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Abstract
Objectives: To elaborately decipher the mouse and human bladders at single- cell 
levels.
Materials and Methods: We	collected	more	than	50,000	cells	from	multiple	datasets	
and	created,	up	to	date,	the	largest	integrated	bladder	datasets.	Pseudotime	trajec-
tory	of	urothelium	and	interstitial	cells,	as	well	as	dynamic	cell-	cell	interactions,	was	
investigated. Biological activity scores and different roles of signaling pathways be-
tween certain cell clusters were also identified.
Results: The	glucose	score	was	significantly	high	 in	most	urothelial	 cells,	while	 the	
score	of	H3	acetylation	was	roughly	equally	distributed	across	all	cell	types.	Several	
genes	via	a	pseudotime	pattern	in	mouse	(Car3,	Dkk2,	Tnc,	etc.)	and	human	(FBLN1,	
S100A10,	 etc.)	 were	 discovered.	 S100A6,	 TMSB4X,	 and	 typical	 uroplakin	 genes	
seemed as shared pseudotime genes for urothelial cells in both human and mouse 
datasets. In combinational mouse (n =	16,688)	and	human	(n	=	22,080)	bladders,	we	
verified	1,330	and	1,449	interactive	ligand-	receptor	pairs,	respectively.	The	distinct	
incoming and outgoing signaling was significantly associated with specific cell types. 
Collagen	was	the	strongest	signal	from	fibroblasts	to	urothelial	basal	cells	in	mouse,	
while laminin pathway for urothelial basal cells to smooth muscle cells (SMCs) in human. 
Fibronectin	1	pathway	was	 intensely	sent	by	myofibroblasts,	received	by	urothelial	
cells,	and	almost	exclusively	mediated	by	SMCs	in	mouse	bladder.	Interestingly,	the	
cell	cluster	of	SMCs	2	was	the	dominant	sender	and	mediator	for	Notch	signaling	in	
the	human	bladder,	while	SMCs	1	was	not.	The	expression	of	integrin	superfamily	(the	
most	common	communicative	pairs)	was	depicted,	and	their	co-	expression	patterns	
were	located	in	certain	cell	types	(eg,	Itgb1	and	Itgb4	in	mouse	and	human	basal	cells).
Conclusions: This study provides a complete interpretation of the normal bladder at 
single-	cell	levels,	offering	an	in-	depth	resource	and	foundation	for	future	research.
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1  |  INTRODUC TION

Single-	cell	 sequencing	 provides	 unprecedented	 resolution	 to	 help	
us understand and analyze the process of normal tissue growth 
and disease occurrence.1	 In	particular,	 intercellular	communication	
analysis at the single- cell level plays an essential role in helping us 
analyze physiological and pathological states.2 The bladder is an 
important	 organ	 in	 the	 human	 urinary	 system,	 and	 the	 compre-
hensive analysis at the single- cell level is helpful for us to elaborate 
and explore its regular physiological basis and also in order to es-
tablish the foundation for further dissecting of certain changes in 
conditions	of	inflammation	or	tumor.	Previous	large-	scale	cell	atlas	
analysis3- 5 has constructed the fundamental structs of multiple or-
gans,	but	none	of	them	comprehensively	decomposed	the	details	of	
the	bladder.	On	 the	 contrary,	 scattered	data	 from	prior	 reports6,7 
associated with bladder (single- cell level) with a limited number of 
cells per study may not be able to provide an all- round understand-
ing.	Yu	et	al.8 have reported an admirable study sketching a single- 
cell	 transcriptomic	map	of	bladder	 in	both	mouse	and	human,	but	
this	research	 is	entirely	 lacking	any	cell-	cell	 interaction	analysis.	Li	
et al.9	have	demonstrated	a	novel	cell	type	labeled	by	Plxna4	using	
scRNA-	seq	in	the	mouse	bladder,	but	this	study	is	only	focusing	on	
the urothelial layer and without cell communicative network analy-
sis or validation of any human samples. Studies have suggested that 
cross talk between cells profoundly impacts the development and 
the regeneration of the respiratory system.10	Data	from	scRNA-	seq	
also provide insights into the landscape of intercellular cross talk of 
liver cells in health and disease.11	On	the	basis	of	multiple	datasets,	
we comprehensively analyzed the bladder data of human and mice at 
the single- cell level and focused on the trajectory analysis of urothe-
lial and interstitial cells in the bladder and their interactions between 
cells.

2  |  METHODS

2.1  |  Single dataset preprocessing and normal 
bladder at the single- cell level

First,	to	establish	initial	independent	analysis	datasets	for	mouse	and	
human	bladder,	respectively,	we	collected	single-	cell	RNA	sequenc-
ing	data	of	normal	bladder	tissues	from	GSM420163312	(mouse,	3′	
10X	Genomics,	Illumina	HiSeq	2500)	and	GSM48505776	(human,	5′	
10×	Genomics,	HiSeq	X	Ten).	Then,	data	were	analyzed	using	Seurat	
(v3.0	 and	 v4.0)13	 in	R	 (version	4.0.0)	 following	 standard	workflow	
from website vignette (https://satij alab.org/seura t/). Uniform mani-
fold	approximation	and	projection	for	dimension	reduction	(UMAP)	
was done as the preferable way to display the most clustering data 
unless	it	is	not	available.	After	clustering	of	cells,	the	identification	
of cell groups was primarily according to the previous well- known 
marker genes7,14	using	the	“FindAllMarkers”	function	which	 identi-
fies differentially expressed genes between one cluster and all other 
cells using Wilcoxon rank- sum tests.

The	 cell-	cycle	 score	 was	 calculated	 by	 the	 “CellCycleScoring”	
function	 which	 would	 assign	 each	 cell	 a	 score,	 based	 on	 its	 ex-
pression	of	G2/M	and	S-	phase	markers,	 and	other	 scores	 (eg,	 hy-
poxia,	metabolism,	 and	 histone	modifications)	 were	 added	 by	 the	
“AddModuleScore”	function	which	could	calculate	supervised	mod-
ule	scores	for	any	given	gene	 list.	R	Package	clusterProfiler15 (ver-
sion	3.18.1)	was	used	for	gene	set	enrichment	analysis	(GSEA)	using	
differentially expressed genes (both positive and negative) across 
cell	clusters.	Most	GSEA	gene	lists	were	obtained	from	the	msigdbr	
(version	7.1.1)	package.	Genes	associated	with	N6- methyladenosine 
(M6A)	 modifications	 were	 manually	 gathered	 from	 the	 published	
articles.16,17 Developmental trajectory and pseudotime analysis of 
pan- fibroblasts in mouse and human bladder was performed using 
monocle318	(version	0.2.1).	Of	note,	these	two	datasets	were	con-
sidered	independent	analysis	objects	and	were	not	into	subsequent	
integration.

