MPP+ induces an increase
in intracellular ROS in the N27 dopaminergic cell line
MPP+ treatment of the dopaminergic N27 cell line
served here as a surrogate in vitro model of the in vivo
MPTP-treatment model of PD. In accordance with neu-
rons in normal substantia nigra (Figure 1), N27 dopami-
nergic neurons have all the subunits necessary to
produce superoxide via Nox pathways. Treating N27
cells with increasing amounts of MPP+, the active

metabolite of MPTP, corresponded to a dose-dependent
increase in the production of superoxide, which peaked
at a 20-fold increase (Figure 3A). In addition, exposure
to MPP+ at a constant level (300 μM) led to a time-
dependent increase in H2O2 accumulation that was first
detected at three hours and plateaued at 21 hours (Fig-
ure 3B).

MPP+ binding to mitochondrial complex I engenders the
initial wave of ROS production
The potential of MPP+ binding to mitochondrial com-
plex I in generation of ROS was previously shown in
competition studies in which C14-labeled rotenone com-
peted with MPP+ for binding to sub-mitochondrial par-
ticles [50]. Rotenone-treatment of MPP+ treated N27
cell cultures results in a fifty percent suppression of
H2O2 production (Figure 4). As complex I is necessary
for electron transport-dependent ATP production, it
may be that MPP+ binding to mitochondrial complex I

Figure 2 Dopaminergic cells express subunits of the NADPH
oxidase complex. (A) mRNA from untreated N27 cells was reverse
transcribed and amplified using PCR primers specific to rat NADPH
oxidase subunits. Nox1-4 subunits as well as p22phox, p40phox,
p47phox, and p67phox were identified by their mRNA expression.
Nox2, p22phox, and p47phox were also detected by their protein
expression (Western immunoblot, B-D) and cellular localization
(immunofluorescence, B-D). Scale bar equals 10 μm; all three
micrographs were taken at the same magnification.

Figure 3 MPP+ induces a dose- and time-dependent increase
in intracellular ROS in the N27 dopaminergic cells. (A) N27 cells
were treated with increasing concentrations of MPP+ (up to 1000
μM) for 18 hours and H2O2 (ROS) levels were measured using
carboxy-H2-DCFDA fluorescence and flow cytometry. ROS levels are
reported as fold increase above values observed in cells that
received no MPP+, control. * p < 0.01 compared to 0 μM MPP+
control. (B) N27 cells were treated with 300 μM MPP+ and ROS
levels were detected at different times after treatment. # represents
p < 0.05 compared to 0 hour and * represents p < 0.01 compared
to 0 hour. Data are from 3 independent experiments with n = 6
wells per experiment.
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contributes to cell killing by suppressing ATP genera-
tion while increasing superoxide production.

NADPH oxidase contributes to MPP+ induced ROS
The role of NADPH oxidase in the response of N27
cells to MPP+ treatment was examined by treatment of
cells for 18 hours with 300 μM MPP+ in the absence or
presence of increasing concentrations of NADPH oxi-
dase inhibitors phenylarsine oxide (PAO) or apocynin.
Both NADPH oxidase inhibitors led to a reduction in
NADPH oxidase activity in a dose dependent manner,
with a maximum of 40% attenuation of the MPP+
induced NADPH oxidase-mediated ROS effect at doses
of 10 μM apocynin (Figure 5A) and 100 nM PAO (Fig-
ure 5B). To further validate the role of the NADPH oxi-
dase in MPP+ driven generation of ROS, we genetically
suppressed the expression of the p22phox subunit, which

Figure 4 Complex I inhibitor rotenone attenuates MPP+
induced ROS. N27 cells were treated with MPP+ or rotenone alone,
or combined for 18 hours. H2O2 (ROS) levels were measured at that
time using carboxy-H2-DCFDA and flow cytometry and are reported
as % of MPP+ induced ROS. * represents p < 0.01 and # represents
p < 0.05, both compared to the MPP+ treated cells. Data are from 3
independent experiments with n = 6 wells per experiment.

