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Abstract
Objectives: To elaborately decipher the mouse and human bladders at single-cell 
levels.
Materials and Methods: We collected more than 50,000 cells from multiple datasets 
and created, up to date, the largest integrated bladder datasets. Pseudotime trajec-
tory of urothelium and interstitial cells, as well as dynamic cell-cell interactions, was 
investigated. Biological activity scores and different roles of signaling pathways be-
tween certain cell clusters were also identified.
Results: The glucose score was significantly high in most urothelial cells, while the 
score of H3 acetylation was roughly equally distributed across all cell types. Several 
genes via a pseudotime pattern in mouse (Car3, Dkk2, Tnc, etc.) and human (FBLN1, 
S100A10, etc.) were discovered. S100A6, TMSB4X, and typical uroplakin genes 
seemed as shared pseudotime genes for urothelial cells in both human and mouse 
datasets. In combinational mouse (n = 16,688) and human (n = 22,080) bladders, we 
verified 1,330 and 1,449 interactive ligand-receptor pairs, respectively. The distinct 
incoming and outgoing signaling was significantly associated with specific cell types. 
Collagen was the strongest signal from fibroblasts to urothelial basal cells in mouse, 
while laminin pathway for urothelial basal cells to smooth muscle cells (SMCs) in human. 
Fibronectin 1 pathway was intensely sent by myofibroblasts, received by urothelial 
cells, and almost exclusively mediated by SMCs in mouse bladder. Interestingly, the 
cell cluster of SMCs 2 was the dominant sender and mediator for Notch signaling in 
the human bladder, while SMCs 1 was not. The expression of integrin superfamily (the 
most common communicative pairs) was depicted, and their co-expression patterns 
were located in certain cell types (eg, Itgb1 and Itgb4 in mouse and human basal cells).
Conclusions: This study provides a complete interpretation of the normal bladder at 
single-cell levels, offering an in-depth resource and foundation for future research.
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1  |  INTRODUC TION

Single-cell sequencing provides unprecedented resolution to help 
us understand and analyze the process of normal tissue growth 
and disease occurrence.1 In particular, intercellular communication 
analysis at the single-cell level plays an essential role in helping us 
analyze physiological and pathological states.2 The bladder is an 
important organ in the human urinary system, and the compre-
hensive analysis at the single-cell level is helpful for us to elaborate 
and explore its regular physiological basis and also in order to es-
tablish the foundation for further dissecting of certain changes in 
conditions of inflammation or tumor. Previous large-scale cell atlas 
analysis3-5 has constructed the fundamental structs of multiple or-
gans, but none of them comprehensively decomposed the details of 
the bladder. On the contrary, scattered data from prior reports6,7 
associated with bladder (single-cell level) with a limited number of 
cells per study may not be able to provide an all-round understand-
ing. Yu et al.8 have reported an admirable study sketching a single-
cell transcriptomic map of bladder in both mouse and human, but 
this research is entirely lacking any cell-cell interaction analysis. Li 
et al.9 have demonstrated a novel cell type labeled by Plxna4 using 
scRNA-seq in the mouse bladder, but this study is only focusing on 
the urothelial layer and without cell communicative network analy-
sis or validation of any human samples. Studies have suggested that 
cross talk between cells profoundly impacts the development and 
the regeneration of the respiratory system.10 Data from scRNA-seq 
also provide insights into the landscape of intercellular cross talk of 
liver cells in health and disease.11 On the basis of multiple datasets, 
we comprehensively analyzed the bladder data of human and mice at 
the single-cell level and focused on the trajectory analysis of urothe-
lial and interstitial cells in the bladder and their interactions between 
cells.

2  |  METHODS

2.1  |  Single dataset preprocessing and normal 
bladder at the single-cell level

First, to establish initial independent analysis datasets for mouse and 
human bladder, respectively, we collected single-cell RNA sequenc-
ing data of normal bladder tissues from GSM420163312 (mouse, 3′ 
10X Genomics, Illumina HiSeq 2500) and GSM48505776 (human, 5′ 
10× Genomics, HiSeq X Ten). Then, data were analyzed using Seurat 
(v3.0 and v4.0)13 in R (version 4.0.0) following standard workflow 
from website vignette (https://satij​alab.org/seura​t/). Uniform mani-
fold approximation and projection for dimension reduction (UMAP) 
was done as the preferable way to display the most clustering data 
unless it is not available. After clustering of cells, the identification 
of cell groups was primarily according to the previous well-known 
marker genes7,14 using the “FindAllMarkers” function which identi-
fies differentially expressed genes between one cluster and all other 
cells using Wilcoxon rank-sum tests.

The cell-cycle score was calculated by the “CellCycleScoring” 
function which would assign each cell a score, based on its ex-
pression of G2/M and S-phase markers, and other scores (eg, hy-
poxia, metabolism, and histone modifications) were added by the 
“AddModuleScore” function which could calculate supervised mod-
ule scores for any given gene list. R Package clusterProfiler15 (ver-
sion 3.18.1) was used for gene set enrichment analysis (GSEA) using 
differentially expressed genes (both positive and negative) across 
cell clusters. Most GSEA gene lists were obtained from the msigdbr 
(version 7.1.1) package. Genes associated with N6-methyladenosine 
(M6A) modifications were manually gathered from the published 
articles.16,17 Developmental trajectory and pseudotime analysis of 
pan-fibroblasts in mouse and human bladder was performed using 
monocle318 (version 0.2.1). Of note, these two datasets were con-
sidered independent analysis objects and were not into subsequent 
integration.