2.2  |  Multiple datasets preprocessing and 
independent trajectory analysis of urothelium and 
pan- fibroblasts in bladder

In	 addition	 to	 the	 above	 two	 datasets,	 single-	cell	 transcriptomic	
data	 of	 normal	 bladder	 tissues	 from	 GSE1298458 (three patients 
and	two	mice,	3′	10X	Genomics,	HiSeq	X	Ten	Illumina),	GSE1343555 
(two	 patients,	 microwell-	seq,	 HiSeq	 X	 Ten	 Illumina),	 GSE1080974 
(one	mouse,	microwell-	seq,	Illumina	HiSeq	2500),	GSE1097743 (one 
mouse,	 smart-	seq2	 and	 3’10x	 Genomics,	 Illumina	NovaSeq	 6000)	
were	 further	 collected.	 All	 expression	 data	 were	 filtered	 (quality	
control	of	doublet,	 low-	quality	cells	or	empty	droplets,	and	exten-
sive	mitochondrial	or	ribosomal	contamination)	 in	R	(version	4.0.0)	
using	Seurat	(v3.0	and	v4.0)	package.

Our initial preliminary attempts found that the integration pro-
cess	would	 affect	 the	 subsequent	 trajectory	 analysis	 of	 urothelial	
and interstitial cells in the bladder. Whether reciprocal principal 
component	analysis	(RPCA)	or	canonical	correlation	analysis	(CCA),	
both	would	impair	the	significance	of	typical	pseudotime	genes.	So,	
we performed trajectory analysis on each sample (with the avail-
able	 amount	 of	 cells),	 respectively,	 using	 the	 monocle3	 package.	
Top genes (with the highest Moran I score) were displayed in scatter 
plots.	In	addition,	the	top	50	genes	of	each	analysis	via	a	pseudotime	
pattern	were	collected,	and	then	mitochondrial	or	ribosomal	genes	
were	excluded;	the	selection	range	would	expand	to	the	top	60–	100	
if there were not sufficient left genes (n > 25) after removal. These 
genes were showed in Venn plots to explore the potential common 
key trajectory genes by intersection.

2.3  |  Integrated mouse and human bladder 
datasets and cell- cell interactions

Then,	 these	 multiple	 datasets	 were	 integrated	 into	 the	 mouse	
and	 human	 combined	 datasets,	 respectively,	 based	 on	 the	

https://satijalab.org/seurat/
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“FindIntegrationAnchors”	 function,	 which	 can	 find	 a	 set	 of	 an-
chors	between	a	list	of	Seurat	objects,	and	these	anchors	can	later	
be	used	 to	 integrate	 the	objects	with	CCA	method.	Then,	 these	
cells	 were	 subsequently	 normalized,	 scaled,	 linear-	dimensional/
nonlinear	 reduced,	 and	 clustered	by	Seurat	mainly	 using	default	
parameters.13 Cell- type identities were assigned on the basis of 
the present cluster biomarkers (differentially expressed gene) and 
the previously reported marker genes of human and mouse blad-
der.8 Cell- cell communication networks were identified and visu-
alized by CellChat (Version 1.0.0) package.19	Nebulosa	 (v1.3.0)	R	
package was used to calculate and visualize the joint density of 
co- expression patterns.

3  |  RESULTS

3.1  |  Overview of the single dataset of mouse and 
human bladder at the single- cell level

After	quality	control,	6,962	and	6,982	cells,	respectively,	of	mouse	
and	human	bladder	were	analyzed.	In	mouse	and	human	bladder,	we	
recognized	21	and	18	cell	clusters,	respectively	 (Figure	1A-	B).	Cell	
identity was almost consistent with previous and their source papers. 
But,	we	reconsidered	the	definition	of	a	particular	cluster	described	
as	fibroblast/smooth	muscle	cell	(SMC)	by	Shuai	He	et	al.6 Most fi-
broblast/SMC	were	identified	as	myofibroblasts	in	our	study,	which	
is more often used and widely accepted in other researches. Only 
a	few	cells	with	extremely	high	SMC	markers	 (eg,	ACTA2,	ACTG2,	
and	CNN1)	and	relatively	low	typical	fibroblast	markers	(eg,	S100A4,	
COL3A1,	 and	 COL1A1)	 were	 defined	 as	 the	 myofibroblasts/SMC	
cluster.	 Besides,	 the	 human	 bladder	 dataset	 (GSM4850577)	 was	
lacking	in	urothelial	cells,	and	it	might	be	caused	by	different	sam-
pling procedures compared with other studies.6,8 Though the mouse 
bladder	dataset	(GSM4201633)	contained	a	pool	of	eight	mice	blad-
ders,	it	seemingly	had	a	relatively	low	cell	capture	per	bladder	which	
might be due to its stricter dissection and recombination processing 
for samples.12

3.2  |  Marker gene of cell clusters in mouse and 
human bladder

For	 both	 human	 and	 mouse	 bladder,	 the	 following	 markers	 col-
lected from the previous reports were applied for clusters' identi-
fication.3,4,6,8,12,14	 Keratin	 (KRT,	 KRT23,	 KRT19,	 KRT8,	 KRT7,	 and	
KRT5)	 and	 uroplakin	 (UPK,	 UPK1A,	 UPK1B,	 UPK2,	 and	 UPK3B)	
gene families were used to identify urothelial cells. Expression of 
VIM,	 SPARC,	 and	 DCN	was	 referred	 to	 as	 interstitial	 (mesenchy-
mal)	 cells.	 Co-	expression	 of	 TAGLN,	 DESM	 CNN1,	 ACTG2,	 and	
ACTA2	was	used	as	markers	of	smooth	muscle	cells.	Cells	expressed	
PECAM1,	VCAM1,	and	CDH5	were	classed	into	the	endothelial	cell	
type.	CDH19,	GPM6B,	S100B,	and	MPZ	were	used	for	marker	genes	
of	Schwann	cells,	while	GPM6A,	SLPI,	MSLN,	and	RSPO1	were	for	

neurons.	Immune	cells	were	divided	into	T	cell	(CD3D	and	CD3E),	B	
cell	(CD79A	and	MZB1),	monocyte	(CD14	and	LYZ),	and	macrophage	
(CD74,	HLA-	DRA,	and	C1QB).

