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Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under 
the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infec-
tion, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there 
remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at 
high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has 
a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential 
in the development of effective medicines. Therefore, in a bid to update and focus our research community’s understanding 
of RSV’s interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to 
combat this global viral threat.
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Introduction

Respiratory syncytial virus (RSV) remains a significant 
burden to global health, with nearly all children thought to 
be exposed to this virus by the age of two, making it the 
most common cause of paediatric respiratory tract infec-
tion (RTI) and the biggest risk factor for severe infection in 
infants [1]. Elderly individuals are the second major group 
at risk of severe infection, with similar rates of intensive care 
admission and mortality to influenza. Indeed, RSV poses 
a particular threat to residents of long-term care facilities 
[2]. RSV outbrakes are observed worldwide and follow a 
seasonal pattern in most parts of the world, with significant 
occurrence during winter months [3, 4]. However, in some 

global regions, RSV infections occur throughout the year but 
still peak during the winter [5, 6].

Virus structure and epidemiology

RSV is a 15.2 kb, negative sense, RNA virus, with 10 genes 
producing 11 proteins. The viral envelope has three trans-
membrane proteins: the fusion glycoprotein (F), attachment 
glycoprotein (G) and the small hydrophobic (SH) protein. 
Other structural proteins are nucleoprotein (N), large RNA 
polymerase (L), phosphoprotein (P), matrix protein (M) and 
transcription factors (M2-1 & M2-2). In addition to these, 
RSV produces two non-structural (NS) proteins, NS1 and 
NS2 (Fig. 1) [7].

There are two major antigenic strains of RSV, RSV-A 
and RSV-B, which have distinct epitopes in the F and G 
proteins, as well as molecular differences in several genes 
[8, 9]. Both strains co-circulate, often alternating dominance 
annually [4]. There is some evidence that RSV-A is associ-
ated with higher morbidity, though other studies have shown 
no significant variation between strains [10–15]. The major-
ity of RSV-infected patients recover after mild illness, how-
ever, a study in the UK reported a small percentage (6.9%), 
developed an acute respiratory infection (ARI) and required 
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hospital admission, 2.7% needed intensive care and 1.5% 
required a ventilator [16]. It is estimated, that by the age 
of two, nearly all children have had at least one RSV infec-
tion, which could equate to 3.4 million children/year needing 
hospitalisation [17]. Large scale European epidemiological 
studies, showed that outbreak patterns vary between coun-
tries, with those further east seeing a later start to the RSV 
season, while more northerly countries have a longer RSV 
season [4]. Variation in disease burden is tied to metrologi-
cal conditions; RSV fairs best in cool temperatures (6.3 °C) 
and high humidity (84%), meaning cool, dry winters are 
predicted to have less RSV-related illness, than warm, wet 
conditions [18].

RSV’s primary infection site is the respiratory tract epi-
thelium. The virus is spread by droplet, contact and aerosol 
transmission [19, 20]. Infection can proceed to the lungs, 
causing serious disease; with the sloughing of dead cells 
enabling the virus to spread further into the respiratory air-
ways [21]. There is also evidence that severe RSV infection 
in early life, increases the likelihood of asthma [22–25]. 
However, this phenomenon could also be a result of undiag-
nosed genetic predisposition to respiratory infection, thereby 
enhancing the observed associated with asthma develop-
ment, highlighting the need for longer-term studies to fully 
elucidate this theory [26–28]. Once infected, infants are par-
ticularly susceptible to developing a severe infection; the 
immune system of an infant has fewer degenerative pathways 
than adults, relying heavily on their innate immune response 
and maternal antibodies to protect against infection [1, 29, 
30]. The bronchial lumens of infants are underdeveloped, 
and are, therefore, narrower and more likely to be blocked 
by excessive mucus produced in response to infection, lead-
ing to reduced airflow, poor gas exchange in the alveoli and 
low blood oxygen levels [31]. Efficient clearance of a virus 
requires a strong Th1 response to activate IFN-γ producing 

cytotoxic T cells [32, 33]. However, multiple studies have 
shown that infants with RSV infection have a skewed 
response, producing a Th2 cytokine profile [34, 35]. RSV 
infection in young infants increases expression of Thymic 
Stromal Lymphopoietin (TLSP), which has been shown to 
be vital for immunopathology in mouse models and has been 
linked to later asthma development [25, 35]. TLSP alters 
T cell differentiation via dendritic cells (DCs), with TLSP 
primed DCs causing CD4 + T cells to express Th2 character-
istic cytokines [36, 37]. TLSP is also able to induce type two 
innate lymphoid cells (ILC2) which play a significant role in 
allergy [25, 38]. RSV infection also increases expression of 
IL-33; this cytokine acts on both DCs and ILC2 to promote 
the differentiation of Th2 cells, increase mucus production 
and heighten airway sensitivity [39, 40]. The ability of RSV 
to increase levels of TLSP and IL-33 and thus promote a Th2 
response, may indeed be responsible for negatively influenc-
ing the overall antiviral response.

