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Abstract: Tumor protein 53-induced nuclear protein-1 (TP53inp1) is expressed by 

activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 

in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces 

the expression of TP53inp1 in human immortalized fibroblast (F11hT) cells. Stable silencing 

of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation 

the clonogenic survival of TP53inp1 knockdown (F11hT-shTP) cells was compared to  

cells transfected with non-targeting (NT) shRNA. Radiation-induced senescence was 

measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and 

microtubule-associated protein-1 light chain 3 (LC3B) immunostaining. The expression of 

TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA 

deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR) induced 

maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions 
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were increased and autophagy was deregulated following irradiation in the absence of 

TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of 

fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced 

autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation 

induced autophagy impairment and induces accumulation of damaged mitochondria in 

primary human fibroblasts. 

Keywords: TP53inp1; p53-network; autophagy; senescence; radiosensitivity; RNA interference; 

GDF-15; CDKN1A 

 

1. Introduction 

Ionizing radiation (IR) causes oxidative stress in DNA, proteins and lipids, but cells have a complex 

signal cascade to avoid ROS-induced damage and ensure their homeostasis. Dependent on the extent of 

radiation damage and the genetic background of cells, signal molecules trigger cell cycle arrest and DNA 

repair, or in the case of lethal/sub-lethal damage, elimination of the cells by senescence or apoptosis. 

Oxidative damage response is regulated by p53 and its cofactors; they have a critical role in the outcome 

of cell injury [1]. TP53inp1 is one of the downstream target of p53/p73 and it also has a feedback 

regulation to p53 and it stimulates their capacity to control cell cycle [2,3]. TP53inp1α and TP53inp1β 

isoforms are encoded by the TP53inp1 gene [4]. It is known that TP53inp1 acts as an antioxidant and 

promotes caspase-dependent apoptosis [5]. It was recently shown that TP53inp1-dependent apoptosis 

was mediated by homeodomain-interacting protein kinase-2 (HIPK2), via p53 [6]. One of the key 

consequences of exposures of different cells to ionizing radiation is the change in the expression level 

of multiple genes [7,8]. In normal human (fibroblast) cells several ataxia telangiectasia mutated 

(ATM)/p53 associated genes such as TP53inp1, CDKN1A, and HDM2, as well as several tumor necrosis 

factor (TNF) receptor superfamily members were shown to be induced by IR [9,10]. Many authors report 

that TP53inp1 has a role in the control of proliferation and apoptosis under stress condition and acts as 

a dual regulator of transcription and autophagy [11], but the precise role of TP53inp1 in the radiation 

induced cellular stress remains ambiguous. In the recent work, we show evidence of the dose-dependent 

transcription of TP53inp1 by IR. Until now, it is not yet known whether the level of TP53inp1 expression 

can affect the radiosensitivity of human fibroblasts and whether TP53inp1 can modify the effect of 

radiotherapy. Thus, we established a shRNA-mediated TP53inp1 silencing strategy to investigate the 

effect of TP53inp1 silencing on cell survival and sensitization to γ-radiation in human fibroblasts in vitro. 

2. Results 

2.1. TP53inp1 Is a Radiation Response Gene in Fibroblast Cells 

The dose-dependent radiation-induced gene expression of the TP53inp1 gene was measured in 

irradiated F11hT human fibroblast cells by quantitative polymerase chain reaction (qPCR). In irradiated 

cells expression of TP53inp1 increased with dose 2 h after irradiation (Figure 1). Elevation of TP53inp1 

was obtained from 100 mGy (1.33 ± 0.12, p = 0.059), although the alterations became statistically 
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significant only above 500 mGy (1.74 ± 0.25, p = 0.027). Treatment with 2 Gy further increased the 

expression of TP53inp1 up to (2.613 ± 0.439, p = 0.025). The expression of TP53inp1 protein was also 

elevated 24 h post-irradiation (Figure 2B) in human immortalized fibroblast (F11hT-NT). 