2.2  |  Multiple datasets preprocessing and 
independent trajectory analysis of urothelium and 
pan-fibroblasts in bladder

In addition to the above two datasets, single-cell transcriptomic 
data of normal bladder tissues from GSE1298458 (three patients 
and two mice, 3′ 10X Genomics, HiSeq X Ten Illumina), GSE1343555 
(two patients, microwell-seq, HiSeq X Ten Illumina), GSE1080974 
(one mouse, microwell-seq, Illumina HiSeq 2500), GSE1097743 (one 
mouse, smart-seq2 and 3’10x Genomics, Illumina NovaSeq 6000) 
were further collected. All expression data were filtered (quality 
control of doublet, low-quality cells or empty droplets, and exten-
sive mitochondrial or ribosomal contamination) in R (version 4.0.0) 
using Seurat (v3.0 and v4.0) package.

Our initial preliminary attempts found that the integration pro-
cess would affect the subsequent trajectory analysis of urothelial 
and interstitial cells in the bladder. Whether reciprocal principal 
component analysis (RPCA) or canonical correlation analysis (CCA), 
both would impair the significance of typical pseudotime genes. So, 
we performed trajectory analysis on each sample (with the avail-
able amount of cells), respectively, using the monocle3 package. 
Top genes (with the highest Moran I score) were displayed in scatter 
plots. In addition, the top 50 genes of each analysis via a pseudotime 
pattern were collected, and then mitochondrial or ribosomal genes 
were excluded; the selection range would expand to the top 60–100 
if there were not sufficient left genes (n > 25) after removal. These 
genes were showed in Venn plots to explore the potential common 
key trajectory genes by intersection.

2.3  |  Integrated mouse and human bladder 
datasets and cell-cell interactions

Then, these multiple datasets were integrated into the mouse 
and human combined datasets, respectively, based on the 
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“FindIntegrationAnchors” function, which can find a set of an-
chors between a list of Seurat objects, and these anchors can later 
be used to integrate the objects with CCA method. Then, these 
cells were subsequently normalized, scaled, linear-dimensional/
nonlinear reduced, and clustered by Seurat mainly using default 
parameters.13 Cell-type identities were assigned on the basis of 
the present cluster biomarkers (differentially expressed gene) and 
the previously reported marker genes of human and mouse blad-
der.8 Cell-cell communication networks were identified and visu-
alized by CellChat (Version 1.0.0) package.19 Nebulosa (v1.3.0) R 
package was used to calculate and visualize the joint density of 
co-expression patterns.

3  |  RESULTS

3.1  |  Overview of the single dataset of mouse and 
human bladder at the single-cell level

After quality control, 6,962 and 6,982 cells, respectively, of mouse 
and human bladder were analyzed. In mouse and human bladder, we 
recognized 21 and 18 cell clusters, respectively (Figure 1A-B). Cell 
identity was almost consistent with previous and their source papers. 
But, we reconsidered the definition of a particular cluster described 
as fibroblast/smooth muscle cell (SMC) by Shuai He et al.6 Most fi-
broblast/SMC were identified as myofibroblasts in our study, which 
is more often used and widely accepted in other researches. Only 
a few cells with extremely high SMC markers (eg, ACTA2, ACTG2, 
and CNN1) and relatively low typical fibroblast markers (eg, S100A4, 
COL3A1, and COL1A1) were defined as the myofibroblasts/SMC 
cluster. Besides, the human bladder dataset (GSM4850577) was 
lacking in urothelial cells, and it might be caused by different sam-
pling procedures compared with other studies.6,8 Though the mouse 
bladder dataset (GSM4201633) contained a pool of eight mice blad-
ders, it seemingly had a relatively low cell capture per bladder which 
might be due to its stricter dissection and recombination processing 
for samples.12

3.2  |  Marker gene of cell clusters in mouse and 
human bladder

For both human and mouse bladder, the following markers col-
lected from the previous reports were applied for clusters' identi-
fication.3,4,6,8,12,14 Keratin (KRT, KRT23, KRT19, KRT8, KRT7, and 
KRT5) and uroplakin (UPK, UPK1A, UPK1B, UPK2, and UPK3B) 
gene families were used to identify urothelial cells. Expression of 
VIM, SPARC, and DCN was referred to as interstitial (mesenchy-
mal) cells. Co-expression of TAGLN, DESM CNN1, ACTG2, and 
ACTA2 was used as markers of smooth muscle cells. Cells expressed 
PECAM1, VCAM1, and CDH5 were classed into the endothelial cell 
type. CDH19, GPM6B, S100B, and MPZ were used for marker genes 
of Schwann cells, while GPM6A, SLPI, MSLN, and RSPO1 were for 

neurons. Immune cells were divided into T cell (CD3D and CD3E), B 
cell (CD79A and MZB1), monocyte (CD14 and LYZ), and macrophage 
(CD74, HLA-DRA, and C1QB).