3.3  |  Assumed biological activity scores across 
cell types

Similar to the default calculation function of cell- cycle scores in the 
Seurat	package,	curated	gene	lists	were	employed	to	create	activity	
scores	of	glucose,	lactate	metabolism,	hypoxia,	histone	3	(H3)	acety-
lation,	histone	(H)	methylation,	and	M6A.	After	scaled	to	1–	6	(6	for	
highest	score)	using	different	color	bars	by	default	method,	scores	
were	 showed	 in	 the	 feature	 plot	 (Figure	1C-	D).	 In	mouse	bladder,	
glucose score was significantly high in most urothelial cells and part 
of	smooth	muscle	cells,	while	lactate	score	had	a	similar	but	slighter	
trend.	Hypoxia	score	was	relatively	low	in	urothelial	cells	(especially	
for	urothelial	cells	3),	and	the	score	of	H3	acetylation	was	roughly	
equally	distributed	across	cell	types,	while	histone	methylation	and	
M6A	 scores	were	 high	 in	 urothelial	 and	 endothelial	 cells.	 Though	
lacking	urothelial	cells,	a	similar	pattern	was	seen	in	the	human	blad-
der;	 for	 example,	 H3	 acetylation	 scores	 were	 evenly	 distributed	
among	cells,	and	hypoxia	score	was	higher	in	fibroblasts	and	immune	
cells.	Glucose	score	was	also	elevated	in	immune	cells	and	urothelial	
cells (a small population containing 17 cells) in the human bladder.

These scores were much more consistent inside the same tis-
sue type (epithelial or interstitial tissues) than across different tis-
sue	 types.	 Serial	 of	 H3	 acetylations	 (H3K4ac,	 H3K9ac,	 H3K23ac,	
and	H3K27ac)	had	already	been	recognized	as	major	 regulators	of	
transcription activation.20	In	our	study,	the	score	of	H3	acetylation	
varied for individual cells inside a specific cell cluster but seemingly 
had	a	similar	pattern	across	all	cell	 types,	which	may	 indicate	 that	
transcriptional levels pattern at different tissues might be resem-
bled.	However,	discrepancies	of	metabolic	and	hypoxia	levels	among	
tissues	were	easily	observed,	 representing	 the	 fact	 that	each	kind	
of	 tissue	 had	 its	 unique	 function	 and	 morph.	 These	 phenomena	
also	 raised	 a	 question	 that	 evidence	 found	 by	 bulk	RNA-	seq	 data	
at a prior era that could not locate physiological and pathological 
changes on a specific cell cluster may be worthwhile for re- study 
again at the single- cell level.

3.4  |  Differentially expressed 
genes and pseudotime trajectory of pan- fibroblasts in 
mouse and human bladder

We subset original datasets (Seurat clusters) to create pan- fibroblasts 
datasets	and	then	did	differentially	expressed	genes	(DEGs)	analy-
sis	 also	 by	 the	 “FindAllMarkers”	 function.	 Mouse	 pan-	fibroblasts	
(fibroblasts	1–	4)	 subset	 contained	1471	 cells,	while	human	 (fibro-
blasts	 1–	4)	 subset	 had	 1961	 cells.	 After	 the	 removal	 of	 duplicate	
cluster	marker	genes,	 there	were	about	2,200	and	1,400	DEGs	 in	
mouse	and	human,	respectively,	and	these	genes	were	descending	
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FIGURE	1 	Legend	on	next	page
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ordered	by	log	fold	change	(logFC)	for	the	next	step	of	GSEA.	GSEA	
was	done	by	“gseGO”	function	specifically	for	gene	ontology	(GO)	
analysis	based	on	GO:	molecular	function	(MF)	and	GO:	biological	
process	 (BP)	gene	set	collections	 in	both	mouse	and	human	blad-
der.	Pathways	associated	with	the	top	positive	normalized	enrich-
ment	score	(NES	>	0)	are	shown	in	Figure	2A-	B.	In	mice,	these	DEGs	
were significantly enriched in several morphogenesis processes and 
also involved in cytokine and a series of receptor activity pathways. 
In	 human,	 DEGs	 were	 related	 to	 multiple	 biological	 functions	 of	
wounding,	wounding	healing,	response	to	external	stimulus,	coagu-
lation,	and	also	a	variety	of	receptor	activity	pathways.

Data of pan- fibroblasts were import into Monocle 3 package 
from	Seurat	objects,	and	pseudotime	trajectory	analysis	was	con-
structed	 (Figure	 2C-	D)	 following	 standard	 workflow	 with	 default	
parameters.	 In	mouse	 bladder,	 fibroblast	 4	 seemed	 to	 be	 the	 be-
ginning	cells,	fibroblasts	1	and	3	played	intermediate	roles,	and	fi-
broblasts 2 would be the end of the trajectory. We also extracted 
several	top	genes	via	a	pseudotemporal	pattern,	among	them,	Car3,	
Dkk2,	Tnc,	and	Bmp5	were	highly	expressed	in	the	early	stage,	and	
S100a6,	Col1a2,	and	Fth1	were	in	the	later	stage.	We	also	depicted	
the	distribution	of	 these	genes	via	 four	clusters.	Car3,	Dkk2,	Tnc,	
and	Bmp5	were	almost	exclusively	expressed	in	fibroblasts	4	clus-
ter.	In	the	human	bladder,	fibroblasts	4	was	at	the	beginning	point,	
fibroblasts	1	and	3	were	at	the	middle	ways,	while	fibroblasts	2	were	
located at the end of development. Top pseudotemporal genes in-
cluding	 FBLN2,	 PLA2G2A,	 SH3BGRL3,	 and	 S100A10	 that	 highly	
expressed	in	early	and/or	middle	stages	and	DPT,	COLEC11,	and	C7	
in	the	later	stage	of	trajectory.	Fibroblasts	2	exclusively	expressed	
COLEC11	but	 lacking	FBLN2	and	PLA2G2A	expressions,	while	 fi-
broblasts	3	did	not	express	DPT.	Notably,	the	core	pseudotemporal	
genes associated with fibroblasts trajectory seemed to be different 
across	 species	 (mouse	 and	 human).	 Furthermore,	 a	 previous	 arti-
cle showed that Tnc and Bmp5 exhibited a cross- organ similarity 
in Tnc +	Cd34−	fibroblasts	in	the	colon	and	bladder	of	the	mouse,	
while Dkk2 displayed a co- expression pattern with Tnc in the mouse 
bladder.14	 In	 addition,	 PLA2G2A,	 SH3BGRL3,	 and	 S100A10	 have	
also been reported as top pseudotemporal genes in the human 
bladder from another study.8	 Together,	 these	 data	 supported	 the	
repeatability and the robustness of our trajectory analysis and re-
flected potential organotypic or species differences.