With no vaccines currently available, limiting the spread 
of RSV infection remains under the control of good hygiene 
and hand washing; however, the close proximity of indi-
viduals at day-care centres and schools make these locations 
common epicentres of RSV outbreaks [19, 20, 41].

Treatments and vaccines

Despite affecting millions of people each year, there is still 
no fully effective, curative therapeutic available for RSV. 
Patients admitted to the hospital are generally given support-
ive treatments, including oxygen and airway clearance [42, 
43]. Ribavirin is the only anti-viral drug on the market for 
use against RSV, though it is currently not recommended by 
the American Association of Paediatrics, guidelines vary 
between regions [42–46]. First developed in 1972, Ribavirin 

Fig. 1  RSV structure. The RSV 
genome encodes for 10 genes, 
giving rise to 11 proteins. The 
non-structural proteins, NS1 
and NS2, are not present in the 
viron, but are expressed in high 
levels on infection of the host 
cell
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is a guanosine analogue, which limits the replication of several 
RNA and DNA viruses. While originally licenced for the treat-
ment of RSV, its most significant use has been in the manage-
ment of Hepatitis C Virus (HCV) [47]. In HCV treatment, 
Ribavirin was used to good effect in conjunction with other 
drugs, including the anti-viral cytokine, Interferon (IFN)-α 
[47–49]. While not widely prescribed, Ribavirin is still used 
in “extreme” RSV cases [42, 45, 50–52]. A prophylactic 
preventative anti-RSV antibody, Palivizumab, is also avail-
able. Produced by MedImmune, this monoclonal antibody is 
administered through monthly intramuscular injections during 
the RSV season [46, 53]. Because of its preventative nature, 
accurately measuring the effectiveness of Palivizumab has 
proved difficult. Evidence suggests that Palivizumab signifi-
cantly reduces RSV-related hospitalisations [54–56]. However, 
updated guidelines from the American Academy of Paediatrics 
stated that Palivizumab “has limited effect on RSV hospitali-
zations on a population basis, no measurable effect on mor-
tality, and a minimal effect on subsequent wheezing” [57]. 
Palivizumab’s high cost generally constrains its use to only 
“high risk” children, including infants born prematurely, those 
with congenital heart disease (CHD) or chronic lung disease 
(CLD) [58–60]. In addition, a randomized trial showed that 
Palivizumab should not be used as treatment; administering 
Palivizumab to infants with RSV bronchiolitis had no impact 
on outcomes [61]. Palivizumab’s effectiveness and cost are 
major limiting factors in its use against RSV; therefore, global 
research aims must remain focussed on the development of an 
effective treatment and preventative vaccine.

RSV vaccine research began soon after the virus was first 
isolated in 1956, but has proven challenging. The 1966 trial 
of a formalin-inactivated RSV vaccine (FI-RSV), sensitised 
children to the virus, leading to enhanced disease in the 
immunised cohort. Unfortunately, this resulted in hospitali-
sations and the death of two children [62–64]. This failure of 
FI-RSV instilled caution over new RSV vaccines and halted 
the quest for a medicinal solution. However, this period of 
“reflection” sparked intensive research in the immune eva-
sion and modulatory mechanisms of RSV; generating sig-
nificant developments in our understanding of the virus, not 
least the discovery that RSV is attenuated upon deletion of 
the SH, M or NS1/2 genes, revealing these as prime targets 
for therapeutic intervention [65–68].

RSV presents a challenging, but essential global threat to 
harness. Several high-risk patient groups would particularly 
benefit from an effective RSV treatment. Indeed, RSV can be 
fatal for neonates and immunocompromised individuals, for 
whom any vaccines offer little protection. It is RSV’s mul-
tiple “anti-immune” effects, that cloud our current under-
standing. Therefore, increased knowledge of RSV’s cellular 
and molecular interactions and subversive mechanisms are 
fundamental in facilitating future drug and vaccine design.

