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The COVID-19 pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has become a global crisis.
There is no therapeutic treatment specific for COVID-19. It is highly
desirable to identify potential antiviral agents against SARS-CoV-2
from existing drugs available for other diseases and thus repur-
pose them for treatment of COVID-19. In general, a drug repurpos-
ing effort for treatment of a new disease, such as COVID-19,
usually starts from a virtual screening of existing drugs, followed
by experimental validation, but the actual hit rate is generally
rather low with traditional computational methods. Here we re-
port a virtual screening approach with accelerated free energy
perturbation-based absolute binding free energy (FEP-ABFE) pre-
dictions and its use in identifying drugs targeting SARS-CoV-2
main protease (Mpro). The accurate FEP-ABFE predictions were
based on the use of a restraint energy distribution (RED) function,
making the practical FEP-ABFE−based virtual screening of the
existing drug library possible. As a result, out of 25 drugs predicted,
15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro. The
most potent one is dipyridamole (inhibitory constant Ki = 0.04
μM)which has shown promising therapeutic effects in subsequently
conducted clinical studies for treatment of patients with COVID-19.
Additionally, hydroxychloroquine (Ki = 0.36 μM) and chloroquine
(Ki = 0.56 μM) were also found to potently inhibit SARS-CoV-2 Mpro.
We anticipate that the FEP-ABFE prediction-based virtual screening
approach will be useful in many other drug repurposing or
discovery efforts.

virtual screening | SARS-CoV-2 | drug repurposing | free energy
perturbation | main protease

The ongoing pandemic of COVID-19 (1, 2) caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2,

also known as 2019-nCoV) has become a global crisis. To date,
there is no specific treatment or vaccine for COVID-19. Thus,
there is an urgent need to repurpose drugs for treatment of
COVID-19 (3). The SARS-CoV-2 replicase gene (Orf1) encodes
two overlapping translation products, polyproteins 1a and 1ab
(pp1a and pp1ab), which mediate all of the functions required
for the viral replication. The main protease (Mpro) as a key en-
zyme for the viral replication is initially released by the auto-
cleavage of pp1a and pp1ab. Then, Mpro cleaves pp1a and pp1ab
to release the functional proteins nsp4 through nsp16 that are
necessary for the viral replication (4). In view of the essential

functions of Mpro in the viral life cycle and its high level of
conservation, SARS-CoV-2 Mpro is a naturally attractive target
for treatment of COVID-19. Hence, there have been efforts to
identify therapeutic candidates targeting Mpro using various vir-
tual screening methods based on pharmacophore, molecule
docking, and molecular simulations (5). As a result of the reported
efforts, six drugs were found to inhibit SARS-CoV-2 Mpro with a
half-maximum inhibitory concentration (IC50) ranging from 0.67
μM to 21.4 μM (6). There have been also drug repurposing efforts
associated with other potential targets of SARS-CoV-2 (7–9).
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In general, a drug repurposing effort for treatment of a new
disease, such as COVID-19, usually starts from a virtual screening
of existing drugs through computational modeling and simula-
tions, followed by experimental validation. However, the actual hit
rate of a virtual screening using traditional computational meth-
ods (10, 11) has been rather low, with the vast majority of com-
putationally predicted drug candidates being false positives,
because it is difficult to reliably predict protein−ligand binding
free energies. Most recently, Gorgulla et al. (12) reported an in-
teresting new virtual screening platform, called VirtualFlow, used
to screen numerous compounds in order to identify inhibitors of
Kelch-like ECH-associated protein 1 (KEAP1), but the hit rate
was still not very high. Within 590 compounds predicted by the
virtual screening, 69 were found to be KEAP1 binders (with a hit
rate of ∼11.7% for detectable binding affinity), and 10 of these
compounds were confirmed to be displacers of nuclear factor
erythroid-derived 2-related factor 2 (NRF2) with IC50 < 60 μM
(with a hit rate of ∼1.4% under the threshold of IC50 < 60 μM)
(12). Obviously, the hit rate of a virtual screening is dependent on
the reliability and accuracy of the receptor−ligand binding free
energy predictions used in the virtual screening process. So,
the key to the success of a virtual screening effort is use of a re-
liable computational approach to accurately predict binding free
energies.
The free energy perturbation (FEP) simulation of intermo-