Figure 5 Pharmacological inhibitors of NADPH oxidase and silencing p22phox using siRNA attenuate MPP+ induced ROS. N27 cells were
treated for 18 hours with 300 μM MPP+ and increasing concentrations of either apocynin (A) or phenylarsine oxide (PAO) (B). H2O2 levels were
measured using caboxy-H2-DCFDA and flow cytometry. ROS levels are represented as percent of MPP+ induced ROS. * represents p < 0.05
compared to cells receiving no inhibitor. (C) N27 cells were transfected with a non-targeting control (NTC) siRNA or a SmartPool siRNA targeting
p22phox. Total RNA was collected and reverse transcribed to cDNA. Primers complimentary to rat p22phox were used to amplify the cDNA. An
image of a single representative ethidium bromide-stained agarose gel is shown from one knockdown experiment out of three that produced
an average knockdown of 40%. (D) N27 cells were transfected with NTC or p22phox siRNA Smartpool and the intracellular H2O2 was measured
with flow cytometry as described above. * represents p < 0.05 compared to NTC siRNA-treated cells. Data are from 3 independent experiments
with n = 6 wells per experiment.
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is necessary for the activity of all the Nox isoforms of
NADPH oxidase. Such silencing of p22phox mRNA
resulted in a 40 percent reduction in p22phox expression
compared to a non-targeting control (NTC) siRNA (Fig-
ure 5C). Although the amount of p22phox silencing in
these cells is restricted by the limited transfection effi-
ciency, the examination of ROS levels in p22phox versus
NTC siRNA-transfected cells revealed a significant 20%
attenuation of MPP+ induced ROS production (Figure
5D). This gene silencing approach yielded a decrease in
ROS production that was similar to that achieved by
maximally effective concentrations of NADPH oxidase
inhibitors PAO and apocynin.

NADPH oxidase produces a delayed ROS response
following MPP+ treatment suggestive of a second wave
response
As MPP+ treatment led to an accumulation of ROS in a
time-dependent manner (Figure 3B), N27 cell cultures
were treated with MPP+ for three, 6, or 24 hours in the
presence or absence of the NADPH oxidase inhibitor
PAO. In the presence of PAO, increases in ROS levels
were not suppressed by PAO until treatment times were
prolonged to 24 hours, and this increase was not fully
suppressed by PAO treatment (Figure 6A). This suggests
that ROS production in response to MPP+ treatment
occurs in two waves; the first detectable as early as 3
hours can be accounted for by MPP+ binding to mito-
chondrial complex I, a well known source of oxyradicals
[51,52], followed, hours later, by the second wave arising
from NADPH oxidase activation. The fact that NADPH
oxidase inhibitors selectively suppressed ROS produc-
tion is consistent with the idea that this second wave of
ROS is mediated by extramitochondrial NADPH
oxidase.

De novo protein synthesis is required for the second
wave of ROS: Potential role of Nox2 synthesis in ROS
generation
As ROS are potent signaling molecules that regulate
gene expression [53], we examined the possibility that
ROS generation in MPP+ treated N27 cells requires
protein synthesis. The presence of the protein synthesis
inhibitor cyclohexamide had no effect on the MPP+
induced ROS levels after three-hours of inhibition, but
treatment with cyclohexamide for 6 hours attenuated
increase in ROS, suggesting that the second wave of
ROS requires de novo synthesis of proteins (possibly
NADPH oxidase subunits, Figure 6B).
Treating N27 cells for 24 hours with 300 μM MPP+

resulted in death of 45 percent of these cells by that
point in time (Figure 7A). This corresponded to an
increase in Nox2 protein expression in these cells as
determined by immunofluorescence (Figure 7B) and by

Western immunoblotting (Figure 7C). Nox2 expression,
measured by Western blot, was highly sensitive to MPP
+ as it was increased even at MPP+ concentration of 3
μM, which was well below the 300 μM required for cell
killing (Figure 7C).