Immune evasion mechanisms of RSV

The immune response can be split into two branches: Innate 
and Adaptive. Together they provide comprehensive protec-
tion from pathogens, thus limiting damage to the host. The 
innate response is fast acting and non-specific, while the 
adaptive response provides targeted clearance of the patho-
gen and lasting immunological memory, that quickly elimi-
nates the pathogen upon reinfection. However, the key to 
the success of all pathogens is their ability to evade and sub-
vert the immune response. RSV has multiple mechanisms 
to limit host immunity, allowing it to replicate unhindered, 
ultimately leading to tissue damage and subsequent clinical 
symptoms of the disease. Viral evasion is often mediated 
via conserved mechanisms and limit the immune response 
at several stages of the viral life cycle [69, 70]. RSV’s inter-
action with the immune system at specific infection and 
replication points are key to its survival (Fig. 2). Having a 
genome that codes for 11 proteins provide RSV with mul-
tiple mechanisms to mask its replication and modulate the 
immune response [17]. While there is still much to elucidate, 
the effect of several specific RSV proteins upon immunity 
has been well characterised (Table 1).

Intracellular immunomodulation 
mechanisms

RSV, like many pathogens, influences cellular signalling 
pathways, thus disrupting the overall immune response, and 
limiting the speed and effectiveness of anti-viral clearance.

NS1 and NS2

The two non-structural (NS) proteins of RSV, NS1 and NS2 
(which are made up of 139 and 124 amino acids, respec-
tively), are the first proteins to be produced by the virus upon 
infection [7, 46]. These two proteins show little sequence 
homology, except for a short region at the C-terminus [71]. 
However, there is a high level of sequence identity between 
NS1 and NS2 of circulating RSV strains. Indeed, the con-
servation of the NS proteins between RSV strains suggests 
they hold an important role in viral replication.

As their name suggests, the NS proteins have no struc-
tural role, with NS1 and NS2 deficient RSV (∆NS1/2-RSV), 
still able to replicate, albeit with poor growth in immuno-
competent cells [67]. The ∆NS1/2-RSV grows well in IFN 
receptor-deficient Vero cells [72, 73]. In immunocompetent 
cells Type I IFNs are released when a pathogen is detected; 
these IFNs act in an autocrine and paracrine manner, bind-
ing to their specific IFN receptors and triggering activation 
of the Janus kinase/Signal Transducer and Activator of 
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Transcription (JAK/STAT) pathway. JAK/STAT signalling 
promotes the transcriptional upregulation of hundreds of 
IFN Sensitive Genes (ISGs) (often referred to as the “Inter-
ferome”), including cytokines, chemokines and anti-viral 
mediators [74]. ISGs are translated into effector proteins, 
which enhance the immune response and limit infection 
(Fig. 3). The Type I IFN pathway has been shown to be 
essential in clearing several viruses, including HCV and 
Influenza A [75, 76]. However, RSV infection only induces 
a weak anti-viral IFN response, that is insufficient to clear 
the virus [77–79].

Several studies have investigated the ability of the RSV 
NS proteins to limit IFN signalling, with both NS1 and NS2 
documented to suppress ISGs [80–83]. NS1 and NS2 are key 
to RSV’s regulation of the IFN response. NS1 harnesses a 
specific cellular E3 ligase, which selectively targets STAT2 
for ubiquitination and proteasome-mediated degradation 
[81, 84]. In removing STAT2, RSV acts to limit anti-viral 

JAK/STAT signalling, thereby blocking the normal function 
of Type 1 IFNs and ultimately reducing ISG transcription 
[81, 82]. The presence of NS1 also modulates the T cell 
response, reducing the number of anti-viral CD8 + T cells 
and Th17 cells [85, 86], while also bolstering the activation 
of Th2 cells [34, 87], which, if uncontrolled, progresses the 
physiological symptoms of the disease. Additionally, the 
NS1 protein is associated with Mitochondrial Anti-viral 
Signalling Protein (MAVS), which may block its interaction 
with Retinoic Inducible Gene I (RIG-I), reducing IFN pro-
duction in infected cells [88]. NS2 has also been implicated 
in targeting RIG-I, although this study was unable to show 
an interaction with MAVS [89].

Type 1 IFNs also sensitise infected cells to programmed 
cell death through the Fas-Associated protein with Death 
Domain (FADD) and Caspase-8 pathways. The death of 
infected cells effectively removes the virus’s “life-line”, 
limiting viral production and preventing infection of 