lecular interactions (13, 14) is recognized as a reliable method
for binding free energy calculations with satisfactory accuracy
(13–24), but the traditional FEP method was limited to simu-
lating some minor structural changes of ligands for the relative
binding free energy (RBFE) calculations (15, 25). The RBFE
calculations can be used to guide lead optimization starting from
a promising lead compound (or hit) (15, 25–28), but are not
suitable for virtual screening of completely different molecular
structures to identify new hits for drug repurposing. For the virtual
screening to identify new hits or leads, it is necessary to predict
absolute binding free energy (ABFE) for each ligand binding with
the target without the requirement to use any reference ligand
structure. The FEP-ABFE approach has the advantage of pre-
dicting binding affinities between ligands and their targets more
accurately than conventional computational methods, such as
pharmacophore, molecule docking, and molecular simulations
(29–31). However, the previously used FEP-ABFE calcula-
tions are extremely expensive and time consuming and, thus, not

suitable for virtual screening purposes (that required to screen a
large number of compounds) (32, 33).
To make the FEP-ABFE approach practically feasible for our

virtual screening and drug repurposing effort, here we report an
algorithm using a restraint energy distribution (RED) function to
accelerate the FEP-ABFE prediction and its first application to a
drug repurposing effort that targets SARS-CoV-2 Mpro. Our
FEP-ABFE prediction-based virtual screening (which predicted
25 drugs as potential inhibitors of SARS-CoV-2 Mpro) was fol-
lowed by in vitro activity assays, confirming that 15 out of the 25
drugs can potently inhibit SARS-CoV-2 Mpro with 0.04 μM to 3.3
μM (with a remarkably high hit rate of 60% under a threshold of
inhibitory constant Ki = 4 μM); nine drugs have Ki < 1 μM (with
a submicromolar hit rate of 36%). Particularly, among these
drugs, the most potent inhibitor of SARS-CoV-2 Mpro is dipyr-
idamole (DIP, Ki = 0.04 μM). Following the computational
prediction and in vitro activity validation, DIP was tested for its
antiviral activity against SARS-CoV-2 in vitro and in clinical
studies for treatment of patients with COVID-19, and the pre-
liminary clinical data are promising for its actual therapeutic
effects. While the clinical data are reported separately elsewhere
(34), to timely guide further clinical studies and possibly practical
clinical application, we describe and discuss in this report the
detailed computational and in vitro activity results of DIP along
with other promising drugs identified. The encouraging outcomes
suggest that the FEP-ABFE prediction-based virtual screening is a
truly promising approach to drug repurposing.

Results and Discussion
Identification of Potent SARS-CoV-2 Mpro Inhibitors for Drug
Repurposing. Prior to the virtual screening for drug repurposing,
the accuracy of the accelerated FEP-ABFE prediction protocol
was validated by using three different protein targets (BRD4,
HIV-1 protease, and human factor Xa) and 28 ligands with diverse
chemical scaffolds. According to the validation data, given in SI
Appendix, section S7, the accelerated FEP-ABFE algorithm can
achieve a high accuracy for the ABFE predictions. So, in order to
identify potent SARS-CoV-2 Mpro inhibitors, we first carried out
the FEP-ABFE−based virtual screening of all of the existing drugs
database, followed by in vitro activity assays, as shown in Fig. 1.
Specifically, after all of the existing drugs (Dataset S1) were

docked into the binding site of SARS-CoV-2 Mpro, 100 mole-
cules that had specific interactions with the six key amino acid