 

Figure 1. Dose-dependent expression of TP53inp1 in immortalized human fibroblast cells 

(F11hT). Relative gene expression was measured by qPCR with the delta-delta cycle 

threshold (ΔΔCt) method as described in the Experimental Section. The data are derived 

from at least three independent experiments, and error bars show SEM of the mean. Gene 

expression in the F11hT cells is expressed in comparison with the sham-irradiated fibroblasts 

cells (calibrators), in which levels of expression are regarded as a level of one. Cells were 

harvested 2 h after γ-irradiation. One-way ANOVA was used for analysis. (* p < 0.05,  

*** p < 0.001). 

2.2. Lentiviral Delivery of TP53inp1-Targeting shRNA Effectively Decreases TP53inp1 Expression 

and Increases Radiation Sensitivity 

It was shown that high-efficiency RNA interference can be accomplished by overexpressing an 

exogenous shRNA that has been engineered to encode a 19–25 base pair sequence that complements  

a segment of the gene targeted for knockdown [12]. In the present study we have attempted to silence 

the TP53inp1 gene by lentiviral shRNAs as described in the Experimental Section. The efficiency of 

TP53inp1 mRNA level knockdown was verified by qPCR in F11hT-NT and F11hT-shTP cells both in 

their normal growth state and after 2 Gy irradiations (Figure 2A). Silencing TP53inp1 with shRNA 

effectively decreased TP53inp1 mRNA expression by 65%–90% (p < 0.01) in F11hT-shTP cells. 

Expression levels of TP53inp1 increased slightly in the F11ht-NT cells at 2 h after 2 Gy irradiation. As 

shown in Figure 2B, an increase in TP53inp1 was also detected on protein level in the 2 Gy exposed 

F11hT-NT group compared with the non-irradiated controls. By contrast, there were almost no 

detectable TP53inp1 proteins in the TP53inp1 silenced F11hT-shTP non-irradiated group; moreover, the 

2 Gy-induced elevation was less than in F11hT-NT cells (Figure 2B). Density of bands was normalized 

to Histone-H3 by densitometry analysis; the data are given in pixel density of TP53inp1/Histone-H3 

(F11hT-shTP 0 Gy: 0.006; 2 Gy: 0.001; 6 Gy: 0.042; F11hT-NT 0 Gy: 0.020; 2 Gy: 0.064; 6 Gy: 0.021). 
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Next, we looked whether silencing of TP53inp1 could affect radiation-induced cell death. F11hT-NT 

and F11hT-shTP cells were irradiated and grown for 14 days and the survival colonies was counted. 

F11hT-shTP cells formed fewer colonies after irradiation than F11hT-NT cells transfected with the  

non-targeted (NT) vector (Figure 3). Silencing TP53inp1 causes increased radiosensitivity. 

 
(A) (B) 

Figure 2. TP53inp1 gene silencing in F11hT-NT and F11hT-shTP cells. (A) Values were 

calculated by qPCR with the ΔΔCT method. Data are given from at least four experiments, 

and error bars show SEM of the mean. Gene expression in the F11hT-shTP cells is compared 

with the sham-irradiated F11ht-NT cells, where the expression is fixed as a level of one. 

Statistical analysis was performed using one-way ANOVA-test (* p < 0.05, *** p < 0.001). 

(B) Irradiation induces expression of TP53inp1. TP53inp1 protein level was detected by 

Western blot at 24h post-irradiation with 2 and 6 Gy and normalized to Histone-H3. 

Expression of TP53inp1 protein was significantly lower in TP53inp1 silenced F11hT-shTP 

cells as compared to the F11hT-NT cells. Densitometric analysis of the bands, relative to 

Histone-H3, was performed using ImageJ softwer (http://imagej.nih.gov/ij/). 