Fig. 2  The RSV Life Cycle. (1) The virion initially binds to the host 
cell through its G protein and membrane fusion is mediated by the F 
protein, which anchors into the membrane of the target cell and then 
folds on itself to bring the viral and host membranes into contact, 
resulting in membrane fusion. (2) The genome of the virus is used 
for protein synthesis, with large amounts of NS1/2 and sG protein 
produced shortly after infection. These proteins protect the replicat-

ing virus from the host immune defences. (3) The viral genome is 
replicated and structural proteins are produced. (4) The surface gly-
coproteins are synthesised in the Golgi body and deposited in the 
host membrane. (5) Assembly of the new virion takes place in the 
cytoplasm, before budding through the host cell membrane, picking 
up its surface glycoproteins as part of this process. sG protein is also 
released
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surrounding tissue [90]. In addition to limiting IFN signal-
ling, NS2 also stimulates the phosphoinositide 3-kinase 
(PI3K) pathway, leading to delayed cell death and enhanced 
cell survival [71]. This prevents the action of NK and 
CD8 + T cells, allowing the virus to continue replicating in 
infected cells [71, 85]. RSV is also able to upregulate the 
expression of the Programmed Cell Death Ligand (PD-L)1, 
enabling infected cells to attenuate CD8 + T cell-mediated 
killing [91]; indeed, these discoveries reveal that the virus 
uses multiple molecular mechanisms to limit cell death. As 
well as the direct ubiquitination of STAT2, NS1 and NS2 
have been linked to the reduction of several signalling mol-
ecules, including RIG-I, IRF3, TRAF3 and IKKε, further 
highlighting the broad spectrum of immune signalling com-
ponents RSV targets to ensure the propagation of its infec-
tion and replication lifecycle [89, 92, 93].

Interestingly, type III IFNs have also been shown to be 
important in RSV infection. Much like type I IFNs, type 
III IFNs induce an anti-viral state, however, while type I 

IFNs are recognised by almost all cell types, type III IFNs 
are only detected by a subset of cells, typically those in the 
mucosal membrane, including macrophages, lymphocytes, 
Plasmacytoid DCs.

(pDCs) and epithelial cells [94]. This restricted expression 
of IFN III receptors allows enhanced response in specific cells 
without stimulating neighbouring cells. It is postulated that the 
restricted response to type III IFNs may have evolved to enable 
a selective anti-viral response in cells most likely to encounter 
viral infection [95, 96]. Although they bind different receptors, 
both type I and III IFNs activate the formation of Interferon 
Stimulated gamma factor 3 (ISGF3) (Fig. 3), leading to ISG 
production. Both type I and III IFNs are produced by and can 
act on airway epithelial cells, revealing type III IFN’s impor-
tance in the context of viral respiratory infections [94, 95]. 
Both type I and III IFNs are produced at low levels in response 
to RSV infection in the A549 cell line, however, the removal 
of the NS proteins causes an increase in all IFNs, highlight-
ing the role of these RSV proteins in suppressing the innate 

Table 1  RSV proteins with 
documented immune evasion 
roles

RSV protein Primary funcon Immune evasion

F protein Fusion Protein (Targeted 
by Palivizumab)

Contains variable regions to limit immune memory response 
between stains [161]

G protein A�achment to cell 
membrane

Heavily Glycosylated, limi�ng recogni�on by an�bodies [118]

Contains variable regions to limit immune memory response 
between stains [122]

CXC3R1 binding ability [132]

Soluble ‘decoy’ form to limit immune cell migra�on [131,162]

Promotes a Th2 response [129,163]

SH protein Unknown Reduces TNF-α sensi�vity [111]

Reduces IL-1β sensi�vity [146]

Inhibi�on of apoptosis [111]

Disrup�on of cell surface membrane [143,164]

N protein Nucleoprotein Co-localised with RIG-I & MAVS to a�enuate IFN response [150]

Impairs immunological synapse forma�on [149]

NS1 protein Immune evasion Limits IFN signalling [67,80–82,84,92]

Targets STAT2 for ubiqui�na�on and degrada�on [81,82,84]

Co-localised with MAVS to a�enuated the IFN response [88]

NS2 protein Immune evasion Limits IFN signalling [67,80,85,89,92]

Limits CD8+ memory [85]

Delays cell death [71]

RSV interacts with the host through several of its proteins. Extracellular proteins highlighted in yellow 
and intracellular proteins in blue. Through each of its proteins RSV manipulates the immune response, 
creating a favourable environment for its replicative lifecycle and making the host more susceptible to 
infection
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immune signalling that induces these anti-viral cytokines [97, 
98]. Additionally, investigating IFN production in primary 
nasal epithelial cells showed type III IFN production, but not 
type I, is induced by RSV [99]. This suggests that primary 
human nasal epithelial cells behave differently to cell lines, 
and that specific cell lines also mount differential responses; a 
factor that should be considered when reviewing the literature 
and designing physiologically relevant experiments [99–101].

While NS1 and NS2 together severely impair the IFN 
response in humans, it is thought that the scope of their 
interplay is still not fully understood. Indeed, how these 
proteins function in different species further confuses the 
issue, with bovine RSV (bRSV), NS proteins appearing to 
target IFN production by blocking IRF3 activation, rather 
than blocking the IFN-mediated JAK/STAT signalling [102].

