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Abstract

Cellular frustrated models have been developed to describe how the adaptive immune sys-

tem works. They are composed by independent agents that continuously pair and unpair

depending on the information that one sub-set of these agents display. The emergent

dynamics is sensitive to changes in the displayed information and can be used to detect

anomalies, which can be important to accomplish the immune system main function of pro-

tecting the host. Therefore, it has been hypothesized that these models could be adequate

to model the immune system activation. Likewise it has been hypothesized that these mod-

els could provide inspiration to develop new artificial intelligence algorithms for data mining

applications. However, computational algorithms do not need to follow strictly the immuno-

logical reality. Here, we investigate efficient implementation strategies of these immune

inspired ideas for anomaly detection applications and use real data to compare the perfor-

mance of cellular frustration algorithms with standard implementations of one-class support

vector machines and deep autoencoders. Our results demonstrate that more efficient imple-

mentations of cellular frustration algorithms are possible and also that cellular frustration

algorithms can be advantageous for semi-supervised anomaly detection applications given

their robustness and accuracy.

Introduction

Cellular frustrated systems (CFSs) were originally developed to model the adaptive immune

system [1–3]. A crucial hypothesis in these works was that the immune system should be

extremely competent at detecting deviations from its normal functioning, i.e., at performing

anomaly detection. This hypothesis guided the search for the simplest model that, on one side,

would be compatible with experimental observations in immunology and, on the other, could

perform these immune functions.

CFSs have the merit of making assumptions that are reasonable from an immune system

perspective. However, from a computational point of view this is not necessarily an advantage.

Nature has certainly been capable of finding solutions for complex tasks through natural selec-

tion. However, these solutions need not be computationally efficient nor entirely focused in

solving the task of interest to the computational scientist. Biological systems explored solutions
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that were accessible to the natural system and in agreement with the physical world con-

straints. However, biological systems have also to contend with a number of other challenges

and hence had to find solutions that are also robust in face of these challenges. For instance,

the immune system has to contend with cell number fluctuations, spatial constraints, or the

available cellular interaction mechanisms.

In this paper we developed an efficient algorithm inspired in cellular frustrated systems.

Instead of respecting the acceptable mechanisms from an immunological point of view, we

relax constraints that can improve computational efficiency without compromising anomaly

detection performance. To accomplish this, a new algorithm was developed with the important

discrimination mechanisms in mind. As a result, the results reported here are important

because they show that immunity can be thought in more general terms, not necessarily linked

to the biological reality.

The other goal of this paper is to compare the performance of the cellular frustration algo-

rithm with state of the art algorithms on real datasets for anomaly detection applications. One

of the difficulties in these problems is to understand what defines the normal behaviour [4–7],

given that little or even no information is available from the anomalous class. Algorithms

always have to make some assumption on what makes the anomalous class different. For

instance, in one-class support vector machines (one-SVMs) normal samples are assumed to be

concentrated, whereas anomalies are not [8, 9]. Whether these assumptions are adequate or

not depends on the datasets. Therefore one challenge is to understand when, and how often

these methods fail [4, 10–12].

This paper is organized as follows. In the following section we describe the different types

of anomaly detection techniques and their relation to the cellular frustration framework

(CFF). Then, we describe how anomaly detection is achieved within the CFF and define a cel-

lular frustration algorithm (CFA) for anomaly detection applications. This algorithm gives

special attention to the training stage, proposing a strategy that accelerates convergence. To

gain a deeper understanding of the advantages of the new algorithm, a theoretical analysis is

presented afterwards showing that the new strategy converges faster than the immunological

models proposed in [1–3]. Next, the new algorithm is tested with several datasets, and a com-

parison is drawn with, not only the immunologically plausible version, but also state of the art

algorithms in the literature, namely, support vector machines (SVMs) and autoencoders. Our

results show that the current training algorithm converges faster than the immunological ver-

sion and achieves similar, if not, more accurate performances. Furthermore, when compared

with SVMs or autoencoders, it achieves similar accuracies, with higher robustness, that is, it

produces better results in a wider range of scenarios.

Brief review of anomaly detection approaches

The anomaly detection topic has a considerable history, having been first addressed in statis-

tics [13], and recently readdressed in the data mining field [5, 14]. Anomaly detection appears

in the literature under several names, such as one-class learning, novelty detection, change

detection, outlier detection or even failure detection. This shows the enormous relevance

given to this topic by many different communities, each with different histories, techniques,

terminologies and with different applications in mind.

Anomalies can be defined as rare instances generated by mechanisms that differ from those

generating normal instances. The goal of anomaly detection techniques is to detect signatures

of anomaly in feature values. In principle, these signatures are extremes of the feature values

distributions. Indeed, if anomalous instances have only features with values frequently found

in normal instances, then they are indistinguishable from normal instances.

Cellular frustration algorithms for anomaly detection applications
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Finding signatures of an anomaly can be extremely challenging in data mining, because

often normal instances have many features and statistical distributions with heavy tails. As a

result, anomalies are not straightforwardly detected by the presence of a single extreme values;

rather it is the number of extreme values and how they appear combined that is crucial to

detect anomalies. Furthermore, many times a data pre-processing stage is required to expose

anomalous patterns with the highest accuracies. This happens when one wants to monitor

motors and industrial processes [15, 16], to analyse human behaviour [17, 18], whole commu-

nities [19], to gain information from small datasets or address big data challenges [20], to pro-

tect single computers [21], computer networks [22], to make efficient learning algorithms [23]

or to provide inspiration on how biological systems work [24, 25]. In this work, we will assume

that all preprocessing stages have already been performed or are not required. Indeed, the

implementation of preprocessing strategies is a task specific to each problem, while here we

will concentrate in general anomaly detection techniques.

Today, there are several data mining techniques addressing anomaly detection. They are

generally divided in supervised (also known as binary classification), semi-supervised or unsu-

pervised depending on the training required. Supervised techniques require training data with

instances from the two categories, normal and abnormal. Semi-supervised techniques require

only knowledge of normal instances. Unsupervised techniques use the available data to discern

which instances are more likely to be distinct from the majority, i.e., anomalies.

Regardless of these distinctions, all these techniques try to detect a deviation from normal-

ity. How the different techniques establish the normality concept depends on the data and on

the assumptions. The assumptions—e.g., the metrics in some distance based techniques and

the criteria to establish where normal data lies—have a major impact in unsupervised tech-

niques determining what can be detected. In classification these assumptions do not play such

a critical role since the classification model can be adapted to the training data by tuning

parameters. This makes unsupervised techniques less accurate, but simultaneously easier to

use. Indeed, in many cases labelling data in categories is impossible. In this respect, semi-

supervised techniques are a good alternative, since in many cases anomalies are rare and con-

sequently their impact in training is small.

A fundamental difference exists between unsupervised or semi-supervised anomaly detec-

tion techniques and binary classification. In the first case a predictive model establishes what is

different relatively to what is normal. Typically, outliers are samples lying far (in terms of a dis-

tance or a score) from a large fraction of the data. Therefore, unsupervised or semi-supervised

techniques are concerned with establishing the boundary within which most data samples lie.