 

Figure 3. Radiation survival curve of the F11hT-NT and F11hT-shTP cell lines. On the left 

panel quantitative analysis is shown. Data are based on at least six independent experiments, 

and error bars represent SEM of the mean survival following exposure to 0, 0.1, 2, and 4 Gy 

γ-radiation. SF% was calculated according to the following formula: SF% = (PE of treated 

sample/PE control sample) X 100. PE: plating efficiency. Welch’s test was used for 

statistical evaluation (* p < 0.05); The right panel shows representative Coomassie BB 

stained colonies. For the colony-forming assay, 1500 cells were seeded on 10 cm diameter 

Petri dishes and irradiated with 0.1-, 2-, and 4 Gy γ-rays. The upper series are representing 

the F11hT-NT fibroblasts, while the lower panel shows the F11hT-shTP cells. 
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2.3. TP53inp1 Is Implicated in Autophagy 

We analyzed whether the increased radiation sensitivity of F11hT-shTP cells is related to higher  

rates of autophagy. F11hT-NT and F11hT-shTP cells were irradiated by 6 Gy and autophagy vacuole 

formations were monitored by Acridine Orange (AO) staining followed by fluorescent microscopy.  

The quantified number of AO-positive vacuoles is shown in Figure 4A. The percentage of AO-positive 

vacuoles is increased in F11hT-NT (2.333 ± 0.589) cells treated with 6 Gy (8.718 ± 2.66) compared  

to untreated cells demonstrating that IR induces the accumulation of autophagic vacuoles (AV) in  

F11hT-NT cells. Stable silencing of TP53inp1 markedly reduced the number of radiation-induced 

autophage vacuoli in F11hT-shTP cells compared to F11hT-NT (5.506 ± 1.469, 8.718 ± 2.66, 

respectively) (Figure 4A,B). 

To assess the development of AVs in TP53inp1 silenced fibroblasts, we also performed immunostaining 

with LC3B antibody and quantified the result with flow cytometry (Figure 4C,D) [13]. The percentage 

of LC3B-positive AV dots was significantly increased from 11.6% to 16.65% by 6 Gy exposure in 

F11hT-NT cells, whereas there was less increase in the percentage of F11hT-shTP with LC3B-positive 

AV dots (from 10.15% to 14.16%) (Figure 4C). The values of fluorescence intensity are taken from  

the modes of the FACS histograms shown in the right panel (Figure 4D). These results suggest that 

TP53inp1 might contribute to the formation of radiation-induced autophagy in human fibroblasts. 

 

Figure 4. Cont. 
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Figure 4. The effect of TP53inp1 silencing on the formation of radiation-induced autophagic 

vacuoles. (A) Quantitation of autophagic vacuoles shows a significant increase in the 6 Gy 

treated groups as compared to the sham irradiated F11hT-NT cells (* p value < 0.5). 

Silencing of TP53inp1 is resulted significantly less autophagosome in 6 Gy-exposed  

F11hT-shTP cells (* p value < 0.5). Two days after irradiation, cells were treated with 

Acridine Orange dye and red (autophagosome) puncta were counted from minimum eight 

cover slips (n ≥ 8) under fluorescent microscope. White arrowheads denote the autophagic 

vacuoles. Results were analyzed with One-way ANOVA; (B) fluorescence photomicrograps 

obtained after Acridine Orange staining. Control cells (0 Gy) showing a few cytoplasmic 

AV formation, the number of AV increased in irradiated F11hT-NT cells and, to a lesser 

extent, in F11hT-shTP cells; (C) Representative flow cytometry plots are demonstrative of 

LC3B intracellular staining in response to 6 Gy exposures. Dot plot analysis is derived from 

the non-gated cell population. Flow cytometry analysis of F11hT-NT and F11hT-shTP cells 

using LC3B Antibody (Sigma, St. Louis, MI, USA) compared to a nonspecific isotype  

control antibody. Acquisition of 10,000 events was collected and for analysis the CellQuest 

software (BD Biosciences, San Jose, CA, USA) was used; (D) Representative flow 

cytometry histograms of percent LC3B-positive fibroblast are shown at right. Labeling of 

LC3B-positive cells at 48 h in F11hT-NT cells (right, top graph) and F11hT-shTP cells 

(right, bottom graph) after irradiation are graphed. 