3.3  |  Assumed biological activity scores across 
cell types

Similar to the default calculation function of cell-cycle scores in the 
Seurat package, curated gene lists were employed to create activity 
scores of glucose, lactate metabolism, hypoxia, histone 3 (H3) acety-
lation, histone (H) methylation, and M6A. After scaled to 1–6 (6 for 
highest score) using different color bars by default method, scores 
were showed in the feature plot (Figure 1C-D). In mouse bladder, 
glucose score was significantly high in most urothelial cells and part 
of smooth muscle cells, while lactate score had a similar but slighter 
trend. Hypoxia score was relatively low in urothelial cells (especially 
for urothelial cells 3), and the score of H3 acetylation was roughly 
equally distributed across cell types, while histone methylation and 
M6A scores were high in urothelial and endothelial cells. Though 
lacking urothelial cells, a similar pattern was seen in the human blad-
der; for example, H3 acetylation scores were evenly distributed 
among cells, and hypoxia score was higher in fibroblasts and immune 
cells. Glucose score was also elevated in immune cells and urothelial 
cells (a small population containing 17 cells) in the human bladder.

These scores were much more consistent inside the same tis-
sue type (epithelial or interstitial tissues) than across different tis-
sue types. Serial of H3 acetylations (H3K4ac, H3K9ac, H3K23ac, 
and H3K27ac) had already been recognized as major regulators of 
transcription activation.20 In our study, the score of H3 acetylation 
varied for individual cells inside a specific cell cluster but seemingly 
had a similar pattern across all cell types, which may indicate that 
transcriptional levels pattern at different tissues might be resem-
bled. However, discrepancies of metabolic and hypoxia levels among 
tissues were easily observed, representing the fact that each kind 
of tissue had its unique function and morph. These phenomena 
also raised a question that evidence found by bulk RNA-seq data 
at a prior era that could not locate physiological and pathological 
changes on a specific cell cluster may be worthwhile for re-study 
again at the single-cell level.

3.4  |  Differentially expressed 
genes and pseudotime trajectory of pan-fibroblasts in 
mouse and human bladder

We subset original datasets (Seurat clusters) to create pan-fibroblasts 
datasets and then did differentially expressed genes (DEGs) analy-
sis also by the “FindAllMarkers” function. Mouse pan-fibroblasts 
(fibroblasts 1–4) subset contained 1471 cells, while human (fibro-
blasts 1–4) subset had 1961 cells. After the removal of duplicate 
cluster marker genes, there were about 2,200 and 1,400 DEGs in 
mouse and human, respectively, and these genes were descending 
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FIGURE 1  Legend on next page



    |  5 of 15SHI et al.

ordered by log fold change (logFC) for the next step of GSEA. GSEA 
was done by “gseGO” function specifically for gene ontology (GO) 
analysis based on GO: molecular function (MF) and GO: biological 
process (BP) gene set collections in both mouse and human blad-
der. Pathways associated with the top positive normalized enrich-
ment score (NES > 0) are shown in Figure 2A-B. In mice, these DEGs 
were significantly enriched in several morphogenesis processes and 
also involved in cytokine and a series of receptor activity pathways. 
In human, DEGs were related to multiple biological functions of 
wounding, wounding healing, response to external stimulus, coagu-
lation, and also a variety of receptor activity pathways.

Data of pan-fibroblasts were import into Monocle 3 package 
from Seurat objects, and pseudotime trajectory analysis was con-
structed (Figure  2C-D) following standard workflow with default 
parameters. In mouse bladder, fibroblast 4 seemed to be the be-
ginning cells, fibroblasts 1 and 3 played intermediate roles, and fi-
broblasts 2 would be the end of the trajectory. We also extracted 
several top genes via a pseudotemporal pattern, among them, Car3, 
Dkk2, Tnc, and Bmp5 were highly expressed in the early stage, and 
S100a6, Col1a2, and Fth1 were in the later stage. We also depicted 
the distribution of these genes via four clusters. Car3, Dkk2, Tnc, 
and Bmp5 were almost exclusively expressed in fibroblasts 4 clus-
ter. In the human bladder, fibroblasts 4 was at the beginning point, 
fibroblasts 1 and 3 were at the middle ways, while fibroblasts 2 were 
located at the end of development. Top pseudotemporal genes in-
cluding FBLN2, PLA2G2A, SH3BGRL3, and S100A10 that highly 
expressed in early and/or middle stages and DPT, COLEC11, and C7 
in the later stage of trajectory. Fibroblasts 2 exclusively expressed 
COLEC11 but lacking FBLN2 and PLA2G2A expressions, while fi-
broblasts 3 did not express DPT. Notably, the core pseudotemporal 
genes associated with fibroblasts trajectory seemed to be different 
across species (mouse and human). Furthermore, a previous arti-
cle showed that Tnc and Bmp5 exhibited a cross-organ similarity 
in Tnc + Cd34− fibroblasts in the colon and bladder of the mouse, 
while Dkk2 displayed a co-expression pattern with Tnc in the mouse 
bladder.14 In addition, PLA2G2A, SH3BGRL3, and S100A10  have 
also been reported as top pseudotemporal genes in the human 
bladder from another study.8 Together, these data supported the 
repeatability and the robustness of our trajectory analysis and re-
flected potential organotypic or species differences.