By contrast, classification techniques are concerned in defining the best model that is capable

of distinguishing the two classes. In this case, model parameters (weights), used to measure

how far samples are from each other, are tuned so that samples in different classes lie away

from each other.

Supervised (binary classification) techniques use labelling information to guide data separa-

tion. This information can nevertheless be misleading in the case of imbalanced datasets [7,

26–29], that is, datasets having many more instances of the normal class than the anomalous

class. This is the case of interest in anomaly detection applications. However, most classifica-

tion algorithms assume approximately balanced class distributions [27, 28]. When applied on

datasets with an under-represented class they tend to favour the most represented class [27,

30]. Furthermore, since the anomalous class is under-represented it is unlikely that it will fea-

ture all types of anomalies. As a result supervised techniques are inadequate to identify anoma-

lies that have not been presented in the training dataset [26]. This is particularly relevant for

intrusion detection applications as the attacker will always attempt to explore these vulnerabili-

ties. For these reasons, semi-supervised techniques can be more suitable for anomaly detection
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tasks since they build a descriptive model solely using information from the most represented

class.

In practice, most techniques can be adapted to explore the different types of available data.

For instance, support vector machines (SVMs) were initially developed by Vapnik for classifi-

cation purposes [31, 32]. However, the scope of application of SVMs has been extended to

tackle semi-supervised [33, 34] and unsupervised anomaly detection [35]. Still, SVMs were

naturally defined as a classification technique and consequently, extensions required addi-

tional assumptions [36]. By contrast, cellular frustration algorithms (CFA) use training data to

establish indicators of the normal class and therefore CFAs are naturally defined as semi-

supervised techniques.

Brief introduction to the cellular frustration framework

The Cellular Frustration Framework is an agent based modelling approach that received inspi-

ration from the stable marriage problem (SMP) introduced by Gale and Shapley [37]. In the

SMP there are two types of agents, man and woman, and each agent has a preference list

where an ordering of preferences for agents of the other type is listed. The aim is to marry men

and women in a stable configuration, i.e., such that no man and woman in two distinct mar-

riages prefer to be married with one another than with their current mates. This problem

found applications in economy, since it could represent the labour market, with employers on

one side and employees on the other. Both sides, gain by establishing stable matchings as they

could waste their time otherwise.

For anomaly detection purposes the CFF proposes a different formulation of the problem.

First the two agent types should have specific functions. One type of agents presents the infor-

mation to be evaluated by agents of the other type, which should react accordingly. Therefore,

agents displaying information present very diverse traits and consequently agents of the other

type can also have very diverse preference lists.

The important difference between the SMP and the CFF is that instead of searching for sta-

ble configurations, the CFF proposes looking at the dynamical properties of the population

while it attempts to reach the stable configuration. What should matter is how long marriages

survive and how their duration changes when new information is presented. In particular, it is

possible to define populations of interacting agents that never form long-lived matchings,

despite the fact that all agents attempt to form stable pairs [2]. This is due to the presence of

frustration, as illustrated in the following example.

Consider a population with two types of men and women, pictured in Fig 1 by women (or

men) dressed in casual or formal styles. Assume that men of type 1 (denoted m1) prefer

women of type 1 (w1) to women of type 2 (w2); men of type 2 (m2) prefer women of type 2 (w2)

to women of type 1 (w1), and so on as shown in the preference lists in Fig 1.

Assume that a man of type 1 marries a woman of type 2 (configuration (1) in Fig 1). Then,

according to man’s preferences, if a woman of type 1 proposes to the man in the couple, he

divorces and marries the proponent woman. However, next a man of type 2 can propose to the

woman in the new couple, causing a divorce and forming another couple. The cycle can go on

as illustrated in Fig 1, and it demonstrates the effect of frustration in the population: no agent

can establish a stable pair because there will always be agents that can frustrate newly formed

couples. This analysis can be made more general, to consider when all agents are different and

that some are initially already paired. In any case, the main conclusion does not change: there

are populations in which agents never form stable pairs [2].

Important consequences can result if major events in a population only take place when

agents are matched for a minimum amount of time. This happens for certain reactions in
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biomolecular systems [38, 39], the cellular activation in immunology [1, 40, 41] or reproduc-

tion in evolutionary biology populations [42]). Then, it becomes clear that, despite the fact that

all agents continuously interact, some will never react. This crucially depends on which agents

are in the population and on the specific ordering of preferences.

Consider now that a third sub-type of women is introduced in the population. If one

assumes that different men can have different preferences towards women they never saw,

then approximately one third of the men population will rank women of the new type first. If

all women of the third type have the same preferences towards men, then one sixth of them

will establish stable marriages. This is a meaningful fraction which shows that: i) the highly

frustrated dynamics require considerable organization on preferences orderings, and ii) the

dynamics can be easily disrupted by foreign elements [2].

The cellular frustration framework used these ideas to propose an alternative view on how

the human adaptive immune system is activated (i.e. triggered) [1, 41]. However, instead of

men and women, there are two cell types: antigen presenting cells (APCs), and T cells. APCs

present information to T cells through specialized ligands (formed by antigen bound to MHC

molecules). T cells interact with these ligands with very different affinities. This information

can be mapped onto a list (an interaction list or IList, similar to the preference list in the SMP)

where ligands are ranked in order of decreasing affinities. T cells undergo a selection process,

called the T cell repertoire education, which corresponds to a training stage. During this stage

only normal (i.e., healthy) information is presented and only T cells engaging in a frustrated

Fig 1. Illustration of the unstable dynamics generated by frustration in a population of many agents of two types and two sub-

types of men and women. Men and women will always attempt to pair with individuals of the other type that maximize their

satisfaction and which are ranked higher in the preferences lists on the right. It is supposed that men and women prefer to be paired

than to be alone. It then follows from these preference lists that any pair can be destabilized by unmatched individuals in the

population, because in any matching there is always one individual that is not completely satisfied. Cellular frustrated systems (CFSs)

like this one are intrinsically unstable because even when all individuals are in stable pairs, breaking a small number of pairs is

enough to destabilize the whole population and increase the number of unpaired individuals [2]. (Adapted from Faria BF,

Mostardinha P, Vistulo de Abreu F (2017) Can the Immune System Perform a t-Test? PLoS ONE 12(1): e0169464. https://doi.org/10.

1371/journal.pone.0169464.).

https://doi.org/10.1371/journal.pone.0218930.g001
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decision dynamics survive. Therefore, all T cells establishing long lived interactions are elimi-

nated. This selection process establishes an ordering in T cells ILists.

The frustrated decision dynamics whereby agents continuously pair and unpair can be

characterized by a distribution of contacts with duration τ. For each agent, this distribution

has an approximate exponential decay, with a characteristic decay constant defining the agent’s

pairing lifetime (see Fig 2).