Angiotensin receptor blocker losartan suppresses MPP+
induced ROS generation
Based on our earlier finding that losartan, an angioten-
sin-receptor blocker, rescues nigral dopaminergic neu-
rons in the MPTP mouse model of PD [54] via
inhibition of the Nox pathway for superoxide generation
[11], MPP+ treated N27 cultures were co-treated for 18

Figure 6 NADPH oxidase inhibitors and an inhibitor of de novo
protein synthesis, cyclohexamide, attenuate ROS, but only at
later time points after initiation of the MPP+ treatment. (A) N27
cells were treated with 300 μM MPP+ in the absence or presence of
10 nM PAO. Intracellular ROS levels were measured using carboxy-
H2-DCFDA and flow cytometry at 3, 6, or 24 hours after initiation of
the MPP+ treatment. * represents p < 0.001 compared to 3 hours
MPP+ and # represents p < 0.001 compared to 24 hours MPP+. (B)
N27 cells were treated with MPP+ for 3 or 6 hours in the absence
or presence of the protein synthesis inhibitor cyclohexamide (c-hex).
Intracellular H2O2 levels were measured as described above.
Treatments are plotted as a percent of the 3-hour MPP+ treatment.
* represents p < 0.001 compared to 3 hours MPP+ and # represents
p < 0.05 compared to 6 hours MPP+. Data are from 3 independent
experiments with n = 6 wells per experiment.
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hours with increasing concentrations of losartan. Con-
centrations of losartan at both 300 and 600 μM reduced
ROS generation by 30 and 50 percent, respectively (Fig-
ure 8).

Discussion
Previously emphasis was on microglia as agents of dopa-
minergic neuron cell death in Parkinson’s disease. This
was based on findings of microglial cell involvement in
6-hydroxydopamine (6-OHDA)-induced superoxide pro-
duction [55] and diminished mitochondrial ATP pro-
duction in rat mesencephalic neuron/glia cultures
[55,56]. However, our discovery of mechanisms by
which dopaminergic neurons themselves may contribute
to superoxide production adds a further dimension to
our understanding of the ways in which such cell death

occurs in the face of either environmental neurotoxin-
induced or idiopathic PD. Furthermore, our demonstra-
tion that three of the NADPH oxidase subunits, Nox2,
p47phox, and p67phox are present in dopaminergic neu-
rons in substantia nigra adds credence to a neuron cell
autonomous contribution to the loss of nigral neurons
in PD; a contribution that is over and above the known
role of Nox2, p47phox, and p67phox in microglial produc-
tion of superoxide-induced cell death.
Here we provide evidence that ROS generation by

dopaminergic neurons in response to MPP+ induced
neurotoxic stress occurs in two distinct waves. The
first wave is the result of MPP+ binding to mitochon-
drial complex I. The second wave requires protein
synthesis for production of extra mitochondrial
NADPH oxidase and ROS generation. Identification
and characterization of this two-wave cascade of ROS
generation provide insight into mechanistic intricacies
involved in neurotoxin-stimulated N27 cell death. By
analogy to the degeneration of dopaminergic neurons
observed in PD models [43,49,57,58] and potentially in
idiopathic PD [59,60], our findings provide several
novel therapeutic targets. The present report is the
first evidence from either dopaminergic or other neu-
ron cell types of a chemical stressor, in this case MPP
+, inducing two distinct waves of ROS generation that
are characterized by both temporal and cellular com-
partment separation. The occurrence of an initial wave
of ROS production, shown by rotenone competition
with MPP+ for mitochondrial complex I ROS genera-
tion, which is followed hours later by a second wave of
NADPH oxidase-generated ROS suggests that the total
burden of a cell’s ROS generation may be greater than
the sum of wave one and wave two.

Figure 7 Catalytic subunit of NADPH oxidase Nox2 is elevated
by the MPP+ treatment. N27 cells were treated with different
concentrations of MPP+ for 24 hours. (A) Survival of N27 cells as a
function of MPP+ concentration. (B) Immunofluorescent detection
of Nox2 in N27 cells cultured either in the absence (control, ctrl) or
presence of 300 μM MPP+, a concentration of MPP+ that results in
loss of 45 percent of N27 cells. Scale bar equals to 20 μm. (C)
Western immunoblot illustrating the effect of treating the cultures
with increasing concentrations of MPP+ on expression of Nox2
protein. b-actin served as a loading control. Data in panel A, are
from 3 independent experiments with n = 6 wells per experiment
and *represents p < 0.01 compared to all other concentrations
examined.