3.5  |  Identification of common trajectory genes of 
urothelium and pan-fibroblasts in bladder based on 
multiple non-integrated datasets

Using the same workflow, we further processed another four 
mouse and five human bladder samples independently. After quality 

control, there were 2198 (GSM2889480), 504 (GSM3040905), 6134 
(GSM3723360), and 6019 cells (GSM3723361) in mouse bladder and 
205 (GSM3723357), 2556 (GSM3723358), 8407 (GSM3723359), 
3760 (GSM3980126), and 5112 cells (GSM3980127) in human 
bladder to enter the clusters’ identification stage. The hetero-
geneity of dataset scales and cell proportions was obviously ob-
served across different platforms and experimental proposals. 
UMAP plots and clusters’ identity of each dataset are displayed in 
Figure S1. GSM3723357 was removed for the next step of trajec-
tory analysis due to insufficient overall cell amount (n = 205), and 
GSM3980126 was not subset for urothelial cells because of limited 
cell number (n  <  30). After all, sub-datasets of four mouse pan-
fibroblasts (n = 1,355, 258, 1,743, and 1,774), four mouse urothelial 
cells (n  =  448, 197, 3,739, and 3,705), four human pan-fibroblasts 
(n = 2,003, 949, 1,733, and 1,385), and three human urothelial cells 
(n = 359, 6,258, and 1,476) were ultimately investigated by trajec-
tory analysis using monocle 3.

Using Venn plots (Figure  3A), we identified several inter-
datasets common genes via pseudotime of pan-fibroblasts or 
urothelial cells. Tnc, Clec3b, Car3, Cxcl14, Grem2, Dkk2, and 
Spon1 were found significant in all mouse pan-fibroblasts data-
sets. CCDC80 and FBLN1 were found in four (out of five) human 
pan-fibroblasts datasets. Similarly, Tmsb4x, Gstm1, S100a6, and 
Gsta4 were found significant in all mouse urothelial cells, and EIF1, 
TPT1, FTH1, UPK1A, TMSB4X, S100A6, etc. were simultaneously 
found in two (out of three) human urothelial cell datasets. Then, 
we tried to explore the heterogeneity and homogeneity of chosen 
genes among datasets and species. First, we noticed that some 
genes (such as Car3 and Dkk2) significantly showing a pseudo-
time pattern in mouse pan-fibroblasts even could not be found 
in the scRNA-seq expression matrix of their human counterparts. 
Furthermore, Cd34 and Tnc were reported as markers of differen-
tially located fibroblasts in mouse and showed a strong pseudo-
time pattern in mouse pan-fibroblasts datasets but not in human, 
while FBLN1 was a top gene in human pan-fibroblasts datasets 
but not in mouse (Figure S2). Second, only a few candidates (eg, 
S100A6 and TMSB4X for urothelial cells) were considered as 
shared pseudotime genes in both human and mouse (Figure S3A-
B). Unfortunately, the pseudotime trends of S100A6 and TMSB4X 
seemed to be slight across all datasets, even though they still hit 
the statistical threshold. Thirdly, even if a certain gene was found 
significant in all datasets,its pattern would easily differ from the 
different data sources. CXCL14 and DCN seemed to have an in-
consistent pattern in pan-fibroblasts among datasets and be-
tween species (Figure 3C-D). However, we found out that UPK1A 
(Upk1a), UPK3A (Upk3a), and UPK2 (Upk2) were consistently 
highly expressed in the end stage of urothelial cells (Figure 3B) in 
both mouse and human datasets. High expression of these genes 

F I G U R E  1 UMAP plots and biological activity score of cell clusters in initial two datasets. (A) Identified cell types in mouse bladder. (B) 
Identified cell types in human bladder. (C) Module scores of glucose and lactate metabolism, hypoxia, methylation, acetylation, and M6A in 
mouse bladder. (D) Module scores of glucose and lactate metabolism, hypoxia, methylation, acetylation, and M6A in human bladder. M6A: 
N6-methyladenosine. Abbreviations: H, histone; H3, histone 3
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FIGURE 2  Legend on next page
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was referred to as markers of umbrella cells (most superficial cells 
of urothelium) in the bladder. Such results reminded us that tra-
jectory analysis could at least partially capture the key genes via 
pseudotime characteristics, but the heterogeneity between data-
sets and species might need further advanced algorithms to solve.

3.6  |  Integrated datasets of mouse and 
human bladder

Besides the above independent analysis on each dataset re-
spectively, we tried to integrate these datasets (not including 
GSM4201633 and GSM4850577) created from different platforms 
and experimental protocols. After integration, 16,688 and 22,080 
cells of mouse and human normal bladder, respectively, were finally 
analyzed. There are 19 and 24 cell clusters identified in mouse and 
human combined datasets, respectively, and displayed using UMAP 
nonlinear reduction with representative marker genes in Figure 4A-
B and Figure S4A-B. In general, these clusters were roughly accord-
ant with the analysis of the above independent dataset and thus 
mainly consisted of urothelial (eg, umbrella, intermediate, and basal 
cells), interstitial (eg, fibroblasts and myofibroblasts), smooth muscle, 
immune cells (eg, T and plasma cells), and others (neurone and en-
dothelial cells) in the normal bladder. The majority of captured cells 
were urothelial cells in mouse (57.2%, 9,553/16,688) and human 
(42.6%, 9,396/22,080) integrated datasets.