Mechanisms to limit antigen recognition

The surface of each virion holds the F, G and SH proteins. 
The G protein enables attachment of the virus to the host 
cell and the F protein initiates fusion of the host and viral 
membranes [103]. To enable viral entry into the target 
cell, initial contact is made through the G protein which 
allows the engagement of a secondary receptor, causing the 
activation of the F protein and membrane fusion (Fig. 4). 
Which cell surface proteins are used by G and F are debated. 
Extensive studies using submerged cell lines have shown 
that heparan sulfate is needed for RSV entry [104, 105], 
while other studies have shown that CX3CR1 is sufficient 
for viral entry [106, 107]. Investigations using human airway 
epithelial (HAE) cultures have seen low levels of heparan 
sulfate expressed on the apical cell surface [108], suggesting 

Fig. 3  TLR & IFN signalling. (1) Toll-like Receptor 3 & 8 detect 
intracellular pathogens by detecting dsRNA and ssRNA, respectively. 
Once initiated, signalling cascades activate transcription factors, (2) 
which upregulate anti-viral IFNs (Type I, II and III) and pro-inflam-
matory cytokines. (3) IFNs act on the infected and neighbouring 
cells by binding the Interferon receptors (e.g. IFNAR). (4) Change 
in receptor conformation allows the receptor-associated kinases, 
Tyk and Jak1, to trans-phosphorylate, which in turn phosphoryl-

ate receptor subunits, providing docking sites for STAT proteins. (5) 
Receptor-associated STATs become phosphorylated, dissociate from 
the receptor and form homo- or hetero-dimers. The IFN-α-activated 
STAT1:STAT2 dimer binds IRF9, forming a complex that translo-
cates to the nucleus and stimulates the expression of Interferon Sensi-
tive Genes (ISGs). RSV NS proteins have been shown to inhibit IFN 
signal transduction by impairing STAT activation



5051Revisiting respiratory syncytial virus’s interaction with host immunity, towards novel…

1 3

that the use of heparan could be less clinically relevant 
[107–110].

Less is known about the role of the SH protein; while it 
is not needed for viral growth, the SH protein is conserved 
across all strains of RSV and is thought to influence viru-
lence [46, 111, 112]. Their prominent external placement of 
the G and F proteins makes them key antigens for immune 
recognition, as a result, RSV has developed several mecha-
nisms to limit host detection of both proteins.

G protein

The G protein is the major attachment protein of RSV and 
has been shown to bind heparan sulfate on the surface of 
immortalised cell lines and CX3CR1 on primary ciliated 
cells [107, 110, 113]; indeed, heparin reduces RSV infection 
of cell [114], and antibodies that prevent G protein–CX3CR1 
interaction reduce RSV infection of mice [115]. While low 
levels of CX3CR1 are seen in both the upper and lower 

respiratory tract of infants, RSV has been shown to preferen-
tially infect CX3CR1-expressing cells [116]. Another study 
found that removing RSV’s CX3C domain had no impact on 
the infective potential and replication of RSV [117]. To pro-
tect the G protein from detection it is heavily glycosylated. 
Glycosylation is a common viral strategy used to protect 
the antigenic protein from antibody recognition [118, 119]. 
This mechanism allows the viral glycan structure to change, 
frequently altering the macrostructure of the G protein and 
thus masking the protein backbone from antibodies, which 
effectively limits their affinity.

Large variation in oligosaccharide arrangement across 
RSV strains also generates antigenic variation, which, in 
turn, limits the efficiency of immune memory, as previ-
ously generated antibodies have a poor affinity to seasonal 
variants of the G protein [120]. In addition, G protein 
frameshifts, point mutations and premature stop codons are 
regularly observed between seasonal strains [121]. These 
“immune avoidance” strategies decrease the likelihood of 
neutralising antibodies (against the G protein), being pro-
tective between seasons, effectively rendering immunologi-
cal memory redundant against RSV infection. To avoid the 
adaptive immune response further, the G protein contains 
two hypervariable regions within its ectodomain, allowing 
regular mutation of antigenic epitopes and preventing recog-
nition by antibodies selected for during a previous infection, 
confounding immune memory further [11]. These variations 
in RSV are used as the basis for its strain classification; spe-
cifically into RSV-A and RSV-B genotypes [12, 122]. As 
well as suppressing an effective humoral response, antigen 
variability enhances virus pathogenicity; in 2010, a new 
genotype of RSV-A was discovered in Ontario, Canada, 
named RSV-A ON1. RSV-A ON1 contains a 72 nucleotide 
duplication at the C terminus of the G protein [123]. This 
strain is now observed worldwide; a study in Vietnam saw 
that as RSV-A ON1 spread, there was an increased risk of 
lower respiratory tract infections and pneumonia [124].