3.5  |  Identification of common trajectory genes of 
urothelium and pan- fibroblasts in bladder based on 
multiple non- integrated datasets

Using	 the	 same	 workflow,	 we	 further	 processed	 another	 four	
mouse	and	five	human	bladder	samples	independently.	After	quality	

control,	there	were	2198	(GSM2889480),	504	(GSM3040905),	6134	
(GSM3723360),	and	6019	cells	(GSM3723361)	in	mouse	bladder	and	
205	 (GSM3723357),	 2556	 (GSM3723358),	 8407	 (GSM3723359),	
3760	 (GSM3980126),	 and	 5112	 cells	 (GSM3980127)	 in	 human	
bladder	 to	 enter	 the	 clusters’	 identification	 stage.	 The	 hetero-
geneity of dataset scales and cell proportions was obviously ob-
served across different platforms and experimental proposals. 
UMAP	plots	and	clusters’	 identity	of	each	dataset	are	displayed	 in	
Figure	S1.	GSM3723357	was	removed	for	 the	next	step	of	 trajec-
tory analysis due to insufficient overall cell amount (n =	205),	and	
GSM3980126	was	not	subset	for	urothelial	cells	because	of	limited	
cell number (n <	 30).	 After	 all,	 sub-	datasets	 of	 four	 mouse	 pan-	
fibroblasts (n =	1,355,	258,	1,743,	and	1,774),	four	mouse	urothelial	
cells (n =	 448,	197,	3,739,	 and	3,705),	 four	human	pan-	fibroblasts	
(n =	2,003,	949,	1,733,	and	1,385),	and	three	human	urothelial	cells	
(n =	359,	6,258,	and	1,476)	were	ultimately	 investigated	by	trajec-
tory analysis using monocle 3.

Using	 Venn	 plots	 (Figure	 3A),	 we	 identified	 several	 inter-	
datasets common genes via pseudotime of pan- fibroblasts or 
urothelial	 cells.	 Tnc,	 Clec3b,	 Car3,	 Cxcl14,	 Grem2,	 Dkk2,	 and	
Spon1 were found significant in all mouse pan- fibroblasts data-
sets.	CCDC80	and	FBLN1	were	found	in	four	(out	of	five)	human	
pan-	fibroblasts	 datasets.	 Similarly,	 Tmsb4x,	Gstm1,	 S100a6,	 and	
Gsta4	were	found	significant	in	all	mouse	urothelial	cells,	and	EIF1,	
TPT1,	FTH1,	UPK1A,	TMSB4X,	S100A6,	etc.	were	simultaneously	
found	 in	two	 (out	of	 three)	human	urothelial	cell	datasets.	Then,	
we tried to explore the heterogeneity and homogeneity of chosen 
genes	 among	 datasets	 and	 species.	 First,	 we	 noticed	 that	 some	
genes (such as Car3 and Dkk2) significantly showing a pseudo-
time pattern in mouse pan- fibroblasts even could not be found 
in	the	scRNA-	seq	expression	matrix	of	their	human	counterparts.	
Furthermore,	Cd34	and	Tnc	were	reported	as	markers	of	differen-
tially located fibroblasts in mouse and showed a strong pseudo-
time	pattern	in	mouse	pan-	fibroblasts	datasets	but	not	in	human,	
while	 FBLN1	was	 a	 top	 gene	 in	 human	 pan-	fibroblasts	 datasets	
but	not	 in	mouse	 (Figure	S2).	Second,	only	a	 few	candidates	 (eg,	
S100A6	 and	 TMSB4X	 for	 urothelial	 cells)	 were	 considered	 as	
shared	pseudotime	genes	in	both	human	and	mouse	(Figure	S3A-	
B).	Unfortunately,	the	pseudotime	trends	of	S100A6	and	TMSB4X	
seemed	to	be	slight	across	all	datasets,	even	though	they	still	hit	
the	statistical	threshold.	Thirdly,	even	if	a	certain	gene	was	found	
significant	 in	all	datasets,its	pattern	would	easily	differ	 from	the	
different	data	sources.	CXCL14	and	DCN	seemed	to	have	an	 in-
consistent pattern in pan- fibroblasts among datasets and be-
tween	species	(Figure	3C-	D).	However,	we	found	out	that	UPK1A	
(Upk1a),	 UPK3A	 (Upk3a),	 and	 UPK2	 (Upk2)	 were	 consistently	
highly	expressed	in	the	end	stage	of	urothelial	cells	(Figure	3B)	in	
both	mouse	and	human	datasets.	High	expression	of	these	genes	

F I G U R E  1 UMAP	plots	and	biological	activity	score	of	cell	clusters	in	initial	two	datasets.	(A)	Identified	cell	types	in	mouse	bladder.	(B)	
Identified	cell	types	in	human	bladder.	(C)	Module	scores	of	glucose	and	lactate	metabolism,	hypoxia,	methylation,	acetylation,	and	M6A	in	
mouse	bladder.	(D)	Module	scores	of	glucose	and	lactate	metabolism,	hypoxia,	methylation,	acetylation,	and	M6A	in	human	bladder.	M6A:	
N6-	methyladenosine.	Abbreviations:	H,	histone;	H3,	histone	3
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FIGURE	2 	Legend	on	next	page
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was referred to as markers of umbrella cells (most superficial cells 
of urothelium) in the bladder. Such results reminded us that tra-
jectory analysis could at least partially capture the key genes via 
pseudotime	characteristics,	but	the	heterogeneity	between	data-
sets and species might need further advanced algorithms to solve.

3.6  |  Integrated datasets of mouse and 
human bladder

Besides the above independent analysis on each dataset re-
spectively,	 we	 tried	 to	 integrate	 these	 datasets	 (not	 including	
GSM4201633	and	GSM4850577)	created	from	different	platforms	
and	experimental	 protocols.	After	 integration,	 16,688	 and	22,080	
cells	of	mouse	and	human	normal	bladder,	respectively,	were	finally	
analyzed.	There	are	19	and	24	cell	clusters	identified	in	mouse	and	
human	combined	datasets,	respectively,	and	displayed	using	UMAP	
nonlinear	reduction	with	representative	marker	genes	in	Figure	4A-	
B	and	Figure	S4A-	B.	In	general,	these	clusters	were	roughly	accord-
ant with the analysis of the above independent dataset and thus 
mainly	consisted	of	urothelial	(eg,	umbrella,	intermediate,	and	basal	
cells),	interstitial	(eg,	fibroblasts	and	myofibroblasts),	smooth	muscle,	
immune	cells	 (eg,	T	and	plasma	cells),	and	others	(neurone	and	en-
dothelial cells) in the normal bladder. The majority of captured cells 
were	 urothelial	 cells	 in	 mouse	 (57.2%,	 9,553/16,688)	 and	 human	
(42.6%,	9,396/22,080)	integrated	datasets.