3.7  |  Cell-cell communication in integrated datasets

Then, we performed cell-cell interaction analysis by the CellChat R 
package to further explore the dynamic cross talk in the bladder. 
There were 1330 and 1449 interactive pairs verified by cell-cell 
communication analysis in mouse and human groups, respectively. 
The total number and weight of interactions between cell clusters 
are shown in Figure 4C-D. Within it, 55 (in mouse) and 95 (in human) 
pathways were involved. According to incoming communication pat-
terns of target cells, cell groups were clustered into four classifica-
tions in mouse datasets and five classifications in human datasets, 
while for outgoing patterns, four classifications in mouse datasets 
and six classifications in human datasets were found (shown in 
Figure 4E-F). These patterns were based on a hierarchical cluster-
ing of the consensus matrix of incoming or outgoing signaling path-
ways. When several cell clusters together went into one pattern, we 
can assume that these cell clusters shared many same pathways. So, 
these classifications were strongly associated with specific tissue 
types (eg, all immune cells went into pattern 3 and all fibroblasts 
went into pattern 2 in outgoing communication analysis of mouse 

bladder), and to some extent, this, in turn, proved that the previous 
cell clustering of integrated datasets based on Seurat was proper. 
The details of significant contributing signals of incoming and outgo-
ing patterns in all cell clusters are displayed in Figure S5A-B.

3.8  |  Interactions between urothelial basal 
cells and fibroblasts in mouse bladder

We further explored the potential communication in depth between 
urothelial basal cells (basal cells 1–3) and fibroblasts (fibroblasts 1–3 
and myofibroblasts) in mouse bladder, since these cells were most 
likely physically close based on the anatomical structure of the blad-
der. First, we identified the common significant interactive pathways 
in these cells, by setting fibroblasts as source cells and basal cells as 
targeted cells, and vice versa (Figure 5). The outgoing signals from 
basal cells to fibroblasts included non-canonical WNT (ncWNT), 
macrophage migration inhibitory factor (MIF), Nectin pathways, 
and several extracellular matrix (ECM) receptor pathways such as 
thrombospondin (THBS) and laminin. The incoming signals from fi-
broblasts to basal cells included collagen, fibronectin 1 (FN1), tenas-
cin, midkine (MK), and galectin pathways. Then, we also confirmed 
the roles of other cell clusters in some pathways we were interested 
in (Figure 6A and Figure S6A-B). In the collagen signaling network, 
fibroblasts, especially, myofibroblasts were the senders, all urothe-
lial cells were receivers, and this pathway was influenced by almost 
all cell clusters except for immune cells. In the FN1 pathway, myofi-
broblasts were the strongest sender, urothelial cells (especially basal 
cells) were the receivers, and it was only heavily mediated by smooth 
muscle cells. In the ncWNT signaling network, urothelial cells were 
the strong senders; myofibroblasts were the major receiver.

3.9  |  Interactions between urothelial basal 
cells and smooth muscle cells in human bladder

In addition, we discovered the estimated interactions between the 
bottom of the urothelium (basal cells 1–2) and the certain type of 
smooth muscle cells (detrusor) in the human bladder. Using similar 
processes, we explored the interactions when smooth muscle cells 
were targets and basal cells were sources, and vice versa (Figure 5). 
The bi-directional interactions between basal cells and smooth mus-
cle cells included THBS, MK, FN1, visfatin, and laminin pathways. 
The collagen pathway was the most abundant signaling from smooth 
muscle cells to basal cells. We then selected a few pathways that 
significantly contribute to smooth muscle cells and explores the 
different roles of all cell clusters (Figure  6B and Figure S6C-D). 
Interestingly, in the Notch pathway, the cluster of smooth muscle 

F I G U R E  2 DEGs, GSEA, and trajectory analysis of pan-fibroblasts in initial two datasets. (A) GSEA of DEGs from the mouse pan-
fibroblasts dataset. (B) GSEA of DEGs from the human pan-fibroblasts dataset. (C) Trajectory plots, expression, and pseudotime patterns of 
top genes in mouse bladder. (D) Trajectory plots, expression, and pseudotime patterns of top genes in mouse. DEGs: differentially expressed 
genes. GSEA: gene set enrichment analysis. GO: gene ontology. Abbreviations: BP, biological process; MF, molecular function
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F I G U R E  3 Venn plots of common top pseudotime genes. (A) Venn plots of mouse pan-fibroblasts (n = 5), human pan-fibroblasts (n = 5), 
mouse urothelial cells (n = 4), and human urothelial cells (n = 3) datasets. (B) Key pseudotime genes in both mouse and human urothelium 
tissues
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cells 2 was the key sender while smooth muscle cells 1 did not serve 
the same function, and fibroblasts 1 was the main receiver while 
other fibroblasts did not act the same role. Smooth muscle cells 2 
also played a significant role as a receiver in the CD46 pathway net-
work, while smooth muscle cells 1 did not. However, smooth muscle 
cells 1 were the receiver for the visfatin signaling network, while 
smooth muscle cells 2 was not.