As well as limiting the antibody response, heavy glyco-
sylation of the G protein also hampers antigen presentation 
to T cells. To activate T cells viral antigen are presented by 
antigen-presenting cells (APC), such as DCs, through the 
major histocompatibility complex (MHC) and costimulatory 
molecules. The resulting structure forms an immunological 
synapse [125]. This stabilises the interaction between the 
MHC and T cell receptor, allowing correct alignment and 
activation of cognate T cells. If the presented antigen has 
sufficient affinity to the three complementary-determining 
regions of the T cell receptor, the T cell is activated and 
begins affinity maturation. Heavy glycosylation of proteins 
can disrupt this process, curtailing T cell activation [118]. 
During processing for presentation, antigens have some or 
all of the oligosaccharide groups removed by N-glycanase, 
before proteolytic cleavage within lysosomes. Any remaining 

Fig. 4  The RSV F protein facilitates the fusion of the viral and host 
membranes. The stable form of the F protein anchors its hydrophobic 
N-terminus into the membrane of the target cell. The extended form 
of the F protein is not stable and the coils of the Heptad repeat A 
(blue) and Heptad repeat B (green) domains fold together. This over-
comes the hydration force, to allow the viral capsid to fuse with the 
cell
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large oligosaccharides can affect the proteolytic cleavage, 
impacting the T cell repertoire produced. These short anti-
gens bind to vacant MHC molecules in the lysosome, before 
being trafficked to the surface of the cell [126]. As a result, 
RSV infection generates a limited T cell response against 
the G protein. As CD4 + T cell help is critical in the affin-
ity maturation of B cells, this process further hinders the 
generation of high affinity neutralising antibodies that can 
target the G protein.

The RSV G protein can also be produced in a soluble 
form (sG), which acts as an immune “decoy” (Fig. 2). The 
sG protein is produced in large quantities at the beginning of 
the viral life cycle, flooding the surrounding area and limit-
ing the effectiveness of G-specific antibodies upon the actual 
RSV virion [127]. The creation of sG proteins is achieved 
by initiating transcription at the second AUG codon; this 
removes 65 amino acids from the N-terminal, the transmem-
brane region that normally anchors the G protein in the viral 
capsid. This shorter, truncated version has a hydrophobic 
amino terminus and is trafficked out of the infected cell and 
can be detected in the culture medium [128]. The combina-
tion of highly variable glycosylation and sG protein release, 
could limit the effectiveness of any G-specific antibodies 
and hinder effective immune memory. When studied in vivo 
it was found that sG protects RSV neutralisation from both 
G- and F-specific antibodies [127]; while the antibody decoy 
model suggests that sG would result in protection from 
G-specific antibodies, sG also reduced levels of F-specific 
antibodies, suggesting that sG uses multiple mechanisms 
to reduce the antibody response. Indeed, these modulatory 
effects of sG protein could also alter cytokine responses, 
which, in turn, limit the Th1 response [129, 130]. Interest-
ingly, RSV lacking sG increases pro-inflammatory modula-
tors, such as the chemokines CCL5 and IL-8; these find-
ings suggest a role for the sG in blocking the recruitment of 
immune cells (specifically T cell and neutrophils), to the site 
of infection [130]. Furthermore, sG protein also limits the 
impact of antibody-dependent cell-mediated cytotoxicity and 
clearance of virus particles through the complement system 
[131], revealing yet another immune-modulatory effect of 
this soluble viral protein. Importantly, while these discov-
eries reveal how the RSV sG protein launches an effective 
immune evasion strategy, which affects both the innate and 
adaptive responses, they also highlight that it is not the only 
mechanism by which RSV suppresses and avoids immunity.

The G protein contains a CX3C motif (in both in its solu-
ble and membrane-bound form), which acts to limit immune 
cell recruitment and thus modify the immune response [106, 
132]. Through its CXC3 motif, RSV’s G protein acts as a 
mimic of the chemokine CX3CL1 (Fractalkine). As well 
as blocking the action of CX3CL1, the RSV’s CX3C motif 
allows the attachment of viral particles through the CX3CR 
receptor, aiding RSV infectivity [107, 117]. In addition, the 