Fig. 1. The FEP-ABFE−based screening for the drug repurposing targeting SARS-CoV-2 Mpro. (A) The schedule of FEP-ABFE based screening. (B) Thermo-
dynamic cycle used for the FEP-ABFE calculations.
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residues, Cys145, His41, Ser144, His163, Gly143, and Gln166,
were subjected to further FEP-ABFE calculations. Among these
100 drugs, 49, 46, and 5 were neutral, negatively charged, and
positively charged, respectively. Since the FEP method is known
to encounter systematic errors when the ligands are not neutral,
it is possible that the free energy result calculated for a ligand
with +1 or −1 charge may not be compared directly with that
calculated for a neutral ligand, due to the possible net charge-
caused systematic error. Thus, after the ABFE calculations for
all of the 100 ligands were all completed, we grouped the results
of the 100 ligands by their net charges. Specifically, all of the 49
neutral ligands are in a group, all of the 5 ligands with +1 charge
are in a group, and all of the 46 ligands with −1 charge are in a
group. Due to the possible systematic errors between groups, we
can only reasonably compare the relative binding free energies
for ligands within the same group. Thus, we separately selected
the ligands with the highest binding affinities (i.e., the lowest
binding free energies) in each group for experimental bioassays.
In each group, the top 20 to 40% of the compounds were se-
lected based on their ABFE values. As a result, 25 drugs were
selected for subsequent in vitro experimental activity testing.
According to the in vitro results, 15 out of these 25 drugs exhibited
considerable potency of inhibiting SARS-CoV-2 Mpro (Fig. 2 and
SI Appendix, Fig. S8). DIP, known as an antiplatelet drug which is
also a weak inhibitor of microsomal prostaglandin E2 synthase 1
(mPGES-1) (35), was found to be the most potent inhibitor, with
Ki = 0.04 μM. Following the computational prediction and in vitro
activity confirmation, DIP was further tested for its antiviral activity
against SARS-CoV-2, demonstrating that DIP dose-dependently
suppressed the SARS-CoV-2 replication with a half-maximum ef-
fective concentration (EC50) of 0.1 μM. The antiviral activity was
consistent with the inhibitory activity against Mpro. In addition, DIP
was also tested clinically in treatment of patients with COVID-19,
resulting in promising therapeutic data that are reported separately
elsewhere (along with the raw antiviral activity data) (34), due to
the urgent need of further clinical studies and possibly practical
clinical application.
The FEP-ABFE results calculated for all of the confirmed

potent SARS-CoV-2 Mpro inhibitors are given in Table 1 in
comparison with the subsequently determined experimental ac-
tivity data. As seen in Table 1, 13 out of the 15 FEP-ABFE
predicted binding free energies were within 2 kcal/mol of the
corresponding experimental values, and, for the other two (di-
sulfiram and maribavir), the deviations were all about 2.2 kcal/
mol. Specially for disulfiram, according to its molecular struc-
ture, it might be a covalent inhibitor of Mpro, which could be part
of the reason for the relatively larger computational error.
However, further studies are needed for disulfiram, to draw a
more reliable conclusion. Overall, for the 15 protein−ligand
binding complexes, the mean unsigned error (MUE) was about
1.2 kcal/mol. For comparison, we also carried out the molecular
mechanics-Poisson–Boltzmann surface area (MM-PBSA) and
molecular mechanics-generalized Born surface area (MM-GBSA)
calculations on the 15 binding complexes, as given in SI Appendix,
Table S1, and the MUE values for both of the two methods were
larger than 17.0 kcal/mol. Thus, the FEP-ABFE method is, in-
deed, much more accurate than both the MM-PBSA and MM-
GBSA methods for the drug repurposing prediction.
Notably, candesartan cilexetil with Ki = 0.18 μM against

SARS-CoV-2 Mpro is a prodrug for its labeled use (treatment of
hypertension and congestive heart failure). Hence, we also com-
putationally and experimentally examined its metabolite, cande-
sartan (the active drug corresponding to the prodrug for the
labeled use), which was not in the drug library screened. Inter-
estingly, candesartan was also confirmed as a potent inhibitor of
SARS-CoV-2 Mpro, with a slightly lower inhibitory activity against
SARS-CoV-2 Mpro (Ki = 0.62 μM).