3.10  |  Interactive networks of integrin superfamily 
in the bladder and its adhesion to cells and 
extracellular matrix

Integrin superfamily contains 18 αsubunits (ie, ITGA1, ITGAV, 
ITGA6, ITGAX) and 8 βsubunits (ie, ITGB1 and ITGB2) generating 
24 distinct integrin heterodimers.21 These transmembrane recep-
tors are mainly responsible for connections between “outside” 
ECM structures and “inside” cell cytoskeleton systems and are 
also able to co-operate with cell-cell junction signaling.22 Among 
all enriched ligand-receptor pairs found by our interactive com-
munication analysis, 24.7% (66/268) receptors in mouse and 23.9% 
(102/426) receptors in human were directly associated with the in-
tegrin superfamily, suggesting its critical role in cell communication 
networks. We extracted all integrin-associated receptors from dif-
ferent significant enriched pathways and showed their networks in 
the mouse bladder (Figure 7A). Urothelial cells (basal cells) and my-
ofibroblasts were the main receivers of these signaling, while most 
other cell clusters send related ligands. In addition, we were using 
the other two pathways as a comparative reference (Figure 7B-C). 
Vascular endothelial growth factor (VEGF) signaling was exclusively 
from urothelial cells to the endothelial cells, while transforming 
growth factor (TGF) signaling was equally distributed to almost all 
cell clusters in mouse bladder.

Then, we browsed the expression of these subunits in mouse 
(all 26 subunits) and human (25 subunits, ITGAD not available) blad-
der (Figure S7A-B). In both mouse and human, ITGB2 was primarily 
expressed in immune cells, ITGB1 was the most broadly expressed 
subunit gene, and ITGA1 was only expressed in smooth muscle 
and endothelial (potentially include pericytes) cells. Co-expression 
of ITGB1 and ITGB4 was located in basal cells in both mouse and 
human, implying this layer was tightly connected to the basement 
membrane (Figure  7D-E). Co-expression of Itga11 and Itgb1  has 
precisely occurred in myofibroblasts of mouse bladder (Figure 7F). 
Meanwhile, some differences between species have been ob-
served; myofibroblasts in the human bladder not only highly ex-
pressed ITGA11 but also relatively highly expressed ITGA8 when 
myofibroblasts in mouse bladder only highly expressed Itga11. The 
overall expression of ITGA2 was significantly lower in the mouse 
bladder. Itgb7 was highly expressed in immune cells of mouse blad-
der, while ITGB7 was barely expressed across all human bladder 
cell clusters. Taken together, these findings were consistent with 
the previous reports,21-23 except for a few potential organs or spe-
cies specificities.

4  |  DISCUSSION

In recent years, whether it is the construction of large-scale cellu-
lar atlases or the analysis of single-cell data from a small number 
of samples, we are trying to understand cell fate, development, and 
communication at an unprecedented depth, so as to ultimately grasp 
and interpret the underlying mechanisms of phenomena that can be 
observed by us even at the naked eye level. In our study, we even-
tually collected and analyzed more than 23,000  mouse cells and 
29,000 human cells from 11 bladder samples (six different scRNA-
seq datasets). Notably, sample isolation and processing, along with 
the different scRNA-seq platforms, would significantly affect the re-
sults. Rapid and efficient sample processing and non-over-digested 
single-cell suspensions might be a prerequisite to maintain favorable 
cell status (relatively low mitochondrial or ribosomal contamina-
tion) and facilitate subsequent data analysis. Followed by standard 
Seurat package workflow, we suggested a resolution between 0.3 
and1 to find distinct cell clusters for bladder cells ranging from 3,000 
to 20,000 (Figure S8). Normally, a higher resolution would only cre-
ate more sub-clusters of urothelial cells or fibroblasts, and whether 
these sub-groups of cells exist unique features was still unknown 
since there was no widely accepted optimal resolution for distin-
guishing different cell groups. Interestingly, it appeared that more 
immune cells can be detected in human samples, and we suspected 
that this could be related to the germ-free environment in which the 
mice were raised and the short laboratory animal lifespan.