An important hypothesis used by the CFF is that pairing lifetimes are robust anomaly detec-

tion indicators. However, since accessing directly pairing lifetimes is difficult, the CFF pro-

poses measuring the fraction of pairs lasting for a certain amount of time, τ, which is an

indirect measure of the pairing lifetime. Indeed, it was hypothesized that the important func-

tion of positive selection—a training stage in the adaptive immune system that eliminates T

cells that stay alone for too long—is to normalize the distribution of pairing durations so that

by measuring a pairing duration, pairing lifetimes can be implicitly measured [3, 43].

Since all these concepts fit consistently in a common way of thinking of cellular popula-

tions, this was coined as the cellular frustration framework. In the next section we detail cellu-

lar frustration algorithms for data mining applications.

Materials and methods

The cellular frustration framework was created to model the immune system. As a result, most

assumptions related to the behaviour of cells were inspired in the current knowledge in immu-

nology. Even though the immune system may have evolved to perform anomaly detection

accurately, it had to withstand a number of challenges and constraints that algorithms for data

mining applications do not need to be concerned with. Indeed, the immune system adopted

Fig 2. Typical curve for the frequency of contacts lasting more than τ iteration steps for a detector agent in a

population engaging in a frustrated dynamics. For most agents in educated populations, the decay is approximately

exponential as the one shown here. In this case a lifetime constant can be obtained from the slope of the depicted

straight line. In non educated populations, the decay can be more complex, integrating the effect of processes with

different lifetimes.

https://doi.org/10.1371/journal.pone.0218930.g002
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the best solutions offered by chance and natural selection, and not necessarily the best solu-

tions that can exist. In this section we describe improvements on the application of the

cellular frustration framework for anomaly detection in data mining applications. We start by

defining each agent and afterwards we describe how agents interact in the several stages of

the algorithm. First we describe the education stage—commonly known as training in the

anomaly detection field—and discuss how it can be optimized. Afterwards we describe the

detection stage—also known as testing—and discuss how the performance of the algorithm is

evaluated.

Agents information and decision rules

In the cellular frustration model considered here there are two types of agents (Fig 3). On one

side there are N presenters Pi (the APCs in the immune system; i = 1, . . ., N) and on the other

side, N detectors Di (the T cells).

All agents are assigned interaction lists (ILists) where the information displayed by agents

of the other type is ranked. These lists play the same role as the preference lists in the SMP. All

agents change pair if the information displayed by an agent of the other type is ranked higher

in their ILists than the information displayed by the agent they are paired with. Furthermore,

as in the SMP, all agents prefer to be paired than to be alone. Computationally, decision rules

and pair formation can be written as in the Pseudo-code 1.

Fig 3. Illustration of the mapping of the information contained in a sample onto the cellular frustrated system. a) Transformation of sample

values xi from N features, Fi, onto non-overlapping signals si. b) Representation of the set of N agents in the model. The model is composed of two

types of agents, presenters Pi, and detectors Di, with two subtypes each, with an equal number of agents. Detectors either display 1 or 2 to presenters.

Presenters either prioritize interactions with detectors displaying 1 or 2. This defines the two interaction lists (ILists) shown on the left and two

subtypes of presenters. Detectors, on the other hand, perceive a wider range of signals. From interactions with each presenter, detectors either

perceive a fi or ri signal which derive from signals si displayed by presenter agents. Most frequently si signals are mapped onto a fi signal, and only

rarely onto a ri signal. This mapping varies from detector to detector as described in the text. Each detector has associated ILists and will prioritize

establishing pairings with agents delivering signals that ranked in the highest positions. The IList for a detector Dj is shown on the right.

https://doi.org/10.1371/journal.pone.0218930.g003
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Pseudo-code 1 Function establishing pairing decisions when agents ai and aj, of opposite

types, are put in interaction. Both agents evaluate the ranking of the signals delivered by the

other agent in the pair. Here rankLiðsjÞ denotes the rank of signal sj in agent’s ai IList. {si} is the

set of signals displayed in a sample.
function DECISION({an}, i, j, {si})
if ai is alone ^ aj is alone then
pair ai and aj

else if ai paired with ak ^ aj is alone ^
rankLi

ðsjÞ < rankLi
ðskÞ then

set τi and τk to 0
unpair ai and ak from their current pairings
pair ai and aj

else if aj paired with ak ^ ai is alone ^
rankLj

ðsiÞ < rankLj
ðskÞ then

set τj and τk to zero
unpair aj and ak from their current pairings
pair ai and aj

else if ai paired with ak ^ aj paired with ap ^
rankLi

ðsjÞ < rankLi
ðskÞ ^ rankLj

ðsiÞ < rankLj
ðspÞ then

unpair ak and ap from their current pairings
pair ai and aj
set τi, τj, τk and τp to zero

end if
end function

Interactions among agents in the population can be restricted by establishing that detectors

can only interact with C presenters. This introduces the notion of connectivity in the model

and in the examples presented below, the connectivity matrix is established by randomly draw-

ing C presenters to each detector in the beginning of the simulation.

Following our previous work [43], it will be assumed that each agent can only perceive a

binary signal, b, from the information displayed by agents of the opposite type. This simplifies

considerably ILists and their orderings.

This simplification is extreme in the case of presenters ILists. In fact, in this model it is

assumed that detectors present only two digits, 1 or 2. As a result, only two types of presenters

ILists exist. This naturally organizes presenters in two subtypes (or groups), I and II, depend-

ing on whether they rank first the 1 or 2 digit, respectively (see Fig 3).

By contrast, detectors have access to a much more diverse information. This happens for

two reasons. Firstly, because signals displayed by presenters arise from sample values, which

can even be continuous variables. Secondly, because different presenters display information

arising from different features.

We mapped the sample information in the ith feature, xi, onto the binary signal perceived

by a detector, bi, using two steps. First the xi is mapped onto a signal si displayed by the ith pre-

senter, taking into account that all presenters present distinct (disjoint) information:

si ¼ iþ ðxi � xi;minÞ=ðxi;max � xi;min þ �Þ ð1Þ

where xi,min and xi,max are the minimum and maximum in the whole dataset for the ith feature,

and � is a small number (e.g., the machine epsilon number) needed to guarantee that different

presenters display distinct information, i.e., {si} \ {si+1} = ;, 8i.
For each detector in the connectivity range of the ith presenter, the signal si is mapped in a

binary signal denoted by fi or ri. This second mapping is such that, during training, r signals

are rarely displayed, while f signals appear frequently. Therefore, the configurations perceived

by detectors during training have mostly f signals.

Cellular frustration algorithms for anomaly detection applications
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Several different strategies could be used to define how each detector maps sample informa-

tion onto rare and frequent signals. Here, we considered that for each feature i, a cumulative

distribution function Fi(s) that can be estimated from the data available for training. Then,

detectors sense as rare signals, either values on the left or on the right tail of the associated distri-

bution function (see Fig 4), i.e., for which Fi(si)< vi, or Fi(si)> 1 − vi, respectively. All other val-

ues are mapped onto frequent signals. The threshold probability vi, is different for each detector

and is drawn from a uniform distribution between 0 and vmax. Typically, vmax< 0.2 (i.e., 20%).