2.4. TP53inp1 Enhances the Accumulation of Common Deletion (CD) in Mitochondrial Genome 

The effect of TP53inp1 silencing on the radiation response of fibroblast cells was investigated by the 

analysis of common deletions in the mitochondrial genome. F11hT-NT cells showed accumulation of 
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CD, dose-dependently, from 2 Gy (1.647 ± 0.413; p < 0.05) doses. In F11hT-shTP cells the IR-induced 

effect was more pronounced at 0.1 Gy, (2.080 ± 0.420; p < 0.05) and also at 2 Gy (2.673 ± 0.61; p < 0.051) 

at 48 h post-irradiation (Figure 5). The data might suggest that the elimination of mutated mitochondria 

were impaired in TP53inp1 silenced cells. 

 

Figure 5. Effect of TP53inp1 silencing on the accumulation of CD (common deletion) in the 

mitochondrial genome. Dose-dependent increase of mitochondrial common DNA deletions 

was compared in irradiated F11hT-NT and F11hT-shTP cells by qPCR. The mean ± SEM 

of at least three independent experiments are shown. Changes in the relative amount of CD 

were measured 72 h after the γ-irradiation. The mean ± SEM data derived from at least three 

experiments. Statistically significant changes calculated with One-way ANOVA are labeled 

as * p < 0.05. 

 

Figure 6. (A) Effect of TP53inp1 silencing on radiation induced senescence. Senescence 

associated-β-galactosidase positive F11hT-NT and F11hT-shTP cells was measured six days 

after exposure to a single dose of 6 Gy irradiation. Data presented are means ± SEM, n = 9 

from three separate experiments. Statistical analysis was performed with one-way ANOVA 

followed by a Bonferroni post-test. A statistically significant difference p < 0.05 (*) is 

indicated; (B) Representative pictures of human fibroblasts (F11hT-NT) and TP53inp1 

silenced fibroblasts (F11hT-shTP) were irradiated with 6Gy and stained with SA-βGal. The 

sham irradiated control shows exiguous staining, while the 6 Gy irradiated samples are 

powerfully stained. (Photo: Zeiss Axioskop2plus microscope, 100× magnification; Olympus 

Camedia camera; 3× optical zoom). 
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2.5. TP53inp1 Does Not Regulate IR-Induced Cellular Senescence 

Next, we investigated whether down-regulated TP53inp1 might play a role in regulation of  

IR-induced premature senescence. Thus, we performed a loss-of-function analysis of TP53inp1 by  

stable transfecting F11hT cells with TP53inp1-shRNA to evaluate their effects on IR-induced 

senescence. Our data indicate that SA-β-gal stained cells are increased in F11hT-NT cells (8.944 ± 2.2757; 

72.972 ± 3.182; p < 0.05) and F11hT-shTP cells (11.791 ± 2.211, 76.468 ± 5.425 p < 0.05) in 6 Gy 

treated cultures at 6 days post-irradiation, but there were no difference between treated F11hT-NT and  

F11hT-shTP cells, suggesting that silencing of TP53inp1 does not modifies IR-induced senescence in 

human fibroblast cells (Figure 6A,B). 

2.6. TP53inp1 Modify the Radiation-Induced Expression of CDKN1A and GDF-15 Gene 

In a previous publication, we showed that both CDKN1A and GDF-15 mRNAs were induced in vitro 

in human fibroblast cells by low doses of γ-rays [8]. Exposure from 0.1 Gy resulted in a significant 

induction for both genes. Therefore, the expression levels of CDKN1A and GDF-15 mRNAs were 

compared after irradiation with 2 Gy in F11hT-NT and F11hT-shTP cells. RNAs were isolated from 

control and irradiated cells 2 h after irradiation, in order to quantify the expressions of CDKN1A, and 

GDF-15 by qPCR. Significant induction of both radiation response genes were observed after irradiation 

with 2 Gy (1.0 ± 0.01, 4.166 ± 0.867 and 1.0 ± 0.01, 3.788 ± 0.758, p < 0.01) (Figure 7A,B).  