CX3CR region reduces IFN production, with reduced levels 
of IFN-α2, IFN-λ1 and IFN-λ2 observed from A549 cells 
infected with WT RSV, compared to a CX3CR motif mutant 
version of RSV. This reduced IFN response limits the anti-
viral activity of the cell, increasing opportunity for RSV 
replication [132]. Co-culturing PBMCs with A549 epithe-
lial cells infected with WT or CX3C-mutated RSV strains 
influenced the expression of anti-viral cytokines in several 
immune cell types. A greater proportion of monocytes and 
pDCs produced IFN-α and TNF-α, and more CD8 + and 
CD4 + T cells produced IFN-γ, when co-cultured with A549 
cells infected the CX3C-mutated RSV, compared to the WT 
strain [132]. As pDCs are a major source of Type I IFNs 
and hold an important role in shaping the overall immune 
response, RSV’s influence over this cell type, through its 
G protein, is of major importance to our understanding of 
RSV’s immune evasion strategy. Furthermore, the pres-
ence of the CX3CR motif is also associated with reduced 
T cell trafficking, CD8 + T cell function and IFN-γ expres-
sion, revealing yet another key function for this region in 
blocking effective immunity [106]. Collectively, these dis-
coveries show the RSV G protein to have a broad role in 
immunomodulation, allowing the virus to limit the impact 
of G-specific antibodies, reduce immune cell migration to 
the site of infection and alter key cytokine production, thus 
impacting the normal function of several immune cell types.

F protein

The activity of the F protein is thought to be essential for 
viral replication and is highly conserved between RSV-A and 
RSV-B strains [122, 133]. Its positioning on RSV’s surface 
and high level of sequence homology between strains makes 
the F protein a prime target for vaccine development. The 
monoclonal antibody therapeutic, Palivizumab, targets the 
F protein and can neutralise RSV replication, offering some 
protection to high-risk patients. While this indicates that tar-
geting the F protein provides protection against the majority 
of RSV strains, emerging RSV strains that contain a N276S 
mutation within the F protein, are resistant to Palivizumab 
[134, 135]. When the virion comes into contact with the host 
cell, the F protein undergoes a conformational shift, with the 
hydrophobic N-terminus anchoring into the target membrane 
(Fig. 4). The F protein then folds back in on itself to bring 
the viral and target membranes together causing membrane 
fusion [136–140]. Initial work on designing antibodies and 
small molecules against the F protein were hampered by 
the multiple confirmations the protein forms; indeed, target-
ing the post-fusion F protein form had little clinical benefit. 
The crystal structures of both the pre- and post-fusion F 
protein have now been solved which, it is hoped, will lead 
to the development of new therapeutics which can inhibit 
its function [133, 141]. Previous small peptides have been 
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developed for therapeutic use against the RSV F protein, but 
high costs and the requirement for frequent injections limits 
their appeal [113].

Though the G protein is the main attachment protein of 
RSV, the F protein is also able to bind host cells; this degen-
erate function protects against potential loss of function 
mutations in the G protein, which is much less stable than 
the F protein [137].

The F protein has been shown to allow preferential infec-
tion of neonatal B regulatory cells (nBreg). F protein binds 
to nBregs through the B cell receptor (BCR), causing cel-
lular upregulation of CX3CR1, which is bound by the G 
protein, through its CX3C domain, allowing infection of 
the cell. RSV infection of nBregs causes an increase in the 
production of anti-inflammatory IL-10, thus supressing Th1 
activity [142]. This activity was observed to be specific to 
nBreg cells found in both cord and infant blood immedi-
ately after birth but significantly decreased with age, with 
less than 2% of CD19 + B cells being nBregs by the age 
of 12 months. Indeed, this observation may explain why 
younger infants have such a significant risk factor for severe 
RSV infection.

SH protein

The final protein on the surface of the RSV capsid is a type II 
transmembrane protein, the small hydrophobic (SH) protein. 
Structural studies suggest that SH functions as a viroporin 
and may be able to form pores in cell membranes, altering 
membrane permeability [143, 144]. SH deletion mutants 
(ΔSH-RSV) are still able to enter cells and replicate, how-
ever, murine experiments have shown that the ΔSH-RSV 
is less virulent than the WT strain [111, 112, 143, 145]. 
Although the SH protein mechanism is not yet fully under-
stood, research suggests that it has a role in prolonging the 
life of infected cells; this insensitivity to apoptosis permits 
increased viral replication [111]. The presence of the SH 
also influences cytokine production, with the ΔSH-RSV 
inducing increased IL-1β and TNF expression [111, 146]. 
As a result, SH deletion mutants have been explored as live 
attenuated vaccine candidates, though, to date, none have 
been brought to market [147].