Note that, as mentioned before, the way detectors map the information displayed by differ-

ent detectors has an impact on the detection accuracies achieved. For instance, the detectors

considered here are one-sided, since only elements on one side of the distribution tail are

mapped onto rare signals. Two-sided detectors could have also been considered but we leave

these and other extensions for discussion in a forthcoming publication.

To summarize, cellular frustrated algorithms use two types of agents, presenters and detec-

tors. All agents display information that is perceived, by agents of the opposite type, as binary

signals. All presenter agents display different information, which derives from feature values,

from a sample in a dataset. All agents pair and unpair continuously, favouring being paired

with agents displaying information that is ranked in the highest positions in their interaction

lists (ILists). I.e., agents pair and unpair as having preferences, in the same way as men and

women try to match with the partners they prefer. During training, the information displayed

by presenters can change from time to time. This changes the ranking of the perceived signals

and has important implications in the pairing dynamics, as it will be discussed next.

Training: Main concepts

To achieve accurate anomaly detection, cellular frustrated systems (CFSs) must first undergo a

training stage (also called repertoire education) during which detector ILists are changed to

increasingly frustrate the overall dynamics and reach a maximally frustrated state. To under-

stand how this guarantees accurate anomaly detection, it is important to take into consider-

ation the mechanisms involved, thoroughly discussed in [3] and [43]. So far it has been found

Fig 4. Mapping of a feature variable into frequent and rare signals. In this work detectors establish intervals

mapping sample values onto rare signals either on the a) right, or on the b) left tails of the distribution function for

each feature variable. The size of these intervals in the tails depends on the detector agent, and corresponds to vi% of

the events observed during training. When vi = 0%, then rare signals are not displayed during the training stage. In

immunology these signals are called nonself ligands and in statistics they correspond to outliers.

https://doi.org/10.1371/journal.pone.0218930.g004
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that CFSs can detect 3 types of anomalous patterns: 1) the presence of outliers, i.e., signals

never (or rarely) displayed during training; 2) the absence of an abnormally large number of

frequently displayed signals (as compared to what is observed during training); 3) the absence

of combinations of signals frequently displayed during training.

Detection of these three types of anomalies rely on the organisation of ILists during train-

ing. The goal of training is to maximize frustration homogeneously by reducing pairing life-

times for all detectors in the population and across several samples (see Fig 5). This is

accomplished by changing ILists of detectors paired for a time τ longer than a progressively

reduced threshold pairing duration. To avoid establishing long-lived pairings, detectors

should not rank on ILists top positions signals delivered by presenters of the same subtype.

Instead, on top positions there should be a set of signals frequently displayed by presenters of

the opposite subtype which can destabilize matchings with presenters of the same subtype.

Therefore, after training the organisation of IList when normal samples are displayed, should

be as represented in Fig 6a), with most detectors ILists having only signals displayed by pre-

senters of the opposite subtype on the top. Note that in this figure, only signals displayed by

presenters in the system are represented, since signals not displayed, play no role in the

dynamics.

When anomalous samples are presented, detection occurs if signals delivered by presenters

of the same subtype of the detector are ranked in higher positions, producing pairings with

large durations τ. This can happen either because signals have not been presented during train-

ing, in which case they will be ranked in any position in ILists (Fig 6b), or because frequently

displayed signals become absent and detectors ranking them on top positions will push the

remaining signals upwards (Fig 6c and 6d). In the last case this can happen when a number of

frequently displayed signals become absent in larger numbers than happened during training.

This can have a mild impact in many detectors (Fig 6c). The other possibility is that combina-

tions of signals frequently displayed together, become absent. This can have a stronger impact

although in a smaller number of detectors (Fig 6d). In practice, all three mechanisms can oper-

ate simultaneously.

Fig 5. Typical plots of the frequency of contacts lasting longer than a time τ for all detector agents in a

population, (a) at the beginning of the training stage and (b) in the end. At the beginning of training, some agents

establish extremely long contacts. In the end of the process, all agents have similar dynamical behaviour with well

defined pairing lifetimes.

https://doi.org/10.1371/journal.pone.0218930.g005
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Training: Algorithms

The detection mechanisms discussed above require an algorithm for ordering ILists. In [3, 43]

it was proposed that the education of cells in the immune system is accomplished through a

negative selection mechanism operating on the duration of pairings. Following inspiration

from what is known in immunology, it was proposed that each T cell (or detector agent) estab-

lishing one of the longest pairings would be replaced by a new incoming cell, with randomly

ordered IList.

Here we will show that this process can be speeded up considerably. Indeed, the immune

system has a rather inefficient process of educating cells, which amounts to eliminate approxi-

mately 95% of thymocytes and replace them with new cells (with untested receptors).

Fig 6. Schematic representation of the ordering in interaction lists (ILists) and their modification in the presence of anomalies. ILists for six detectors of the

same subtype are represented schematically. White boxes represent signals delivered by presenters of the opposite subtype, and boxes in different grey shades

represent signals delivered by different presenters of the same subtype of the detector. Only signals displayed by presenters for a given sample are represented; all

others play no role in the dynamics and are omitted. a) ILists ordering when a normal sample is presented. Most detectors have on top positions—delimited by the

dashed line—only signals delivered by agents of the opposite subtype. b) When a rare signal (represented in dotted boxes) that was not presented during training

appears, detectors rank it in arbitrary positions; detectors D1, D3 and D5 can establish long lived interactions. c) When the number of frequently displayed signals

going absent increases beyond what is typical during training, then several detectors can have less signals delivered by presenters of the opposite subtype on top

positions (detectors D1,D3,D4 and D6), which can shift the remaining signals upwards mildly but on a large number of detectors. d) Even if the number of absent

frequent signals is not larger than experienced during training, detection can be triggered if the absent signals were never absent together. In that case, shifts

upwards in ILists can be stronger, although may affect a smaller number of ILists (detectors D3 and D5).

https://doi.org/10.1371/journal.pone.0218930.g006
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However, this inefficient process may be due to the fact that the immune system did not have

access to mechanisms allowing edition of receptors. If one takes an artificial intelligence per-

spective, it is more reasonable to correct progressively ILists that led to stable pairings, instead

of simply replacing them by new randomly ordered ILists. This can have the advantage of

avoiding that new information destroys past experience. However, it requires designing a new

strategy to order ILists.

In this article we discuss in detail a new and simple strategy. It consists in exchanging the

signal that led to the longest pairings, with a randomly drawn signal from a lower position in

the IList. This strategy pushes to lower positions signals delivered by presenters of the same

subtype since they produce the longest pairings. Furthermore, it can bring to top positions sig-

nals that have never (or rarely) been displayed by presenters of the same agent subtype. Indeed,

it should be noted that the signal randomly drawn from a position below, is not necessarily dis-

played in the current sample. As a result the strategy for correcting ILists can make detection

of outliers more robust than the immunological plausible strategy of replacing a detector by a

new detector.

The training algorithm can then be summarized as follows (see Pseudo-code 2). First, detec-

tors ILists are initialized (line 2), being assigned a set of C randomly drawn presenters for

interaction with each detector (C stands for the detectors connectivity).