The expression of CDKN1A and GDF-15 mRNAs reduced significantly in TP53inp1 silenced  

F11hT-shTP cells exposed to 2 Gy (0.672 ± 0.05, 2.516 ± 0.226 and 0.611 ± 0.119, 2.084 ± 0.332,  

p < 0.05) (Figure 5A,B). 

 

Figure 7. TP53inp1 silencing alters expression of IR–induced p53 targets. Graphs show 

relative transcript expression of CDKN1A in (A) panel GDF-15 and in (B) panel, as 

quantified by qPCR in F11hT-NT and F11hT-shTP fibroblasts without treatment and after  

2 Gy γ ray exposure for 2 h (* and ** are p < 0.05 and 0.01 compared with treated F11hT-NT 

and F11hT-shTP cells, respectively). Target transcript expression was normalized by the 

corresponding mean of housekeeping GAPDH and β-Actin values. Data are means of 

triplicates ± SEM. Statistically significant changes calculated with One-way ANOVA are 

labelled as * p < 0.05. 
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3. Discussion 

Previously, we had identified several early radiation response genes in irradiated primary human 

fibroblast cells, among them the currently investigated TP53inp1 [10]. Here we further explored the 

potential role of TP53inp1in the response of fibroblast cells to ionizing radiation. TP53inp1 is an 

oxidative damage-induced protein that is a downstream target of p53 [2,14]. It was previously mentioned 

that it is a major mediator of p53 antioxidant function [15]. Very interestingly TP53inp1 is not only 

controlled by p53 but, on the other hand, it might alter p53 transcriptional activity on several  

p53-dependent promoters, thus stimulating the capacity of p53 to induce cell death [6,16]. TP53inp1 

might also act independently from p53; in the absence of p53 TP53inp1 with p73 regulates cell cycle 

delay and apoptosis [3]. 

The current data indicate that TP53inp1 has a crucial role in redox homeostasis it inhibits 

proliferation, and enhances apoptosis and the expression of it is reduced in many solid tumors [17–19]. 

Our results have indicated that treatment of F11hT cells with γ-radiation dose-dependently induces the 

expression of TP53inp1. These results suggest that increased expression of T53inp1 is involved in the 

radiation-induced stress response in normal human fibroblasts. Previous observation suggested that 

TP53inp1 expression increases in inflammation or other stress agents, such as ionizing and non-ionizing 

radiation [10,20,21]. 

In order to evaluate the role of TP53inp1 in radiation response we have silenced the TP53inp1 gene 

by the stable introduction of shRNAs into immortalized human skin fibroblast cells. Our data indicate 

that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. That means that a higher 

percentage of silenced cells survive a given radiation dose. It is well-known that radiation-induced cell 

death is a complex process. Cells might die by apoptosis, necrosis autophagy, and senescence, and by 

mitotic catastrophe. Usually, not the type, but the timing of the cell death is the most important process. 

Cells might die early after irradiation or they can undergo late cell death [22]. Most of the normal human 

cells suffer late cell death; they die days, or even weeks, after irradiation. Previously, it was reported that 

knockdown of TP53inp1 suppressed the growth of cervical cancer cells and promoted apoptosis [23] in 

Hela cells. However, primary human fibroblast cells are not capable for radiation-induced apoptosis; 

they mostly die by mitotic catastrophe and senescence. The contribution of these pathways to  

radiation-induced cell death depends on individual factors [24]. Our current data indicate that TP53inp1 

silencing has no effect on radiation-induced senescence in telomerase immortalized human fibroblast 

cells. In this extent, it was recently shown that human embryonic lung diploid fibroblasts cells (WI-38) 

transfected with TP53inp1 siRNA had significantly reduced IR-induced cellular senescence [24].  