Altogether, a total of 16 potent inhibitors of SARS-CoV-2
Mpro were identified in this study, and their molecular structures
and in vitro inhibitory activity data are shown in Fig. 2 and SI
Appendix, Fig. S8. Among these 16 compounds, nine (with names
shown in black in Fig. 2) were identified as potential candidate
treatments of patients with COVID-19, in this study. The remaining
seven drugs, including hydroxychloroquine, chloroquine, disulfiram,
montelukast sodium, atazanavir, indinavir, and maribavir, were
also proposed as potential candidate treatments for patients with
COVID-19 in previous studies (6, 9, 36–38). However, within
these seven drugs, only disulfiram and atazanavir were previously
identified as SARS-CoV-2 Mpro inhibitors, whereas the other five
drugs were either reported to be active in vitro against SARS-
CoV-2 without knowing the specific targets or predicted by com-
putational modeling only without knowing their actual experi-
mental activity. All these drugs were confirmed to be potent
SARS-CoV-2 Mpro inhibitors in this study. Overall, a total of 14
compounds were confirmed as potent SARS-CoV-2 Mpro inhibitors
in this study.
Within the SARS-CoV-2 Mpro inhibitors identified, DIP is the

most potent one, with Ki = 0.04 μM (or 40 nM). The computa-
tionally modeled structure of DIP binding with SARS-CoV-2 is
depicted in SI Appendix, Fig. S9 (showing the roles of key resi-
dues of the protease, including Thr25, Asn142, Gly143, Ser144,
His163, and Glu166, for binding with DIP).

Molecular Mechanism for the Antiviral Activity of Chloroquine and
Hydroxychloroquine Against SARS-CoV-2. Notably, chloroquine and
hydroxychloroquine are currently under clinical trials for treat-
ment of patients with COVID-19, although the exact molecular
mechanism and drug target(s) have not been confirmed. Con-
cerning the molecular mechanism for their known antiviral activ-
ity, chloroquine or hydroxychloroquine was previously proposed to
inhibit acidification of endosome and viral endocytosis (40, 41).
However, vesicular stomatitis virus (VSV), which serves as a
model virus belonging to Rhabdoviridae and has a similar endo-
cytosis process as coronavirus, was not as sensitive as SARS-CoV-
2 to hydroxychloroquine and chloroquine (SI Appendix, Fig. S10);
no significant inhibition was observed for hydroxychloroquine or
chloroquine at a concentration of 6.25 μM. Compared to VSV,
coronavirus is much more sensitive to chloroquine and hydroxy-
chloroquine. Hydroxychloroquine inhibited SARS-CoV-2 at EC50
of 0.72 μM, and chloroquine reduced SARS-CoV replication to
53% at 1.0 μM (42). We wondered whether chloroquine and its
analog hydroxychloroquine would directly target a viral protein of
coronavirus. In this study, we demonstrated that chloroquine and
its analogs inhibited the main protease (Mpro) activity, which is an
essential and conserved enzyme in Coronaviridae. Chloroquine
and hydroxychloroquine are potent inhibitors of SARS-CoV-2
Mpro, with Ki = 0.56 and 0.36 μM, respectively (Fig. 3). Hence, we
cautiously concluded that chloroquine and hydroxychloroquine
prevented SARS-CoV-2 infection by inhibition of Mpro in addition
to the well-known mechanism of abrogation of viral endocytosis.
Moreover, norovirus, which belongs to Caliciviridae and encodes a
viral 3C-like protein similar to Mpro of coronavirus, was hyper-
sensitive to chloroquine treatment (43), further suggesting that
chloroquine and its analogs may inhibit viral 3C-like protease and
inhibit viral replication. The Ki value of 0.36 μM for hydroxy-
chloroquine against SARS-CoV-2 Mpro is slightly lower than the
reported EC50 of 0.72 μM against SARS-CoV-2 (42), which is
consistent with the possible molecular mechanism that the anti-
viral activity of hydroxychloroquine against SARS-CoV-2 is mainly
due to the inhibitory activity against SARS-CoV-2 Mpro. The
discrepancy between the Ki and EC50 values may be attributed to
the possibly imperfect intracellular drug bioavailability such that
the intracellular drug concentration is different from the externally
added drug concentration.
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Fig. 2. Molecular structures and Ki values of 16 confirmed SARS-CoV-2 Mpro inhibitors. The seven compounds in blue were also proposed as potential
treatments for patients with COVID-19. Within the seven compounds, disulfiram and atazanavir were reported to be SARS-CoV-2 Mpro inhibitors with the
reported IC50 listed in Table 1 (6, 36); hydroxychloroquine, chloroquine, and indinavir were reported to be active in vitro against SARS-CoV-2, but their
molecular targets were not reported (9, 37, 39); montelukast sodium and maribavir were only predicted by calculations (37, 38) without experimental activity
data reported. Disulfiram and atazanavir served as the positive controls for the in vitro activity [in the literature, the IC50 values for disulfiram and atazanavir
were 9.35 and 10 μM, respectively (6, 36), and the results of our test were 4.7 and 7.5 μM, respectively, when the same substrate concentration of 20 μM
was used].
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Overall, hydroxychloroquine or chloroquine is expected to have
both some beneficial effect associated with its antiviral activity due
to the SARS-CoV-2 Mpro inhibition and adverse side effects as-
sociated with other complicated mechanisms of the drug. For
example, both chloroquine and hydroxychloroquine would induce
the QT interval (the time from the start of the Q wave to the end
of the T wave on an electrocardiogram) by blocking human
ether-a-go-go−related gene (hERG) encoded potassium channel
Kv11.1 [IC50 = 2.5 and 10.7 μM, respectively (44–46); the two IC50
values are close to their inhibitory potency against Mpro]. It is also
known that chloroquine and hydroxychloroquine inhibit viral en-
docytosis by raising the pH of endosome/lysosome which would
interfere the endocytic membrane transportation of host cells (40).
In addition, compared to their distributions in the plasma and
other cells susceptible to SARS-CoV-2 infection, chloroquine and
hydroxychloroquine distribute more extensively into red blood
cells, with a whole blood to plasma ratio of ∼3.8 (47), that are
critical for oxygen transportation. Hence, chloroquine and hydrox-
ychloroquine may also negatively affect the oxygen transportation.
Further, in light of our finding that these drugs are potent SARS-