Pseudo-code 2 Repertoire training in CFAs
1: function TRAINING(tmax, Wτ)
2: Initialize Di with a random IList with f and r
3: signals from C randomly drawn presenters
4: Initialize {τi} to zero
5: Initialize τn to Wτ
6: for t in 1 to tmax do
7: Initialize Nsubs to zero
8: Initialize tWn to zero
9: for tw in 1 to Wτ do
10: if tw (mod TS) is zero then
11: change sample {si}
12: end if
13: for all ai in {Pi} [ {Di} do
14: aj: agent randomly selected from ai
15: connectivity
16: DECISION({an}, i, j, {si})
17: end for
18: for all aj in {Di} do
19: if τj � τn then
20: if IS (immunological strategy) then
21: randomly permute aj IList
22: end if AIS then
23: ak: agent paired with aj
24: p random integer larger than
25: rankLj

ðskÞ
26: In Lj swap content ranked at
27: rankLj

ðskÞ with content ranked at p

28: end if
29: unpair aj and set τj to zero
30: Nsubs  Nsubs + 1
31: end if
32: end for
33: tWn  maxðtj; tWn Þ
34: Increment τj for all pairings
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35: end for
36: if Nsubs is 0 then
37: tn  tWn , if tWn < tn
38: end if
39: end for
40: return {Di}
41: end function

Then, the iterated frustrated dynamics is run. At each time step, a randomly drawn agent is

put in interaction with an agent with signals in its IList. A new pair is formed whenever the

two interacting agents prioritize this interaction (see Pseudo-code 1). In that case, if they were

already conjugated, former pairs are terminated. The process is repeated (lines 13-17) until all

agents were given a chance to chose an agent of the opposite type to interact with.

Then every detector Dj involved in a pairing lasting τj iterations with τj> τn undergo IList

education (lines 20-31). In the Pseudo-code 2, the two training strategies are considered. The

immunological plausible strategy (IS) simply replaces the IList by a new randomly drawn IList

(line 21) while the swapping operation in the IList is considered for the artificial intelligence

strategy (AIS: lines 23-27).

If after Wτ iterations (typically 10000 iterations) no agents exceeded τn, then τn is updated

to the largest pair duration in the last Wτ iterations (line 37). Also, every TS iterations the sam-

ple displayed by presenters is changed (lines 10-12).

Training stops when t, the counter registering the number of iterations, exceeds the maxi-

mum number of iterations, tmax (condition in line 6, in Pseudo-code 2). Then, the set of ILists,

{Dj}, is registered and added to a repertoire with independently educated ILists. It should be

mentioned that instead of terminating training if the predefined number of iterations tmax is

reached, other stopping criteria could be used, like considering stopping training if τn reaches

a pre-defined value.

The function in Pseudo-code 2 is then called again to educate another set of ILists, where

the same connectivity is assigned to each detector. This process is repeated Npop times, so that

in the end a repertoire with Npop sets of independently educated ILists is established.

Building a repertoire of independently educated populations of detectors can improve the

algorithm performance in the presence of outliers, as previously noticed in [3]. This happens

because the probability of having ILists ranking rare ligands on top positions, not presented

during training and displayed by presenters of the same subtype, is increased.

As a side note we remark that in this work it was avoided that the two signals (frequent or

rare) delivered by a presenter of the opposite agent subtype are both ranked on top positions.

Indeed this would not favour detection since the absence of the frequent signal would be com-

pensated by the presence of the rare signal. Therefore we forced rare signals delivered by

agents of the opposite subtype to be ranked (and frozen) on bottom positions in ILists. This

improvement in the algorithms did not change results qualitatively, and for a matter of simpli-

fication in the presentation it was omitted from the pseudo-codes.

Detection algorithm

Testing the anomaly detection performance of the algorithm follows closely that outlined in

[43]. First it undergoes a calibration stage, to extract typical properties from the frustrated

dynamics. In this stage agents engage in a frustrated dynamics using the decision rules in the

Pseudo-code 1. However, a process termed anergy is now introduced, terminating pairings

lasting longer than τA and replacing the detector involved by another detector in the repertoire

with the same connectivity (Pseudo-code 3). In our results we used τA = 5 iterations. During

calibration only normal samples (from the normal dataset) available for training are used. The

Cellular frustration algorithms for anomaly detection applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0218930 July 8, 2019 13 / 31

https://doi.org/10.1371/journal.pone.0218930


dynamics is run for Wd iterations for each sample (typically Wd = 104 iterations). The number

c0
i;sðtactÞ of long-lived pairings that lasted longer than τact iterations and involving a presenter

with index i when sample s is presented is incremented. Defining the ordered vector c0
i;ðjÞðtactÞ,

such that c0
i;ðjÞðtactÞ � c0

i;ðjþ1Þ
ðtactÞ8j, then an activation threshold is established by defining

n0
i ðtactÞ ¼ c0

i;ðxÞðtactÞ where x = Nc × f, with Nc the number of samples used during the calibra-

tion and f is a real number between 0 and 1. Typically we use f = 0.1, and hence the 10% largest

number of pairings lasting a time larger than τact in a sample are considered. The activation

reference time was chosen to be equal to the largest pairing time during calibration, i.e., τact =

τA.

Pseudo-code 3 Monitoring stage of the cellular frustration algorithm.
1: function MONITORING(Wd, {Pi}, {Di}, τA, {si})
2: Initialize {τi} to zero
3: Initialize ci,s(τ) to zero
4: for tw in 1 to Wd do
5: for all ai in {Pi} [ {Di} do
6: aj: agent randomly selected from ai
7: connectivity
8: DECISION({an}, i, j, {si})
9: end for
10: for all aj in {Di} do
11: if τj � τA then
12: Separate aj from ak and set τj and τk
13: to zero
14: ci,s(τA)  ci,s(τA) + 1
15: ck,s(τA)  ck,s(τA) + 1
16: Replace aj with a random detector
17: with the same connectivity
18: end if
19: end for
20: Increment all τi
21: Increment all ci,s(τi)
22: end for
23: return {ci,s}
24: end function

To evaluate detection capabilities the decision dynamics is run in the testing stage in the

same conditions as in the calibration stage. Presenters display either information from Ns
d

samples from a self-dataset, or Nns
d samples from a nonself or abnormal-self dataset. Several

examples are illustrated in the Numerical Results section. The CFS response to the informa-

tion displayed by sample s is calculated using the normalized number of pairings,

~ci;sðtactÞ ¼ ci;sðtactÞ=ci;sð0Þ, ~niðtactÞ ¼ n0
i ðtactÞ=nið0Þ according to:

Rs ¼
X

i

ð~ci;sðtactÞ � ~n0

i ðtactÞÞyð~ci;sðtactÞ � ~n0

i ðtactÞÞ ð2Þ

where θ is the Heaviside function. Thus the CFS response sums the increments on the number

of long pairings relatively to the calibration stage, using the (normalized) number of pairings

in the time interval Wd.