We assume that individual differences in the applied cell lines might explain the different response. 

Continuously accumulating data suggest that the autophagic response of normal and cancer cells  

to IR is one of the major pathways that leads to cell death [25]. Previously, it was shown that  

radiation-induced autophagy and senescence may occur independently, because senescence can  

develop when autophagy is impaired [26]. There are indications in the scientific literature that  

TP53inp1 is associated with autophagy; it interacts with the ATG8 family of proteins and promotes 

autophagy-dependent cell death [27]. Therefore, we decided to study radiation-induced autophagic 

responses in TP53inp1-silenced cells. We performed autophagy assays on F11hT cells and cell with 

stably expressing TP53inp1 shRNA. In the standard cultivation, the number of autophagosomes was 
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low, and similar in F11hT-NT and F11hT-shTP cells. As expected, radiation treatment triggered 

autophagy in both cell lines as demonstrated previously in glioblastoma cell lines by others [28]. 

However, the number of AV-positive cells was almost cut in half in silenced cells, suggesting that 

TP53inp1 silencing inhibits the formation of autophagy, it is in line with the results of Seillier M. et al. 

who demonstrated that TP53inp1 was crucial for the autophagic activity of exposed cells [27]. However, 

the decreased authopagy in TP53inp1 silenced cells does not explain, but contradicts, the increased 

radiation sensitivity of silenced cells. Chang et al. [29] suggested recently that the reduction in autophagy 

might correlate with increased apoptosis induction and by suppression of the NHEJ and HR repair 

pathways. There are also some evidence that in normal cells autophagy might be cytoprotective [30,31]. 

We might hypothesize that TP53inp1-mediated autophagy could be part of the cellular response against 

oxidative stress that protects against cell organelle failure by inducing death of cells with excessive 

radiation damage. Impaired autophagy can induce ROS accumulation and DNA damage [32].  

TP53inp1 could be a partner in displacing p62 from LC3, therefore enhancing degradation of proteins, 

for example, antiapoptotic proteins, whose depletion would lead to cell death [4]. At present, the role of 

autophagy in cell death and radiosensitivity remains controversial [33,34]; probably, in the presence of 

decreased autophagy other cellular death pathways, such as mitotic catastrophe, are activated. 

We have also investigated the effect of TP53inp1 silencing on the development of radiation-induced 

mitochondrial DNA damage. The data demonstrated that TP53inp1 silencing increased the number of 

CD in mitochondria 48 h after irradiation. Basically, it is in concordance with increased radiation 

sensitivity—decreased survival—of silenced cells suggesting that radiation-induced damage is less 

efficiently repaired both in the genomic and mitochondrial DNAs. However, one might also find 

correlations among increased CD frequency and decreased autophagy in TP53inp1-silenced cells. 

Decreased autophagy might mean the less efficient removal of damaged mitochondria from the cells.  

In line with this hypothesis there are several recent reports suggesting that induction of autophagy, and 

the degradation and elimination of mutated mitochondria are correlated [35–37]. 

Investigating potential correlations between gene expression and specific radiation injury or  

long-term outcomes like carcinogenesis have an upmost importance. The p53 tumor suppressor protein 

has the basic role in regulating cellular radiation response [38]. As mentioned before expression of 

TP53inp1 is controlled by p53 and on the other hand TP53inp1 might also have influences on the effect 

of p53 on the other p53 downstream targets. Our experiments demonstrated that TP53inp1 silencing 

modulates the transcription of such known p53 pathway genes as CDKN1A and GDF-15 Formerly, these 

genes were also identified among the consensus radiation response genes by us [10]. Others also reported 

that TP53inp1 transcriptional induction upon stress was associated with an increased expression of 

several p53 targets, including CDKN1A, SESN1, PUMA, and BAX [6,39]. 