The canonical marker genes of most cell clusters in the bladder 
were well established. However, we found that sometimes it was dif-
ficult to distinguish myofibroblasts from smooth muscle cells when 
a group of cells highly expressed ACTA2 and barely expressed fibro-
blast markers. Also, it would be challenging to decipher immune cells 
in the bladder when the cell amount was limited and marker genes 
were mixed. As a stratified epithelium, urothelium is typically com-
prised of three cell layers including umbrella cells (most superficial), 
intermediate cells (middle layer with one-to-several layers thick), and 
basal cells. For instance, KRT5 and KRT17 were previously reported 
as markers of basal cells.8 But, the expression of KRT17 was not de-
tected in our initial dataset analysis, and it might be caused by a com-
mon drop-out effect in scRNA-seq experiments. UPK2 and KRT20 
were regarded as umbrella cell markers8 while in some datasets both 
of them could hardly express across all urothelial cells, and it can be 
tough to determine whether a specific cell cluster belongs to um-
brella cell with underestimated UPK2 and KRT20 expression or the 
whole sample was missing the superficial layer of bladder probably 
by inappropriate experimental protocols. KRT13, KRT18, KRT19, 
and relatively low expression of UPK2, UPK1A, UPK1B, and UPK3B 
were viewed as markers of intermediate cells, and the previous re-
search exhibited a potential transitional status between intermedi-
ate and umbrella cells.7,8

Metabolic patterns were one of the customized features for a 
certain cell cluster. We found that urothelial cells seem to have a 
higher glucose metabolic activity score, implying that they were 
in a constant state of renewal and, therefore, have a high energy 
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F I G U R E  4 Integrated mouse and human bladder datasets. (A) UMAP of integrated mouse bladder. (B) UMAP of integrated human 
bladder. (C) Cell-cell interactions in mouse. (D) Cell-cell interactions in human. (E) Classification of cell clusters based on incoming or 
outgoing signaling patterns in mouse. (F) Classification of cell clusters based on incoming or outgoing signaling patterns in mouse
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demand. The hypoxia score was higher in fibroblasts, smooth muscle 
cells, endothelial cells, and some immune cells. These cells are tradi-
tionally thought to be mainly responsible for hypoxia, and targets are 
driven by hypoxia conditions in a tissue.24,25 Although the score built 
on the gene-list expression method only partially represented the 
real activity status, it still reminded us that heterogeneities across 
cell types that cannot be ignored and thus previous studies based on 
bulk RNA-seq might have severe confounding factors (ie, mixed cell 
types) and then mask the truth.

Fibroblasts are known to be mesenchymal origin cells and com-
prise the majority of interstitial cells in the bladder26 with undisputed 

important biological functions, especially for tissue fibrosis, wound 
contraction, and the formation of extracellular matrix.14 DEGs were 
intensely associated with morphogenesis pathways, which was ex-
pected, as fibroblasts somehow could shape the water content and 
tensile properties in tissues.14 Tightly connected to the ECM, these 
enriched pathways were also correlated with multiple receptor sig-
naling. As we can see, these DEGs-enriched pathways were nearly 
identical between mouse and human, representing a great similarity 
in fibroblast function between species.

In accordance with the previous findings, we validated that 
PLA2G2A, S100A10, and SH3BGRL3 were lowly expressed at the 

F I G U R E  5 Cell-cell communications between certain cell types. (A) Signaling from basal cells to fibroblasts in mouse. (B) Signaling from 
fibroblasts to basal cells in mouse. (C) Signaling from basal cells to SMCs in human. (D) Signaling from SMCs to basal cells in human. SMCs: 
smooth muscle cells
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end stage of trajectory via a strong pseudotime pattern in the human 
bladder. PLA2G2A is a prominent marker of fibroblasts in the blad-
der, and its expression would be substantially reduced in bladder tis-
sue from patients with prune belly syndrome.27 Also, evidence from 
human and rat lung tissue microarray data indicated that PLA2G2A 
was overexpressed in patients with idiopathic pulmonary fibrosis, 
and in our speculation, which was most likely due to an increase in 
the abundance of fibroblasts.28 ECM genes (eg, FBLN1 and FBLN2) 
also exhibited a pseudotime pattern in the human pan-fibroblasts 
dataset, fibroblasts derived from patients with synpolydactyly (hand 
malformations) showed alterations in the level of FBLN1 splice vari-
ants,29 and ablation of Fbln2 in mice cardiac fibroblasts protected 
against progressive ventricular dysfunction, reducing the mortality 
after myocardial infarction.30 In mouse bladder, Car3, Dkk2, Tnc, and 
Bmp5 were among top trajectory genes with pseudotime expression 
features, overexpression of DKK2 would reduce the activation of 
human cardiac fibroblasts,31 Tnc was involved in modulating ECM 
integrity and preventing skin aging,32 and Bmp5 was an antifibrotic 
factor that related to fibroblast-myofibroblast transdifferentiation in 
rat kidney interstitial fibroblasts.33

Cxcl14 and Grem2 consistently showed a pseudotime trait in all 
five mouse pan-fibroblasts; previous studies displayed that the Cxcl14 

axis in fibroblasts can interact with multiple cancer cells and acts as a 
multi-modal stimulator with tumor-supporting properties,34-36 and the 
activation of Grem2 in fibroblasts would promote pulmonary fibro-
sis.37 For the development of urothelial cells, TMSB4X was a top gene 
in all datasets regardless of the mouse or human tissue sources, deple-
tion of TMSB4X would cause abnormal stability of adherence junction 
in epidermal cells,38 and a developmental trajectory using single-cell 
proteomics revealed TMSB4X significantly decreased during hair-cell 
differentiation.39 In addition, increasing expression of UPK2, UPK1A, 
and UPK3A (Figure  3B) has been seen through all datasets in both 
mouse and human bladder. Knockout of these genes in mice would 
cause several abnormalities, such as poorly differentiated umbrella 
cells and vesicoureteral reflux with hydronephrosis.40 In mouse embry-
onic day 11–12, progenitor cells of urothelium were formed with the 
expression of SHH, FOXA2, TP63, and uroplakins (most be UPK3A) 
but without KRT5.40 However, in adult mouse urothelium, UPK3A−, 
KRT5+, and KRT14+ basal cells were reported as stem cells with the 
ability to give rise to all urothelial cells and UPK3A+ intermediate cells 
can give rise to umbrella cells in some cases.40 Intriguingly, trajectory 
analysis of urothelial cells would often be disrupted by a large num-
ber of ribosomal genes which also developed pseudotime properties 
in some datasets. This observation was also seen in a previous study, 