To quantify the detection accuracy we compute the true positive rate for a fixed false

positive rate, FPR. To achieve this we create and ordered vector of population responses to

the Ns
d normal samples displayed in the testing stage, Rs

ðiÞ, such that Rs
ðiÞ � Rs

ðiþ1Þ
8i and find Rs

x,

where x ¼ Ns
d � FPR. Then the true positive rate becomes TPR ¼ #fRns

s : Rns
s > Rs

xg=N
ns
d ,

where Rns
s are the population responses to the Nns

d samples displayed with anomalies. The true
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positive rate is thus equal to the fraction of samples displaying anomalies with responses

greater than Rs
x.

Results

Training convergence: Theoretical results

In this section we will use a quantitative approach to understand how much faster the training

strategy proposed above is, relatively to the immunologically more plausible alternative. This

analysis has also the merit of highlighting a computational constraint arising on the ordering

of interaction lists by education mechanisms. In the immunological plausible algorithm this is

particularly striking since training has only an effect on a few top positions. Yet, the existence

of a limited number of ordered positions is required to accomplish anomaly detection. In par-

ticular, if interaction lists were completely ordered, no anomaly detection would result [43]. In

fact, the number of ordered positions is a function of the variability in the input data samples

that characterize normal states. This is an emergent property of the population of agents

selected after training. For this reason, modelling the ordering of interaction lists can be

insightful and here we provide an initial approach to this issue.

Here we consider a simpler, yet similar task, capturing the essential differences between the

two approaches but reducing the complexity of the problem to that of ordering a single IList.

The simpler model assumes that there are N items of two types (N/2 from each type) in a

IList. By definition, it is assumed that one type of items is correctly ranked if they are ranked in

top positions. Conversely, when items of the other type appear in top positions they are incor-
rectly ranked. The aim is to find how many iterations are necessary to obtain an IList with n
correctly ranked items in the top n positions, using two different algorithms.

The first algorithm bears inspiration from the immunological negative selection model. On

each time step an item is selected from the IList. If the item is incorrectly ranked in the top n
positions, then a random permutation is operated on the whole IList, which corresponds to

replacing the IList by a new one. This simulates the interaction of detectors with presenters

producing long pairings and the subsequent negative selection of the detector.

The second algorithm reproduces the artificial intelligence training strategy, whereby selec-

tion of an incorrectly ranked item in the top n positions swaps the incorrectly ranked item

with a randomly selected item from the N − n positions below.

The two algorithms can be modelled with the Markov models graphically represented in

Figs 7 and 8. These models consist of waiting states with m correctly ranked items in the top n
positions, Wm, transient education states, E or Ei, on which the two different training strategies

operate, and the absorbing state S that stops the algorithm when all items are correctly ranked

on the top positions.

A fundamental difference exists between the two models. In the immunological model IList

education can send the model to a Wm state with any number m of correctly ranked items.

These states have different probabilities of sending the system to the education state E, which

depends on the number of incorrectly ranked items. When there are m correctly ranked items

this probability is qeduc = (n −m)/N. If the list is sent to education, state E, the immunological

model replaces the list by a new randomly drawn list. Therefore, from state E the system goes

onto a state with m of correctly ranked items with probability qm ¼ ð
n
mÞð1=2Þ

n� m
ð1=2Þ

m
. In

particular, it reaches the absorbing state with probability 1/2n. Clearly, the larger n the harder

it takes to completely order the top positions in the list.

By contrast, in the artificial intelligence approach lists are progressively corrected. The asso-

ciated Markov model has a quite different diagram as shown in Fig 8. In fact, each time a list

enters education, which happens with the same probability as before qeduc = (n −m)/N, when
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Fig 7. Markov chain describing the state transition that detectors undergo during training considering the

immunological model. In this representation, n describes the number of top positions to be corrected in a list of size N,

Wm the waiting states, that represent a list with m correctly ranked items on the top n positions and E the education

state. The probability of transition from the list education state E to the waiting states, Wm, is qm ¼ ð
n
mÞð1=2Þ

n� m
ð1=2Þ

m
.

The transition probability from a waiting state, Wm, to the education state, E, is qeduc = (n −m)/N.

https://doi.org/10.1371/journal.pone.0218930.g007

Fig 8. Markov chain describing the state transition that detectors undergo during training considering the new approach for IList correction.

Here, n describes the number of top positions to be corrected in a list of size N, Wm the waiting states that represent a list with m correctly ranked

items on the top n positions and Em the different education states. The probability of transition from the waiting state Wm to the education state Em is

qeduc = (n −m)/N. However, contrarily to the immunological plausible strategy, lists are progressively corrected. Hence, once a given waiting state Wm
is reached, the list can either go to a waiting state Wm+1 or stay in the same waiting state. The probability of transition from the education state Em to

the waiting states Wm or Wm+1 are approximately equal to (1/2), when N� n.

https://doi.org/10.1371/journal.pone.0218930.g008
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it has m correctly ranked items, then it either places a correctly ranked item in that position or

not. Here we assume that the total number of items in the list is much larger than the number

of positions to educate, N� n, so that both these probabilities can be assumed to be equal to

1/2. As a result, in the artificial intelligence approach the system progresses along progressively

more educated lists (states Wm), although it only corrects one item at each time.

These two Markov models can be described by different transition matrices, containing the

probabilities of transition, pij, from a state i to a state j. In the case of the immunological plausi-

ble strategy, this is:

PIS ¼

E W0 W1 � � � Wn� 1 S

0 ðn
0
Þ 1

2n
ðn

1
Þ 1

2n
� � � ð n

n� 1
Þ 1

2n
1

2n

n
N 1 � n

N 0 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

1

N 0 0 � � � 1 � 1

N 0

0 0 0 � � � 0 1

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð3Þ

while for the case of the artificial intelligence strategy, it becomes:

PAIS ¼

W0 E0 W1 E1 � � � S

1 � n
N

n
N 0 0 � � � 0

1

2
0 1

2
0 � � � 0

0 0 1 � n� 1

N
n� 1

N � � � 0

0 0 1

2
0 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð4Þ

To calculate the average number of steps, Ki, required to reach the absorbing state starting

from state i, one considers an ensemble of lists starting in state i, and the ensemble of these

lists in the following iteration. The average number of steps for these different configurations

of lists to reach the absorbing state should differ by 1 iteration. Therefore we should have Ki =

1 + ∑j pij Kj, where the sum goes over all possible states and accounts for the average number of

steps required to reach the final state starting from the following configuration.