4. Experimental Section 

4.1. Cell Lines 

Primary human fibroblast cell line (F11) was established from skin biopsies taken from foreskin 

samples of children undergoing circumcision for medical indications, as described previously [10]. 
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4.2. Establishment of Stable shTP53inp1 Expressing Cell Lines 

According to the manufacturer’s protocol of Santa Cruz Biotechnology shRNA (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) with three gene-specific shRNA expression lentiviral vectors 

(human TP53inp1 shRNA) transfected into subconfluent F11hT cells. Each vector contains a puromycin 

resistance gene for the selection of cells stable expressing shRNA. F11hT cells were transfected with 

TP53inp1-shRNA encoded lentivirus (shTP) or control lentivirus (non targeted NT) and cultured at 37 °C. 

Transduction was performed serum free medium in the presence of 8 μg/mL polybrene (hexadimethrine 

bromide; Sigma-Aldrich, St. Louis, MO, USA). One hour later the virus-containing media was removed, 

standard culture media was added, and cultivation is continued at 37 °C. Cells were kept in puromycin 

selection (2 µg/mL) medium and resistant cells were maintained for 1–2 additional passages. At 70%–80% 

confluence cells were harvested and lysed. Puromycin resistant cells were selected by long term 

cultivation to obtain stable transduced F11hT subclones (referred to hereafter as F11hT-shTP). 

4.3. Radiation Treatment, Colony Forming Assay 

Cells were exposed to different doses of 60Co γ-rays (Gammatron-3; Siemens, Erlangen, Germany; 

dose rate; was 0.37 Gy/min) at room temperature. Survival fractions were measured as previously 

published [8]. 

4.4. RNA Isolation and Real-Time Quantitative PCR (qPCR) 

Total RNA was isolated from irradiated and mock-irradiated cells using RNeasy Mini kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. To quantify mRNA levels, quantitative 

real-time PCR was performed using a Rotor-Gene, Corbett-3000 real-time PCR System (Invitrogen, 

Carlsbad, CA, USA). The standard protocol is previously written [8]. The primer pairs used in PCR 

studies are shown in Table 1. 

Table 1. Oligonucleotide primers used in quantitative real time-PCR. 

Gene Forward Reverse 

TP53INP1 TCAGCAGAAGAAGAAGAAGAAGAG AGCAGGAATCACTTGTATCAGC 
CDKN1A CCTCATCCCGTGTTCTCCTTT GTACCACCCAGCGGACAAGT 
GDF-15 TCACGCCAGAAGTGCGGCTG CGTCCCACGACCTTGACGCC 
GAPDH CGACCACTTTGTCAAGCTCA AGGGGTCTACATGGCAACTG 
ACTIN TTGCCGACAGGATGCAGAAGGA AGGTGGACAGCGAGGCCAGGAT 
mtDel CCCACTGTAAAGCTAACTTAGCATTAACC GGTTTCGATGATGAGGTCTTTG 
mtWT CTGAGCCTTTTACCACTCCAG  GGTGATTGATACTCCTGATGCG 

4.5. Detection of Autophagic Vacuoles by Acridine Orange 

Cells were grown on glass coverslips at 70% confluent cells were treated with 6 Gy. 48 h later, cells 

were treated with 1 μg/mL acridine orange (were purchased from Sigma-Aldrich Ltd., St. Louis, MO, 

USA) in serum-free medium for 15 min. The cells were washed with PBS and red fluorescent puncta 

were observed with AxioImager A1 fluorescence microscope (Carl Zeiss, Oberkochen Jena, Germany). 
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The cytoplasm and nucleus of the stained cells fluoresced bright green according to the hTERT-GFP 

expression, whereas the AO-positive vacuoles fluoresced bright red. Autophagy was quantified by the 

mean number of cells displaying intense red dots staining for three fields (measuring at least 50 cells per 

field) according to Paglin et al. [37] for each experimental condition. 