3.7  |  Cell- cell communication in integrated datasets

Then,	we	performed	cell-	cell	interaction	analysis	by	the	CellChat	R	
package to further explore the dynamic cross talk in the bladder. 
There	 were	 1330	 and	 1449	 interactive	 pairs	 verified	 by	 cell-	cell	
communication	analysis	 in	mouse	and	human	groups,	respectively.	
The total number and weight of interactions between cell clusters 
are	shown	in	Figure	4C-	D.	Within	it,	55	(in	mouse)	and	95	(in	human)	
pathways	were	involved.	According	to	incoming	communication	pat-
terns	of	target	cells,	cell	groups	were	clustered	into	four	classifica-
tions	 in	mouse	datasets	and	five	classifications	 in	human	datasets,	
while	 for	outgoing	patterns,	 four	classifications	 in	mouse	datasets	
and six classifications in human datasets were found (shown in 
Figure	4E-	F).	These	patterns	were	based	on	a	hierarchical	cluster-
ing of the consensus matrix of incoming or outgoing signaling path-
ways.	When	several	cell	clusters	together	went	into	one	pattern,	we	
can	assume	that	these	cell	clusters	shared	many	same	pathways.	So,	
these classifications were strongly associated with specific tissue 
types	 (eg,	 all	 immune	 cells	went	 into	 pattern	 3	 and	 all	 fibroblasts	
went into pattern 2 in outgoing communication analysis of mouse 

bladder),	and	to	some	extent,	this,	in	turn,	proved	that	the	previous	
cell clustering of integrated datasets based on Seurat was proper. 
The details of significant contributing signals of incoming and outgo-
ing	patterns	in	all	cell	clusters	are	displayed	in	Figure	S5A-	B.

3.8  |  Interactions between urothelial basal 
cells and fibroblasts in mouse bladder

We further explored the potential communication in depth between 
urothelial	basal	cells	(basal	cells	1–	3)	and	fibroblasts	(fibroblasts	1–	3	
and	myofibroblasts)	 in	mouse	bladder,	since	these	cells	were	most	
likely physically close based on the anatomical structure of the blad-
der.	First,	we	identified	the	common	significant	interactive	pathways	
in	these	cells,	by	setting	fibroblasts	as	source	cells	and	basal	cells	as	
targeted	cells,	and	vice	versa	(Figure	5).	The	outgoing	signals	from	
basal	 cells	 to	 fibroblasts	 included	 non-	canonical	 WNT	 (ncWNT),	
macrophage	 migration	 inhibitory	 factor	 (MIF),	 Nectin	 pathways,	
and several extracellular matrix (ECM) receptor pathways such as 
thrombospondin	(THBS)	and	laminin.	The	incoming	signals	from	fi-
broblasts	to	basal	cells	included	collagen,	fibronectin	1	(FN1),	tenas-
cin,	midkine	(MK),	and	galectin	pathways.	Then,	we	also	confirmed	
the roles of other cell clusters in some pathways we were interested 
in	(Figure	6A	and	Figure	S6A-	B).	In	the	collagen	signaling	network,	
fibroblasts,	especially,	myofibroblasts	were	the	senders,	all	urothe-
lial	cells	were	receivers,	and	this	pathway	was	influenced	by	almost	
all	cell	clusters	except	for	immune	cells.	In	the	FN1	pathway,	myofi-
broblasts	were	the	strongest	sender,	urothelial	cells	(especially	basal	
cells)	were	the	receivers,	and	it	was	only	heavily	mediated	by	smooth	
muscle	cells.	In	the	ncWNT	signaling	network,	urothelial	cells	were	
the strong senders; myofibroblasts were the major receiver.

3.9  |  Interactions between urothelial basal 
cells and smooth muscle cells in human bladder

In	addition,	we	discovered	the	estimated	interactions	between	the	
bottom	of	 the	urothelium	 (basal	 cells	1–	2)	and	 the	certain	 type	of	
smooth muscle cells (detrusor) in the human bladder. Using similar 
processes,	we	explored	the	interactions	when	smooth	muscle	cells	
were	targets	and	basal	cells	were	sources,	and	vice	versa	(Figure	5).	
The bi- directional interactions between basal cells and smooth mus-
cle	 cells	 included	THBS,	MK,	FN1,	 visfatin,	 and	 laminin	pathways.	
The collagen pathway was the most abundant signaling from smooth 
muscle cells to basal cells. We then selected a few pathways that 
significantly contribute to smooth muscle cells and explores the 
different	 roles	 of	 all	 cell	 clusters	 (Figure	 6B	 and	 Figure	 S6C-	D).	
Interestingly,	 in	 the	Notch	pathway,	 the	 cluster	 of	 smooth	muscle	

F I G U R E  2 DEGs,	GSEA,	and	trajectory	analysis	of	pan-	fibroblasts	in	initial	two	datasets.	(A)	GSEA	of	DEGs	from	the	mouse	pan-	
fibroblasts	dataset.	(B)	GSEA	of	DEGs	from	the	human	pan-	fibroblasts	dataset.	(C)	Trajectory	plots,	expression,	and	pseudotime	patterns	of	
top	genes	in	mouse	bladder.	(D)	Trajectory	plots,	expression,	and	pseudotime	patterns	of	top	genes	in	mouse.	DEGs:	differentially	expressed	
genes.	GSEA:	gene	set	enrichment	analysis.	GO:	gene	ontology.	Abbreviations:	BP,	biological	process;	MF,	molecular	function
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F I G U R E  3 Venn	plots	of	common	top	pseudotime	genes.	(A)	Venn	plots	of	mouse	pan-	fibroblasts	(n	=	5),	human	pan-	fibroblasts	(n	=	5),	
mouse urothelial cells (n =	4),	and	human	urothelial	cells	(n	=	3)	datasets.	(B)	Key	pseudotime	genes	in	both	mouse	and	human	urothelium	
tissues
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cells 2 was the key sender while smooth muscle cells 1 did not serve 
the	 same	 function,	 and	 fibroblasts	 1	was	 the	main	 receiver	while	
other fibroblasts did not act the same role. Smooth muscle cells 2 
also	played	a	significant	role	as	a	receiver	in	the	CD46	pathway	net-
work,	while	smooth	muscle	cells	1	did	not.	However,	smooth	muscle	
cells	 1	were	 the	 receiver	 for	 the	 visfatin	 signaling	 network,	while	
smooth muscle cells 2 was not.