Using this equation for the immunological plausible approach it can be noted that every

state Wm can be written in terms of state E as:

KWm
¼ KE þ

N
n � m

ð5Þ

Substituting Eq (5) in the equation for the E state, we arrive at an expected number of steps

to absorption of:

KE ¼ 2n þ N
Xn� 1

j¼0

n
j

� �
1

ðn � jÞ
; n > 1 ð6Þ
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Using this solution in Eq (5) we get the expected number of steps to absorption from a wait-

ing state Wm:

Kwm
¼

N
n � m

þ 2n þ N
Xn� 1

j¼0

n
j

� �
1

ðn � jÞ
;

8m < n; n > 1

ð7Þ

Writing a general expression for the expected number of steps to absorption using the arti-

ficial intelligence strategy requires noting two conditions. First, that the expressions for the Em
states can be written in terms of the expressions for the waiting states, hence:

KEm
¼ 1þ

1

2
KWm
þ

1

2
KWmþ1

ð8Þ

Next, by using this expression in the expression for the waiting states a pattern emerges:

KWm
¼

2N
n � m

þ 2þ KWmþ1
ð9Þ

Rewriting Eq (9) in terms of the absorbing S state gives:

KWm
¼ 2ðn � mÞ þ 2N

Xn� 1

j¼m

1

n � j
;

8 0 � m � n � 1; n � 1

ð10Þ

Expressions (7) and (10) allow comparing the convergence speed for the two strategies. In

Fig 9, it can be appreciated that the two strategies have very different convergence speeds even

when only a small number of items has to be correctly ranked. Importantly, this difference can

be of an order of magnitude.

Fig 9. Average number of iterations required to find a list with all items in the top n positions correctly ranked,

for the two strategies discussed in the text: The immunologically plausible strategy (IS) and the artificial

intelligence strategy (AIS).

https://doi.org/10.1371/journal.pone.0218930.g009
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In the next section this result is tested with the education of all ILists in a population. A fun-

damental difference exists, which is that all ILists have to be educated simultaneously, interfer-

ing in the education of each other.

Numerical results

Here, we will use numerical results to address the two issues discussed above, namely, on the

speed of convergence and on the accuracy of the new training algorithm proposed here. For

these tests four different datasets were used, three from the UCI repository [44] and one avail-

able at [45]. The datasets used concern: the evaluation of wine quality [46], the well known iris

dataset for species discrimination using morphological measurements [47], discrimination of

two types of surfaces using scattered sonar signals (the Connectionist Bench dataset [48]) and

the identification of damaged or used ball bearings (ball bearings [45]).

These datasets have samples labelled in more than one class. Hence, they are most suited

for supervised classification tasks. However, for the purpose of this paper we want to evaluate

our algorithm in anomaly detection. This required defining which samples belong to the nor-

mal class, presenting a sub-set of them in a training stage and presenting the remaining sam-

ples in a testing stage. In some cases, in the original dataset the number of samples in one class

was too small to obtain reliable results. In those cases groups of contiguous classes were created

to define the normal and abnormal classes.

An important issue concerns the mapping of the information contained in samples with a

very small number of features. When the number of agents is too small, the system could be

blocked in a stable matchings configuration. Since our approach relies on the dynamical prop-

erties of the system, this should be avoided, which can be easily done by simply increasing the

number of agents in the system. This was done by replicating an even number of times the

population until reaching a number of presenters greater than 32. In the supplementary mate-

rial S1 Fig we provide numerical simulations that show that for populations with more than 32

presenters the system does not get blocked in stable configurations.

For the two studies addressed in this work—on the computational performance and on

the accuracy of the new algorithm—10 fold Monte-Carlo cross-validation was used. This

amounted to randomly select 10 different normal datasets for training and testing, and run-

ning the algorithm under the same conditions.

To better establish the anomaly detection performance of cellular frustrated algorithms, we

will also evaluate the performance of two state of the art type of algorithms in anomaly detec-

tion studies: support vector machines [49, 50] and autoencoders [51–55]. The strategy adopted

was to use standard implementations of these methods, to evaluate the type of results non-

experts would obtain if they used the available information in the literature. This point of view

is tenable since, typically, in anomaly detection, one does not have access to additional infor-

mation on the nature of anomalies.

For implementation of support vector machines it was used the well-known libsvm library

[56], with a polynomial kernel with degree 2 and c = 0 and v = 1/Nf. We noted that this kernel

produced better results than the gaussian (RBF) kernel, which is used more often in classifica-

tion problems. In the case of autoencoders, the H2O library [57] was used, with a network

structure having 3 hidden layers (deep autoencoder) [51], where the inner layers have, respec-

tively, Nf /2, Nf /4 and Nf /2 activation units. In all units, tanh activation functions were used.

All remaining parameters were left to default values.

In the next subsection we describe the several datasets in greater detail. Afterwards we will

use numerical results to discuss: the speed of convergence of the algorithm proposed here, the

anomaly detection accuracy, its robustness and, finally, the mechanisms at play.
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Datasets. Four datasets were used in the following studies. They are briefly denoted by

ball bearings, iris, sonar and wines.

The ball bearings dataset [45] derives from Fast Fourier transforms (fft) of acceleration time

series signals in essays with new or worn out (broken, damaged or even used) ball bearings.

There are Nf = 32 features and 4150 samples deriving from essays with new ball bearings and

913 from worn out ball bearings. Training for anomaly detection tests used 500 samples from

either, new or worn out ball bearings samples (Table 1).

The iris dataset was introduced by R. A. Fisher and is probably the most widely known

dataset in the pattern recognition literature. This dataset comprises 50 samples describing

three types of iris flowers by their width and length of petal and sepal (Nf = 4). Anomaly detec-

tion tests used a subset of samples from either one of the three classes for training, while exam-

ples from the other flower types were considered anomalous (Table 1).

The sonar dataset was collected by T. Sejnowski and R. Paul Gorman for discerning two

types of surfaces using scattered sonar signals. The two surfaces considered were a roughly

cylindrical rock and a metal cylinder. Several examples have been collected for the two surfaces

at different angles and conditions. Overall signals have Nf = 60 features capturing information

from reflected ultra-sounds and there are 97 samples from rock surfaces and 111 samples from

metal surfaces. Again, tests considered that either type of material could work as the normal

dataset.

Finally, in the wine dataset 4898 white wines are characterized in terms of Nf = 11 chemi-

cal-physico properties, such as pH, alcohol, fixed or volatile acidity, etc. A quality score from

wine tasting evaluation is also provided. In practice scores from 3 to 9 have been awarded, 3

corresponding to a very bad wine, while 9 is awarded to wines of astounding quality. The aim

of this dataset is to predict wine quality based only on physiochemical properties.

The number of wines scored with each score varies considerably. Wines evaluated with

scores 3 and 9 are only a few: 20 and 5 respectively. Likewise, wines evaluated with scores 4

and 8 represent only a small fraction (*3% each) of the total. Finally, wines evaluated with

scores 5, 6 and 7 appear respectively 30%, 45% and 18% of the times.

To evaluate the anomaly detection algorithm it was necessary to define which sub-set of

wines defined the normal class. To avoid having normal classes with too few examples, groups

Table 1. Number of examples from each category in each test for training and testing, for the different datasets used.

dataset normal training data number of set examples

train test

normal normal abnormal

ball bearings new 500 3650 913

worn out 500 413 4150

iris setosa 17 33 50

versicolour 17 33 50

virginica 17 33 50

sonar metal 50 47 111

rock 50 61 97

wines 3,4,5 500 1140 3258

4,5,6 500 3318 1080

5,6,7 500 4035 363

6,7,8 500 2753 1645

7,8,9 500 560 3838

https://doi.org/10.1371/journal.pone.0218930.t001

Cellular frustration algorithms for anomaly detection applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0218930 July 8, 2019 20 / 31

https://doi.org/10.1371/journal.pone.0218930.t001
https://doi.org/10.1371/journal.pone.0218930


were defined with wines scoring 3,4 and 5, or 4,5 and 6, etc. (see Table 1). It was then possible

to define sub-sets of 500 wines for training, and use the remaining for testing (Table 1).