Figure 8 Angiotensin receptor blocker losartan suppresses ROS
production. Co-treatment of N27 cultures for 18 hours with 300 μM
MPP+ and with increasing concentrations of losartan results in
dose-dependent reduction in MPP+ induced H2O2 production. Data
are from 3 independent experiments with n = 6 wells per
experiment and * represents p < 0.05 compared to culture
receiving no losartan.
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During the completion of the present study, there was
a report of such a two wave response in serum starved
human embryonic kidney cells [293 HEK(T)] [61].
Serum withdrawal in these cells led to initial elevation
of ROS in the mitochondria, followed by generation of
Nox-mediated ROS 4-8 hours later, an event dependent
on Lyn tyrosine kinase. Silencing Nox1 attenuated this
second wave of ROS production in 293 HEK(T) cells, an
effect comparable to that observed here with silencing
p22phox in N27 cells. The notion that NADPH oxidase
Nox2-related generation of ROS in neurons is largely
extramitochondrial does not preclude generation of ROS
from a second intramitochondrial source, as has been
reported for Nox4 in mitochondria of cardiac myocytes
[62] and of kidney cortical cells [63].
Demonstration of synthesis of Nox2, p47phox and

p67phox, NADPH oxidase subunits that are necessary for
mitochondrial complex I-Nox responses to cellular
stress in dopaminergic neurons in intact adult substantia
nigra, together with evidence of a stress-elicited complex
I-Nox response in a MPP+ treated dopaminergic cell
line (N27) lends credence to the idea that these events
are important in PD neuropathogenesis. For example,
during hypoxia and reoxygenation of hippocampal and
cortical neurons, NADPH oxidase plays a significant
role in ROS accumulation at late stages of the stress
response [64]. In breast and ovarian tumors, crosstalk
between mitochondria and NADPH oxidase requires
mitochondrial production of ROS and Nox1 [65], and
loss of Nox1 signaling contributes to breast and ovarian
tumorigenesis [65]. Because in the current study, the
NADPH oxidase inhibitors fail to reduce ROS at early
time points following MPP+, and only do so at later
times, the reduction in ROS most likely occurred via
inhibition of a cellular signaling pathway, and not
because of any unforeseen ROS scavenging properties of
the inhibitors themselves.
Preliminarily we showed that systemic treatment of

mice with losartan, an angiotensin II receptor type 1
antagonist commonly prescribed anti-hypertensive, sup-
presses MPTP-induced dopaminergic neuron loss and
dysfunction in vivo and in vitro [54]. However, the spe-
cific mechanisms whereby losartan’s salutary effect is
brought about was unknown until our current finding
that treatment of dopaminergic cells with losartan
attenuates MPP+ induced ROS with kinetics suggestive
of a temporally-regulated, two-wave response. In addi-
tion, a characteristic distinguishing between the waves
was shown by the observation that protein synthesis is
required for superoxide production in the context of the
second wave, but not the first. Thus, we can now say
that MPP+ treatment of dopaminergic neurons elicits
protein synthesis as a requirement for generation of
NADPH oxidase subunit(s), including the catalytic

subunit Nox2. Experiments using another neurotoxin, 6-
OHDA, support such occurrence of de novo synthesis of
NADPH oxidase subunits as a part of ROS generation
in rat striatal and ventral midbrain tissues [55].
Although it is clear that superoxide is a potent signal-

ing molecule that activates a multitude of signaling
pathways [53], the mechanism by which oxidative stress
and mitochondrial dysfunction leads to changes in gene
expression is unknown. We show here for the first time
that the stress-induced initial wave of ROS production
comes from mitochondrial respiration, leads to the acti-
vation of signaling pathways involved in a second wave
of ROS production that depends on protein generation
required for assembly and phosphorylation of NADPH
oxidase subunits. Therefore, it seems logical that the
generation and phosphorylation of a cytosolic subunit(s)
of NADPH oxidase is required for setting in motion
events giving rise to the second wave. One such example
has been suggested to be important in protein kinase C-
mediated phosphorylation of p47phox, which is required
for p47phox translocation from the cytosol to the plasma
membrane for the activation of the Nox2 subunit of the
NADPH oxidase [14] and initiation of the second wave.
Although the functional significance of the second