CoV-2 Mpro inhibitors, it would be interesting to design hydroxy-
chloroquine analogs that can more potently and selectively inhibit

SARS-CoV-2 Mpro without the unwanted adverse effects of
hydroxychloroquine. Similar drug development strategies may also
apply to development of analogs of other confirmed SARS-CoV-
2 Mpro inhibitors such as DIP and candesartan cilexetil with further
improved potency and selectivity for SARS-CoV-2 Mpro.

Conclusion
By using the accelerated FEP-ABFE predictions for drug
repurposing targeting SARS-CoV-2 Mpro, followed by experi-
mental validation, we successfully identified a total of 16 potent
inhibitors of SARS-CoV-2 Mpro from existing drugs, including 14
SARS-CoV-2 Mpro inhibitors that were confirmed (with Ki =
0.04 μM to 3.3 μM) in this study. The identified most potent
SARS-CoV-2 Mpro inhibitor is DIP (with Ki = 0.04 μM) which is
currently under clinical studies for treatment of patients with
COVID-19, with the promising therapeutic effects reported in a
separate report (34). Among other newly identified SARS-CoV-2
Mpro inhibitors, prodrug candesartan cilexetil and the corresponding
drug candesartan both can potently inhibit SARS-CoV-2 Mpro.
Additionally, hydroxychloroquine (Ki = 0.36 μM) and chloroquine

(Ki = 0.56 μM) were found to potently inhibit SARS-CoV-2 Mpro in
this study, suggesting that the previously known antiviral activity of

Table 1. Summary of the FEP-ABFE calculation results (in kcal/mol) for the experimentally confirmed SARS-CoV-2 Mpro inhibitors