3.10  |  Interactive networks of integrin superfamily 
in the bladder and its adhesion to cells and 
extracellular matrix

Integrin	 superfamily	 contains	 18	 αsubunits	 (ie,	 ITGA1,	 ITGAV,	
ITGA6,	 ITGAX)	and	8	βsubunits	 (ie,	 ITGB1	and	 ITGB2)	generating	
24	distinct	 integrin	heterodimers.21 These transmembrane recep-
tors	 are	 mainly	 responsible	 for	 connections	 between	 “outside”	
ECM	 structures	 and	 “inside”	 cell	 cytoskeleton	 systems	 and	 are	
also able to co- operate with cell- cell junction signaling.22	 Among	
all enriched ligand- receptor pairs found by our interactive com-
munication	analysis,	24.7%	(66/268)	receptors	in	mouse	and	23.9%	
(102/426)	receptors	in	human	were	directly	associated	with	the	in-
tegrin	superfamily,	suggesting	its	critical	role	in	cell	communication	
networks. We extracted all integrin- associated receptors from dif-
ferent significant enriched pathways and showed their networks in 
the	mouse	bladder	(Figure	7A).	Urothelial	cells	(basal	cells)	and	my-
ofibroblasts	were	the	main	receivers	of	these	signaling,	while	most	
other	cell	clusters	send	related	ligands.	In	addition,	we	were	using	
the	other	two	pathways	as	a	comparative	reference	(Figure	7B-	C).	
Vascular	endothelial	growth	factor	(VEGF)	signaling	was	exclusively	
from	 urothelial	 cells	 to	 the	 endothelial	 cells,	 while	 transforming	
growth	factor	(TGF)	signaling	was	equally	distributed	to	almost	all	
cell clusters in mouse bladder.

Then,	we	browsed	the	expression	of	 these	subunits	 in	mouse	
(all	26	subunits)	and	human	(25	subunits,	ITGAD	not	available)	blad-
der	(Figure	S7A-	B).	In	both	mouse	and	human,	ITGB2	was	primarily	
expressed	in	immune	cells,	ITGB1	was	the	most	broadly	expressed	
subunit	 gene,	 and	 ITGA1	 was	 only	 expressed	 in	 smooth	 muscle	
and endothelial (potentially include pericytes) cells. Co- expression 
of	ITGB1	and	ITGB4	was	located	in	basal	cells	in	both	mouse	and	
human,	implying	this	layer	was	tightly	connected	to	the	basement	
membrane	 (Figure	 7D-	E).	 Co-	expression	 of	 Itga11	 and	 Itgb1	 has	
precisely	occurred	in	myofibroblasts	of	mouse	bladder	(Figure	7F).	
Meanwhile,	 some	 differences	 between	 species	 have	 been	 ob-
served; myofibroblasts in the human bladder not only highly ex-
pressed	 ITGA11	but	also	relatively	highly	expressed	 ITGA8	when	
myofibroblasts in mouse bladder only highly expressed Itga11. The 
overall	expression	of	 ITGA2	was	significantly	 lower	 in	 the	mouse	
bladder. Itgb7 was highly expressed in immune cells of mouse blad-
der,	while	 ITGB7	was	 barely	 expressed	 across	 all	 human	 bladder	
cell	 clusters.	Taken	 together,	 these	 findings	were	consistent	with	
the	previous	reports,21- 23 except for a few potential organs or spe-
cies specificities.

4  |  DISCUSSION

In	recent	years,	whether	 it	 is	the	construction	of	 large-	scale	cellu-
lar atlases or the analysis of single- cell data from a small number 
of	samples,	we	are	trying	to	understand	cell	fate,	development,	and	
communication	at	an	unprecedented	depth,	so	as	to	ultimately	grasp	
and interpret the underlying mechanisms of phenomena that can be 
observed	by	us	even	at	the	naked	eye	level.	In	our	study,	we	even-
tually	 collected	 and	 analyzed	 more	 than	 23,000	 mouse	 cells	 and	
29,000	human	cells	from	11	bladder	samples	(six	different	scRNA-	
seq	datasets).	Notably,	sample	isolation	and	processing,	along	with	
the	different	scRNA-	seq	platforms,	would	significantly	affect	the	re-
sults. Rapid and efficient sample processing and non- over- digested 
single-	cell	suspensions	might	be	a	prerequisite	to	maintain	favorable	
cell status (relatively low mitochondrial or ribosomal contamina-
tion)	and	facilitate	subsequent	data	analysis.	Followed	by	standard	
Seurat	package	workflow,	we	suggested	a	 resolution	between	0.3	
and1	to	find	distinct	cell	clusters	for	bladder	cells	ranging	from	3,000	
to	20,000	(Figure	S8).	Normally,	a	higher	resolution	would	only	cre-
ate	more	sub-	clusters	of	urothelial	cells	or	fibroblasts,	and	whether	
these	 sub-	groups	 of	 cells	 exist	 unique	 features	was	 still	 unknown	
since there was no widely accepted optimal resolution for distin-
guishing	different	 cell	 groups.	 Interestingly,	 it	 appeared	 that	more	
immune	cells	can	be	detected	in	human	samples,	and	we	suspected	
that this could be related to the germ- free environment in which the 
mice were raised and the short laboratory animal lifespan.