wave remains to be characterized in full, the two waves
in the neuron resulting from—mitochondrial complex I
inhibition and extramitochondrial NADPH oxidase acti-
vation —may play a role in preconditioning as an adap-
tive stress response (a.k.a. hormesis) in which brief
exposure to a sub-lethal stressor fortifies cellular
defenses in an effort to protect cells from a subsequent
exposure to severe stress. Such hormetic effects could
be explained, for example, by activation of AT1 recep-
tor/Nox pathway by angiotensin II, which elevates activ-
ity of key antioxidant enzymes such as catalase,
superoxide dismutase and glutathione peroxidase in rat
hypothalamus [66]. Furthermore, mitochondrially pro-
duced ROS and ATP-sensitive potassium channels have
been shown to play a role in the preconditioning
machinery [67]. Whether neuronal ROS originating
from the two waves act to balance such adaptive
machinery awaits assessment.
ROS generation is promoted by angiotensin II binding

to the AT1 receptor, which induces a protein kinase C-
Nox signaling cascade and leads to elaboration of super-
oxide from NADPH oxidase [19]. Losartan competes for
binding to the AT1 receptor for suppression of angio-
tensin II-induced increases in ROS production (Figure
9). Although the existence of an extramitochondrial sec-
ond wave is clear from our data, the specific mechanism
(s) by which the mitochondria detect oxidative stress in
dopaminergic cells and induce the second wave is
unknown, one candidate for mitochondrial oxidative
stress recognition has been proposed, viz., inactivation

Zawada et al. Journal of Neuroinflammation 2011, 8:129
http://www.jneuroinflammation.com/content/8/1/129

Page 10 of 13



of mitochondrial aconitase, an iron-sulfur-containing
enzyme necessary for ATP production. Increases in the
release of ferrous iron from mitochondrial aconitase cat-
alytic center suggest that iron may function as an oxida-
tive stress biosensor [68,69]. However, it is conceivable
that the Nox-induced ROS signals not only affect intra-
cellular signaling pathways that precipitate the two-wave
cascade of ROS generation and in this way may influ-
ence neighboring cells, including neurons, astrocytes,
and microglia, all of which, as we show here in dopami-
nergic neurons, express NADPH oxidase [8,70]. In fact,
CD200 ligand expressed on the surface of neurons, but

not microglia, interacts with microglial CD200 receptor
(CD200R) purportedly maintaining microglia in a resting
state [71]. Reduced CD200/CD200R interactions
between neurons and microglia may contribute to Par-
kinson [72] and Alzheimer pathogenesis [73] via activa-
tion of microglial NADPH oxidase.

Conclusions
From our findings that NADPH oxidase subunits are
universally expressed in nigral dopaminergic neurons in
rats and mice, we conclude that these subunits contri-
bute to ROS generation. The fact that rat N27 cells
undergoing neurotoxic stress display a two-wave cascade
of oxidative stress, as we show here by treating these
cells with MPP+, is consistent with wave one being the
result of the binding of MPP+ to mitochondrial complex
I. Furthermore, the finding that the second wave can be
suppressed by treatment with pharmacological inhibitors
of NADPH oxidase implies that the second wave is the
result of the activation of extra-mitochondrial NADPH
oxidase. The existence of the two waves allows for seg-
regation of ROS production into distinct sub-cellular
compartments (Figure 9), suggesting that temporal and
translational controls are critical for the trans-compart-
mental ROS signaling in neurons. Understanding of this
process takes a key step toward development of more
efficacious preventive or disease-modifying strategies for
PD. In addition, such strategies may be useful in other
neurodegenerative conditions that are aided and abetted
by excessive ROS.
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(c-hex), and by losartan blockade of AT1 receptor. Cell surface Nox2-
generated superoxide is readily dismutated to H2O2, which can act
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superoxide with nitric oxide can generate highly cytotoxic
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