Name IC50 (μM)* Ki (μM)† ΔGexp ΔGFEP-ABFE UEFEP-ABFE
‡

DIP 0.60 ± 0.01 0.04 ± 0.001 −10.1 −8.6 ± 0.2 1.5
Candesartan cilexetil 2.8 ± 0.3 0.18 ± 0.02 −9.2 −8.6 ± 0.4 0.6
Hydroxychloroquine 2.9 ± 0.3 0.36 ± 0.21§ −8.7 −9.8 ± 0.2 1.1
Chloroquine 3.9 ± 0.2 0.56 ± 0.12§ −8.5 −10.0 ± 0.2 1.5
Disulfiram 4.7 ± 0.4 (9.35 ± 0.18){ 0.31 ± 0.03 −8.8 −6.6 ± 0.1 2.2
Montelukast sodium 7.3 ± 0.5 0.48 ± 0.04 −8.6 −7.5 ± 0.4 1.1
Atazanavir 7.5 ± 0.3 (10){ 0.49 ± 0.02 −8.6 −8.0 ± 0.4 0.6
Oxytetracycline 15.2 ± 0.9 0.99 ± 0.06 −8.2 −8.8 ± 0.4 0.6
Valacyclovir hydrochloride 16.7 ± 0.9 1.09 ± 0.06 −8.1 −6.2 ± 0.2 1.9
Roxatidine acetate hydrochloride 20.3 ± 0.4 1.33 ± 0.02 −8.0 −7.2 ± 0.2 0.8
Omeprazole 21.0 ± 1.0 1.37 ± 0.06 −8.0 −6.4 ± 0.2 1.6
Indinavir 43.1 ± 2.8 2.82 ± 0.18 −7.6 −8.0 ± 0.4 0.4
Sulfacetamide ∼50# ∼3.27 −7.5 −7.0 ± 0.1 0.5
Cimetidine ∼50# ∼3.27 −7.5 −6.1 ± 0.5 1.4
Maribavir ∼50# ∼3.27 −7.5 −5.3 ± 0.2 2.2
MUE 1.2

The unsigned error (UE) and MUE values are also given. ΔGexp values were calculated from their corresponding Ki values.
*IC50 values when the substrate concentration was 20 μM.
†Ki values for other molecules were converted from IC50 based on the assumption of the competitive inhibition without covalent binding.
‡UEFEP-ABFE = jΔGFEP-ABFE − ΔGexpj.
§Ki values for hydroxychloroquine and chloroquine were determined using the Dixon plots using the data in Fig. 3.
{IC50 values in the brackets are obtained from other published works, and the published values (6, 36) are close to our experiment results.
#Estimated based on the single-concentration assay showing that the compound at 50 μM inhibited SARS-CoV-2 Mpro for over 50%.

Fig. 3. Chloroquine and hydroxychloroquine were identified as SARS-CoV-2 Mpro inhibitors with Ki = 0.56 and 0.36 μM, respectively. Ki was determined
according to the enzymatic kinetics using the Dixon plots.
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hydroxychloroquine or chloroquine might be mainly due to the in-
hibitory activity against SARS-CoV-2Mpro, in addition to other well-
known mechanisms. Further, based on the finding that these drugs
are potent SARS-CoV-2 Mpro inhibitors, it would be interesting to
design hydroxychloroquine analogs that can more potently and se-
lectively inhibit SARS-CoV-2 Mpro to improve its antiviral activity
and avoid the unwanted adverse effects of hydroxychloroquine as-
sociated with other mechanisms. Similarly, the identified other
drugs, such as DIP and candesartan cilexetil etc., can also be used as
promising starting drug structures to design new drug candidates
with further improved potency and selectivity for SARS-CoV-2 Mpro.
In summary, the virtual screening through accelerated FEP-

ABFE predictions has demonstrated an excellent accuracy, with
a remarkably high hit rate of 60% under a threshold of Ki =
4 μM. We anticipate that the FEP-ABFE prediction-based vir-
tual screening approach will be useful in many other drug
repurposing or discovery efforts.

Methods
Virtual Screening Based on Accelerated FEP-ABFE Approach. The accelerated
FEP-ABFE approach was based on the use of a RED function. The RED
function was derived to automatically add restraints that allow us to per-
form single-step perturbation (with λ directly from 0 to 1) for accurate
binding free energy predictions and, thus, accelerate the FEP-ABFE calcula-
tions. The accelerated FEP-ABFE approach is extensively tested and evalu-
ated; see details in SI Appendix, sections S1–S7. Briefly, compared to the
previously reported FEP-ABFE approaches which normally use 42 λ values
(32, 33), the RED function-based FEP-ABFE can be calculated by using just
16 λ values. With such acceleration, the application of FEP-ABFE calculations
in virtual screening was made possible. The accuracy of the accelerated 16-λ
FEP-ABFE calculation was then tested against 28 ligands with diverse chemical
scaffolds, as given in SI Appendix, section S7. The test results suggested that
the accelerated FEP-ABFE algorithm can achieve a remarkable accuracy, which
encouraged us to perform the FEP-ABFE prediction-based practical virtual
screening to identify SARS-CoV-2 Mpro inhibitors for drug repurposing.