F I G U R E  6 Different roles of each cell cluster in certain pathways. (A) Pathways in the integrated mouse dataset. (B) Pathways in the 
integrated human dataset. ncWNT: non-canonical WNT. Abbreviation: FN1, fibronectin 1
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F I G U R E  7 Distributions of certain interactive pathways in bladder and co-expression of integrin superfamily. (A) Communication 
networks of integrin superfamily in mouse bladder. (B) Communication networks of the TGF pathway in mouse bladder. (C) Communication 
networks of the VEGF pathway in mouse bladder. (D) Co-expression of Itgb1 and Itbg4 in mouse bladder basal cells. (E) Co-expression of 
ITGB1 and ITGB4 in human bladder basal cells. (F) Co-expression of Itgb1 and Itga11 in mouse bladder myofibroblasts. TGF: transforming 
growth factor. Abbreviation: VEGF, vascular endothelial growth factors
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about 90% of top pseudotime genes were located in ribosomes,9 yet 
the remaining genes (Gstm1, Tmsb4x, S100a6, and Malat1) were still 
aligned with our study. This phenomenon might imply that the urothe-
lial cells may have been more heavily damaged during the sample 
preparation because of their exposure as the outermost layer or their 
intolerance and sensitivity to cell digestive agents (multiple enzymes).

To give a better perspective of the entire bladder, we have inte-
grated the above datasets (two initial independent datasets not in-
cluded) using the Seurat R package (CCA method) with slightly more 
looser quality control parameters compared with earlier independent 
analysis. In general, the results displayed that the integration appropri-
ately addressed and merged the original cell subpopulations, underly-
ing the major cell types in the mouse and human bladder (Figure 4A-B). 
To our knowledge, this is the first study to integrate bladder scRNA-
seq data from different platforms, focusing on this specific organ, and 
thus produced the largest data of normal bladder at single-cell levels. 
Then, cell-cell communication analysis was conducted using a recently 
published R package CellChat.19 Notably, these dynamic interactive 
networks were broadly dispersed across cell types (Figure 4C-D).

To further investigate intercellular communication between spe-
cific cell types, we have chosen basal cells and fibroblast in the inte-
grated mouse dataset along with basal cells and smooth muscle cells 
in the integrated human dataset as examples (Figure 5A-D). Bladder 
fibroblasts could promote re-epithelization after urothelial injury 
through enhancement for cell proliferation, attachment to the basal 
lamina, and development of well-organized cell junction between 
multilayered urothelial cells.41 Also, the existence of laminin, colla-
gen, and elastin in the bladder submucosa matrix was maintained as 
valuable bioactive factors even after the decellularization and ex-
traction processes.42 For these interstitial cells (eg, fibroblasts), their 
close proximity to the urothelium and smooth muscle cell (detrusor) 
seemed to suggest their modulating or bridging role in the bladder 
wall.40 Communication between human bladder smooth muscle 
cells and suburothelial myofibroblasts was directly associated with 
overactive bladder syndrome and could be profoundly affected by 
different cytokines.43 At last, we took integrin superfamily, TGF, and 
VEGF pathways as cases for illustrating the different roles and distri-
bution patterns of signaling in mouse bladder (Figure 7). It is obvious 
and intuitive that the different patterns correspond to varying func-
tions and localization of signaling pathways.

In summary, we collected multiple datasets to comprehensively 
dissect the bladder at a single-cell level. To date, this is the first 
and largest integration study of the normal bladder using single-
cell transcriptome data. DEGs and pseudotime analysis of pan-
fibroblasts revealed similarity in function and potential distinct 
development trajectory between mouse and human bladders. 
Whether these heterogeneities are caused by any technical fac-
tors during scRNA-seq needs further investigation. TMSB4X and 
S100A6 show a pseudotemporal signature in the multiple mouse 
or human urothelial cell datasets, and the specific roles they play 
need to be further examined. Tons of interactive communications 
could be recognized in our large-scale integrated bladder data-
sets, and future studies could proceed to explore whether these 

paired signals are significantly altered under pathological condi-
tions. Also, we provide information on which signaling pathways 
are enriched in particular cell clusters (eg, urothelial basal cells, 
fibroblasts, and smooth muscle cells) of the bladder and what roles 
(eg, sender, receiver, and mediator) different cells play in the path-
ways. The exact mechanisms of how these signaling pathways are 
synergistically regulated by a variety of distinct cells and function 
stably are worth further exploration.
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