The canonical marker genes of most cell clusters in the bladder 
were	well	established.	However,	we	found	that	sometimes	it	was	dif-
ficult to distinguish myofibroblasts from smooth muscle cells when 
a	group	of	cells	highly	expressed	ACTA2	and	barely	expressed	fibro-
blast	markers.	Also,	it	would	be	challenging	to	decipher	immune	cells	
in the bladder when the cell amount was limited and marker genes 
were	mixed.	As	a	stratified	epithelium,	urothelium	is	typically	com-
prised	of	three	cell	layers	including	umbrella	cells	(most	superficial),	
intermediate	cells	(middle	layer	with	one-	to-	several	layers	thick),	and	
basal	cells.	For	instance,	KRT5	and	KRT17	were	previously	reported	
as markers of basal cells.8	But,	the	expression	of	KRT17	was	not	de-
tected	in	our	initial	dataset	analysis,	and	it	might	be	caused	by	a	com-
mon	drop-	out	effect	in	scRNA-	seq	experiments.	UPK2	and	KRT20	
were regarded as umbrella cell markers8 while in some datasets both 
of	them	could	hardly	express	across	all	urothelial	cells,	and	it	can	be	
tough to determine whether a specific cell cluster belongs to um-
brella	cell	with	underestimated	UPK2	and	KRT20	expression	or	the	
whole sample was missing the superficial layer of bladder probably 
by	 inappropriate	 experimental	 protocols.	 KRT13,	 KRT18,	 KRT19,	
and	relatively	low	expression	of	UPK2,	UPK1A,	UPK1B,	and	UPK3B	
were	viewed	as	markers	of	intermediate	cells,	and	the	previous	re-
search exhibited a potential transitional status between intermedi-
ate and umbrella cells.7,8

Metabolic patterns were one of the customized features for a 
certain cell cluster. We found that urothelial cells seem to have a 
higher	 glucose	 metabolic	 activity	 score,	 implying	 that	 they	 were	
in	 a	 constant	 state	 of	 renewal	 and,	 therefore,	 have	 a	 high	 energy	
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F I G U R E  4 Integrated	mouse	and	human	bladder	datasets.	(A)	UMAP	of	integrated	mouse	bladder.	(B)	UMAP	of	integrated	human	
bladder. (C) Cell- cell interactions in mouse. (D) Cell- cell interactions in human. (E) Classification of cell clusters based on incoming or 
outgoing	signaling	patterns	in	mouse.	(F)	Classification	of	cell	clusters	based	on	incoming	or	outgoing	signaling	patterns	in	mouse
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demand.	The	hypoxia	score	was	higher	in	fibroblasts,	smooth	muscle	
cells,	endothelial	cells,	and	some	immune	cells.	These	cells	are	tradi-
tionally	thought	to	be	mainly	responsible	for	hypoxia,	and	targets	are	
driven by hypoxia conditions in a tissue.24,25	Although	the	score	built	
on the gene- list expression method only partially represented the 
real	activity	status,	 it	still	 reminded	us	that	heterogeneities	across	
cell types that cannot be ignored and thus previous studies based on 
bulk	RNA-	seq	might	have	severe	confounding	factors	(ie,	mixed	cell	
types) and then mask the truth.

Fibroblasts	are	known	to	be	mesenchymal	origin	cells	and	com-
prise the majority of interstitial cells in the bladder26 with undisputed 

important	biological	functions,	especially	for	tissue	fibrosis,	wound	
contraction,	and	the	formation	of	extracellular	matrix.14	DEGs	were	
intensely	associated	with	morphogenesis	pathways,	which	was	ex-
pected,	as	fibroblasts	somehow	could	shape	the	water	content	and	
tensile properties in tissues.14	Tightly	connected	to	the	ECM,	these	
enriched pathways were also correlated with multiple receptor sig-
naling.	As	we	can	see,	these	DEGs-	enriched	pathways	were	nearly	
identical	between	mouse	and	human,	representing	a	great	similarity	
in fibroblast function between species.

In	 accordance	 with	 the	 previous	 findings,	 we	 validated	 that	
PLA2G2A,	S100A10,	and	SH3BGRL3	were	 lowly	expressed	at	 the	

F I G U R E  5 Cell-	cell	communications	between	certain	cell	types.	(A)	Signaling	from	basal	cells	to	fibroblasts	in	mouse.	(B)	Signaling	from	
fibroblasts to basal cells in mouse. (C) Signaling from basal cells to SMCs in human. (D) Signaling from SMCs to basal cells in human. SMCs: 
smooth muscle cells
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end stage of trajectory via a strong pseudotime pattern in the human 
bladder.	PLA2G2A	is	a	prominent	marker	of	fibroblasts	in	the	blad-
der,	and	its	expression	would	be	substantially	reduced	in	bladder	tis-
sue from patients with prune belly syndrome.27	Also,	evidence	from	
human	and	rat	lung	tissue	microarray	data	indicated	that	PLA2G2A	
was	 overexpressed	 in	 patients	with	 idiopathic	 pulmonary	 fibrosis,	
and	in	our	speculation,	which	was	most	likely	due	to	an	increase	in	
the abundance of fibroblasts.28	ECM	genes	(eg,	FBLN1	and	FBLN2)	
also exhibited a pseudotime pattern in the human pan- fibroblasts 
dataset,	fibroblasts	derived	from	patients	with	synpolydactyly	(hand	
malformations)	showed	alterations	in	the	level	of	FBLN1	splice	vari-
ants,29	and	ablation	of	Fbln2	 in	mice	cardiac	 fibroblasts	protected	
against	progressive	ventricular	dysfunction,	reducing	the	mortality	
after myocardial infarction.30	In	mouse	bladder,	Car3,	Dkk2,	Tnc,	and	
Bmp5 were among top trajectory genes with pseudotime expression 
features,	 overexpression	 of	DKK2	would	 reduce	 the	 activation	 of	
human	cardiac	 fibroblasts,31 Tnc was involved in modulating ECM 
integrity	and	preventing	skin	aging,32 and Bmp5 was an antifibrotic 
factor that related to fibroblast- myofibroblast transdifferentiation in 
rat kidney interstitial fibroblasts.33

Cxcl14	and	Grem2	consistently	 showed	a	pseudotime	 trait	 in	all	
five	mouse	pan-	fibroblasts;	previous	studies	displayed	that	the	Cxcl14	