4.6. Western Blotting 

Cell lysis was done with RIPA lysis and extraction buffer (Thermo Scientific, Carlsbad, CA, USA) 

supplied with Halt protease inhibitor (Thermo Scientific) at 1× final concentration and centrifuged at 

14,000× g at 4 °C for 15 min. Total protein content was determined by the Bradford protein assay. 

Samples were loaded on 12.5% Tris-glycine polyacrilamide gels then blotted onto Immuno-Blot PVDF 

membrane (Bio-Rad Laboratories, Hercules, CA, USA). After blocking, the used primary antibodies 

were rabbit polyclonal anti-TP53inp1 (ProteinTech, Manchester, UK) and rabbit polyclonal anti-histone 

H3 (Santa Cruz, Dallas, TX, USA). Polyclonal donkey anti-rabbit IgG (Abcam, Cambridge, UK) was 

used as a secondary antibody labeled with HRP. The membrane was treated with Pierce ECL plus 

substrate (Thermo Scientific) and bands were visualized on standard x-ray film (Kodak, Rochester, NY, 

USA). Densitometric analysis of the bands, relative to Histone-H3, was performed from the digital 

images using ImageJ software (http://imagej.nih.gov/ij/, public domain software made by the National 

Institutes of Health (USA)). 

4.7. Flow Cytometry ANALYSIS of LC3B 

Cells were harvested and kept on ice until processing. Fibroblast were stained with antibodies against 

autophagosomes, Anti- LC3B (Sigma, St. Louis, MO, USA) and anti-rabbit IgG-Alexa 488 (Biolegend, 

San Diego, CA, USA). Staining was done at 4 °C for 45 min in 1% FBS/PBS. Labeled cells were 

analyzed by using FACS Calibur flow cytometer and CellQuest software (BD Biosciences, San Jose, 

CA, USA). For each sample, an isotype control was used to determine the positive and negative cell 

populations, and analysis was performed by quadrant analysis. 

4.8. Senescence-Associated β-Galactosidase Staining 

Investigating senescence, in situ staining for senescence-associated β-galactosidase (SA-β-gal) was 

performed [40]. 

4.9. Measurement of Mitochondrial DNA Deletion (CD) by qPCR 

DNA isolation from the cells was made with MasterPure DNA Purification kit (EPICENTRE 

Biotechnologies, Madison, WI, USA). Q-PCR amplifications were carried out with Maxima SYBR 

Green/ROX Master mix (Fermentas, Vilnius, Lithuania) using mitochondrial DNA-specific primers 

(Table 1). Reactions were made in duplicate and repeated at least twice from a minimum of three 

independent biological samples. Expression patterns were normalized relative to (GAPDH) gene,  

and to the total mitochondrial DNA using the ΔΔCt method in the Rotor-Gene version 6.0.33 software 

(Corbett Life Sciences, Sidney, Australia). 
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4.10. Data Analysis 

The results are shown as the mean and the ±SEM. of at least three independent experiments.  

Statistical values were calculated using unpaired Student's t-test or one-way analysis of variance and 

two-tailed t-tests were used to compare differences among groups. p < 0.05 was considered statistically 

significant (GraphPad Prism 5.0; Software, San Diego, CA, USA).  

5. Conclusions 

We have presented evidences that γ-radiations induced TP53inp1 expression in F11hT human 

fibroblast cells in dose-dependent manner suggesting that TP53inp1 might serve as a radiation response 

gene. TP53inp1 is a p53 target gene and it could regulate the transcription of other p53 targets such as 

CDKN1A and GDF-15. Silencing of TP53inp1 enhanced radiation sensitivity in human fibroblast cells, 

moreover it increased the frequency of common mitochondrial DNA deletions, while decreased 

radiation-induced autophagy. 
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