During the virtual screening, molecular docking was first performed by
using the crystal structure (Protein Data Bank ID code 6LU7) (6) of SARS-
CoV-2 Mpro which causes COVID-19. More than 2,500 small compounds in the
existing drug library (including all Food and Drug Administration-approved
drugs) were screened first by the molecular docking method, and the top 100
ligands were selected by molecular docking and further evaluated by the
accelerated FEP-ABFE calculations. Compounds with the lowest binding free
energies for each group were selected for further in vitro activity assays. The
detailed method for FEP-ABFE−based virtual screening is given in SI Appendix,
section S1. The derivation of the RED function and extensive evaluations of the
accelerated FEP-ABFE method are given, in detail, in SI Appendix, sections S2–S7.

In Vitro Activity Assays of the SARS-CoV-2 Mpro Inhibitors. The pGEX4T1-Mpro

plasmid was constructed (AtaGenix) and transfected into the Escherichia coli
strain BL21 (CodonPlus, Stratagene). A GST-tagged protein was purified by
GST-glutathione affinity chromatography and cleaved with thrombin. The
purity of the recombinant protein was greater than 95% as assessed by
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SI Appendix, Fig.

S11). The catalytic activity of Mpro was measured by continuous kinetic as-
says, using an identical fluorogenic substrate MCA-AVLQSGFR-Lys (Dnp)-Lys-
NH2 (Apetide Co., Ltd). The fluorescence intensity was monitored with a
Multifunctional Enzyme Marker (SpectraMaxi3x, Molecular Devices) using
wavelengths of 320 and 405 nm for excitation and emission, respectively.
The experiments were performed in a 100-μL reaction system with a buffer
consisting of 50 mM Tris·HCl (pH 7.3), 1 mM (ethylenedinitrilo)tetraacetic
acid. We first detected the SARS-CoV-2 Mpro catalytic efficiency as described
previously, with minor modifications (6). In brief, the catalytic efficiency (kcat/
Km, i.e., the ratio of the catalytic rate constant to the Michaelis–Menten
constant) of Mpro was determined as 25,600 M−1·s−1, which is similar to the
previously reported value (kcat/Km = 28,500 M−1·s−1) (6). Experiments were per-
formed by mixing 96 nMMpro with different concentrations of substrate (0.03 to
∼2 μM), and the Km (Michaelis–Menten constant) and Vmax (maximum velocity of
the enzymatic reaction) values were calculated from a double-reciprocal plot. To
measure the IC50 of a compound, 500 nM of enzyme, 20 μM of substrate, and
the compound at six different concentrations were added into different wells.
The compound was dissolved and diluted in dimethyl sulfoxide to the desired
concentrations. One microliter of diluted compound was added into 50 μL of
solution containing 1 μM Mpro, and then solutions were incubated at room
temperature for 10 min. The reaction was initiated by adding 50 μL of substrate.
Fluorescence intensity was monitored once every 45 s. Initial reaction velocities
were calculated by fitting the linear portion of the curves (within the first 5 min
of the progress curves) to a straight line using the program SoftMax Pro and
were converted to enzyme activity (substrate cleaved)/second.

Data Availability. Additional computational details and computational and
experimental data can be found in SI Appendix, sections S1–S7, Figs. S1–S10,
and Tables S1–S6. The drug library in sdf format containing 3D structures,
names, CAS numbers, and SMILES strings can be found in the drug library file
(Dataset S1). The computer code to calculate the free energy change using
the RED function can be obtained free of charge from Github (https://
github.com/zlisysu/RED-function-alchem).
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