axis in fibroblasts can interact with multiple cancer cells and acts as a 
multi-	modal	stimulator	with	tumor-	supporting	properties,34-	36 and the 
activation	 of	Grem2	 in	 fibroblasts	would	 promote	 pulmonary	 fibro-
sis.37	For	the	development	of	urothelial	cells,	TMSB4X	was	a	top	gene	
in	all	datasets	regardless	of	the	mouse	or	human	tissue	sources,	deple-
tion	of	TMSB4X	would	cause	abnormal	stability	of	adherence	junction	
in	epidermal	cells,38 and a developmental trajectory using single- cell 
proteomics	revealed	TMSB4X	significantly	decreased	during	hair-	cell	
differentiation.39	In	addition,	increasing	expression	of	UPK2,	UPK1A,	
and	UPK3A	 (Figure	 3B)	 has	 been	 seen	 through	 all	 datasets	 in	 both	
mouse	and	human	bladder.	Knockout	of	 these	genes	 in	mice	would	
cause	 several	 abnormalities,	 such	 as	 poorly	 differentiated	 umbrella	
cells and vesicoureteral reflux with hydronephrosis.40 In mouse embry-
onic	day	11–	12,	progenitor	cells	of	urothelium	were	formed	with	the	
expression	of	SHH,	FOXA2,	TP63,	and	uroplakins	 (most	be	UPK3A)	
but	without	KRT5.40	However,	 in	adult	mouse	urothelium,	UPK3A−,	
KRT5+,	and	KRT14+ basal cells were reported as stem cells with the 
ability	to	give	rise	to	all	urothelial	cells	and	UPK3A+ intermediate cells 
can give rise to umbrella cells in some cases.40	Intriguingly,	trajectory	
analysis of urothelial cells would often be disrupted by a large num-
ber of ribosomal genes which also developed pseudotime properties 
in	some	datasets.	This	observation	was	also	seen	in	a	previous	study,	

F I G U R E  6 Different	roles	of	each	cell	cluster	in	certain	pathways.	(A)	Pathways	in	the	integrated	mouse	dataset.	(B)	Pathways	in	the	
integrated	human	dataset.	ncWNT:	non-	canonical	WNT.	Abbreviation:	FN1,	fibronectin	1
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F I G U R E  7 Distributions	of	certain	interactive	pathways	in	bladder	and	co-	expression	of	integrin	superfamily.	(A)	Communication	
networks	of	integrin	superfamily	in	mouse	bladder.	(B)	Communication	networks	of	the	TGF	pathway	in	mouse	bladder.	(C)	Communication	
networks	of	the	VEGF	pathway	in	mouse	bladder.	(D)	Co-	expression	of	Itgb1	and	Itbg4	in	mouse	bladder	basal	cells.	(E)	Co-	expression	of	
ITGB1	and	ITGB4	in	human	bladder	basal	cells.	(F)	Co-	expression	of	Itgb1	and	Itga11	in	mouse	bladder	myofibroblasts.	TGF:	transforming	
growth	factor.	Abbreviation:	VEGF,	vascular	endothelial	growth	factors
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about	90%	of	top	pseudotime	genes	were	located	in	ribosomes,9 yet 
the	remaining	genes	(Gstm1,	Tmsb4x,	S100a6,	and	Malat1)	were	still	
aligned with our study. This phenomenon might imply that the urothe-
lial cells may have been more heavily damaged during the sample 
preparation because of their exposure as the outermost layer or their 
intolerance and sensitivity to cell digestive agents (multiple enzymes).

To	give	a	better	perspective	of	the	entire	bladder,	we	have	 inte-
grated the above datasets (two initial independent datasets not in-
cluded)	using	the	Seurat	R	package	(CCA	method)	with	slightly	more	
looser	quality	control	parameters	compared	with	earlier	independent	
analysis.	In	general,	the	results	displayed	that	the	integration	appropri-
ately	addressed	and	merged	the	original	cell	subpopulations,	underly-
ing	the	major	cell	types	in	the	mouse	and	human	bladder	(Figure	4A-	B).	
To	our	knowledge,	this	is	the	first	study	to	integrate	bladder	scRNA-	
seq	data	from	different	platforms,	focusing	on	this	specific	organ,	and	
thus produced the largest data of normal bladder at single- cell levels. 
Then,	cell-	cell	communication	analysis	was	conducted	using	a	recently	
published R package CellChat.19	Notably,	 these	 dynamic	 interactive	
networks	were	broadly	dispersed	across	cell	types	(Figure	4C-	D).

To further investigate intercellular communication between spe-
cific	cell	types,	we	have	chosen	basal	cells	and	fibroblast	in	the	inte-
grated mouse dataset along with basal cells and smooth muscle cells 
in	the	integrated	human	dataset	as	examples	(Figure	5A-	D).	Bladder	
fibroblasts could promote re- epithelization after urothelial injury 
through	enhancement	for	cell	proliferation,	attachment	to	the	basal	
lamina,	 and	 development	 of	 well-	organized	 cell	 junction	 between	
multilayered urothelial cells.41	Also,	the	existence	of	 laminin,	colla-
gen,	and	elastin	in	the	bladder	submucosa	matrix	was	maintained	as	
valuable bioactive factors even after the decellularization and ex-
traction processes.42	For	these	interstitial	cells	(eg,	fibroblasts),	their	
close proximity to the urothelium and smooth muscle cell (detrusor) 
seemed to suggest their modulating or bridging role in the bladder 
wall.40 Communication between human bladder smooth muscle 
cells and suburothelial myofibroblasts was directly associated with 
overactive bladder syndrome and could be profoundly affected by 
different cytokines.43	At	last,	we	took	integrin	superfamily,	TGF,	and	
VEGF	pathways	as	cases	for	illustrating	the	different	roles	and	distri-
bution	patterns	of	signaling	in	mouse	bladder	(Figure	7).	It	is	obvious	
and intuitive that the different patterns correspond to varying func-
tions and localization of signaling pathways.

In	summary,	we	collected	multiple	datasets	to	comprehensively	
dissect	 the	bladder	at	a	single-	cell	 level.	To	date,	 this	 is	 the	 first	
and largest integration study of the normal bladder using single- 
cell	 transcriptome	 data.	 DEGs	 and	 pseudotime	 analysis	 of	 pan-	
fibroblasts revealed similarity in function and potential distinct 
development trajectory between mouse and human bladders. 
Whether these heterogeneities are caused by any technical fac-
tors	during	scRNA-	seq	needs	further	investigation.	TMSB4X	and	
S100A6	show	a	pseudotemporal	signature	 in	the	multiple	mouse	
or	human	urothelial	cell	datasets,	and	the	specific	roles	they	play	
need to be further examined. Tons of interactive communications 
could be recognized in our large- scale integrated bladder data-
sets,	and	future	studies	could	proceed	to	explore	whether	these	

paired signals are significantly altered under pathological condi-
tions.	Also,	we	provide	 information	on	which	signaling	pathways	
are	 enriched	 in	 particular	 cell	 clusters	 (eg,	 urothelial	 basal	 cells,	
fibroblasts,	and	smooth	muscle	cells)	of	the	bladder	and	what	roles	
(eg,	sender,	receiver,	and	mediator)	different	cells	play	in	the	path-
ways. The exact mechanisms of how these signaling pathways are 
synergistically regulated by a variety of distinct cells and function 
stably are worth further exploration.
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