N protein

The nucleoprotein, together with the phosphoprotein (P), 
coats the RSV RNA genome in a nucleocapsid to protect it 
from degradation [7]. Structural analyses have shown that it 
forms a left-handed helix around the viral genome [148]. As 
well as this key structural role, the N protein has also been 
shown to have an immune evasion function. Despite being 
a nucleoprotein, N protein is also present on the surface 
of infected epithelial cells and DCs early during infection 

[149]. Additionally, the presence of N protein in a bi-lipid 
membrane prevents the formation of mature immunological 
synapses, leading to a reduction in T cell activation [149]. 
The ability of RSV to modulate T cell activation also affects 
antibody production; with fewer naïve T cells activated, 
there are fewer T follicular helper cells and consequently 
a reduction in B cell activation. Lifland et al., found that 
after 6 h RSV infection, the N protein co-localised with 
RIG-1 and Melanoma Differentiation Associated Gene 5 
(MDA5), and later during infection, viral inclusion bodies 
were observed containing MAVS and MDA5 [150]. This 
interaction of the N protein with the RIG pathway compo-
nents, limits the subsequent anti-viral IFN response, thereby 
enabling more efficient, undisturbed, RSV replication.

Future vaccine and treatment development

With an estimated 3.2 million RSV-related hospital admis-
sions each year, the development of vaccines is key to pro-
tection and control of this virus [151]. The nature of RSV’s 
infectivity and immune evasion strategies has hindered the 
development of a vaccine that balances safety and efficacy. 
The spectrum of different immune profiles of the high-risk 
groups (infants, children, pregnant women and the elderly), 
adds a layer of complexity, that has stunted successful vac-
cine development [134]. Where available, the standard 
treatment of care for children hospitalised with RSV-related 
LRTI is to mitigate the symptoms of bronchiolitis with fluids 
and oxygen. Ribavirin is administered in some countries, 
though its often morbid side effects (such as potential tera-
togenicity), high cost and poor effectiveness has limited its 
widespread use against RSV [44, 45, 50–52].

The primary purpose of any vaccine is to generate a sig-
nificant long-lasting antibody and memory B and T cell 
response, thus protecting against future infection. However, 
“natural” RSV infection only generates short-lived antibody 
responses, with two RSV infections thought to be required to 
generate protective antibodies, which even then can rapidly 
wane [103, 152]. Maternal antibodies provide protection for 
new-born infants, but the rate of infant RSV infections peak 
around 2–3 months of age, with maternal antibodies declin-
ing to seronegative levels at ~ 2.5 months. This process is 
thought to rely on the mother having had an RSV infection 
close to birth, thus enabling antibody transfer [153, 154]. 
However, one study showed that high titres of RSV anti-
bodies in cord blood did not reduce the infant’s number of 
RSV infections, although it did reduce the severity, indicat-
ing that maternal anti-RSV antibodies have some protective 
effect. Interestingly, the antibody transfer rate was lower in 
male infants than females, leaving the males at higher risk 
of RSV-related hospital admittance [30].
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The first clinically trialled vaccine was formalin-inac-
tivated RSV (FI-RSV) in 1966 [62]. While several other 
successful formalin-inactivated vaccines exist, including 
those against polio, hepatitis A and Rabies [155–157], the 
formalin-inactivated RSV vaccine not only provided no 
protection in RSV naïve infants but increased the risk of 
significant infection [134, 158]. The cause of this vaccine-
enhanced disease is still not fully understood. This initial 
clinical trial failure resulted in subsequent caution, which 
has most certainly contributed to the current absence of a 
licenced RSV vaccine. Advances in crystallography have 
given insights into the native form of key RSV proteins, 
including the structure of the F protein [133, 138, 141], 
which will likely guide and direct future vaccine develop-
ment. Indeed, the fact that Palivizumab offers some protec-
tion indicates that a targeted antibody response can protect 
against RSV infection [54, 134, 138], though the emer-
gence of resistant Palivizumab strains of RSV suggests 
any vaccine will require continued maintenance, similar 
to that against Influenza.

There are now several dozen RSV vaccines under clinical 
trial, including some maternal vaccines, which could offer 
protection for neonates in the future [159, 160]. Use of viral 
proteins, particularly G and F, should theoretically, generate 
a strong antibody response. While the design of an effective 
vaccine is a priority, in its absence, the development of a 
curative treatment remains key. Indeed, when or if, an effec-
tive vaccine is found, treatment will always be essential for 
those do not have sufficient vaccine protection.

An ideal curative treatment will be a direct-acting anti-
viral, or a therapeutic that targets a conserved immune 
evasion mechanism of RSV, thus restoring natural immu-
nity against RSV and limiting viral replication. To better 
inform the design of these new therapeutics and vaccines 
the research community must work towards defining the role 
of all 11 RSV proteins and determine all the processes by 
which RSV suppresses immunity, while also monitoring the 
genetic variation of the virus over time. Armed with this 
knowledge, we will be better placed to develop vaccines and 
therapeutics that protect our global populations from this 
ongoing viral threat.

Funding Funding was provided by The National Children’s Hospital 
Foundation (Grant no: 1719).
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