Convergence tests. The first numerical results reported here concern the speed of conver-

gence of the new AIS training algorithm as compared with the immunologically plausible

strategy. In Table 2 the average number of iterations required to reduce all pairing durations

below 180 iterations are shown.

In all experiments, the AIS converged substantially faster by at least an order of magnitude.

It can also be remarked that some datasets were more difficult to train than others which

appears to be consistent in the two training strategies. For instance, the sonar dataset required

typically more iterations.

In these results the target value of 180 iterations was chosen because it corresponded to a

pairing duration that could be attained within an acceptable computational time (typically, no

more than 15 minutes) by both training strategies. To complement these results, in Fig 10a)

the number of iterations required to have all agents pairing durations below τn is plotted.

These results are an indirect measure of the IList organisation, i.e., of the number of educated

positions as analysed in Fig 9. Results in Fig 10a) considered populations trained with the wine

dataset, when the normal training data had wines with quality scores between 5 and 7. These

results represent the typical behaviour of K, also observed in the other systems.

These results show that the immunological strategy requires a number of iterations that

grows faster (faster than exponentially) than the artificial immune strategy for an equivalent

level of IList organisation. Therefore, these results agree qualitatively with those described by

the simplified model for the education of a single IList.

Results in Fig 10b) show that it is possible to increase the number of features displayed by

presenters increasing only linearly with Nf the computational time. This is true provided the

connectivity is kept constant.

Anomaly detection performance. To compare the precision of the new training strategy

with the immunologically more plausible strategy, ROC curves for anomaly detection tests

with the several datasets were obtained (Fig 11). Furthermore, a comparison with the one-class

support vector machines and autoencoders is also provided.

To establish a fair comparison among the several methods, all algorithms used the same

samples for training and testing. Furthermore, since the aim is also to evaluate the robustness

Table 2. Average number of iterations required to reduce all pairing durations below 180 iterations during Wτ
iterations (results in millions of iterations).

dataset normal training data training strategy

AIS IS

ball bearings new 0.5 ± 0.07 8 ± 5

worn out 0.5 ± 0.1 6 ± 4

iris setosa 0.5 ± 0.4 7 ± 4

versicolour 0.5 ± 0.06 6 ± 4

virginica 0.5 ± 0.1 7 ± 4

sonar metal 1.3 ± 0.4 13 ± 5

rock 1.4 ± 0.4 15 ± 4

wines 3,4,5 0.7 ± 0.2 11 ± 5

4,5,6 0.6 ± 0.2 10 ± 5

5,6,7 0.7 ± 0.3 11 ± 5

6,7,8 0.7 ± 0.3 9 ± 4

7,8,9 0.6 ± 0.2 10 ± 5

https://doi.org/10.1371/journal.pone.0218930.t002
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of different algorithms, the normal class used for training was chosen by selecting sub-sets

with the different classes in each dataset (see Table 1). All the results presented next used a

same fixed set of parameters and, in the case of the SVM, the same kernel.

The set of results in Fig 11 allow drawing two main conclusions by analysing the TPR at a

10% FPR on the several plots. First, the artificial intelligence algorithm proposed here has simi-

lar precision to the more immunological plausible alternative. Therefore, the new algorithm is

interesting especially because it increases training speed by one-fold, at least.

The other important result is the comparison with the results obtained from one-class

SVMs and deep autoencoders. These two algorithms produce very similar results, differing

only appreciably in two tests in the wines datasets: tests 8 and 12 (first and last plots in Fig

11d). In comparison with CFAs, these methods are, in some cases, more precise—for instance,

in the ball bearings dataset, when the normal class consists of samples obtained from new ball

bearings, or, in the sonar dataset, when the normal class consists of data arising from sonar sig-

nals reflected by rock. However, on both cases, when the normal class is formed by samples

from the other class, detection is not achieved at all. This suggests that at least, CFSs present

more robust results. Of course that it may be argued that SVM methods require a judicious

choice of the kernel in each case. This however, is problematic in many applications especially

when semi-supervised anomaly detection is required. In the S2 Fig results obtained with other

kernels are also presented, demonstrating overall poorer performances.

It should be mentioned that the ROC curves presented in Fig 11 result from a 10 fold

Monte-Carlo cross-validation. Variability in these experiments exists but it is fairly similar

among the two cellular frustrated algorithms, as can be appreciated in S1 Table. SVMs have

smaller variabilities, which can be expected given the stochastic nature of CFAs.

Anomaly detection robustness. The particular choice of parameters can be critical and

therefore, needs to be discussed to evaluate the robustness of these results. This discussion is

not always easy to make with total fairness since, in semi-supervised anomaly detection only

information from a single class is available. As a result, for any new method the developer tests

countless variations and incorporates his knowledge in selecting standard parameters.

Fig 10. Average number of iterations, K, as a function of a) the pairing duration threshold τn reached, and b) the

number of presenters in the population (which is equal to the number of detectors) for different values of the τn
reached and for simulations with connectivity, C = 12. The results on the left, show that the new strategy requires a

considerable lower number of iterations to reach configurations with the same τn, than the more immunologically

plausible alternative. This is especially meaningful when τn< 250. Results on the right show that for systems with fixed

connectivity, increasing the population size increases the computational time required for training roughly linearly.

https://doi.org/10.1371/journal.pone.0218930.g010
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Certainly, only with a growing number of studies and on different datasets will it be possible to

establish definite conclusions on how different algorithms compare.

The parameters used in CFSs were relatively simple to establish and are listed in Table 3.

This seems a long list, however results do not critically depend on most of them. In many

cases, their choice follows naturally from the detection mechanisms identified in [3, 43].

For instance, the threshold probability vmax should be small but nonzero, to allow discrimi-

nation of outliers and of abnormal samples. Of course that the best value for vmax should

depend on the dataset because, if only outliers are to be found then vmax should be zero. On

the other side, if no outliers exist, then detectors using vmax = 0 only participate in frustrating

Fig 11. Average ROC curves obtained from 10 fold Monte-Carlo cross-validation, for the several datasets and for

the several normal class sub-sets defined in Table 1 and mentioned in each plot header. Shown are results from the

two cellular frustrated algorithms (CFAs) (parameters as in Table 3) and the one-class SVM with the kernel producing

the best results. The quantitative value of the true positive detection rate (TPR) at at a 10% false positive rate (FPR) as

well as its standard deviation can be found in S1 Table. Overall these results show that cellular frustrated algorithms

achieve comparable, if not better precisions than one class SVMs.

https://doi.org/10.1371/journal.pone.0218930.g011
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the dynamics. In the supplementary materials 2 (S3 Fig) the average TPR obtained with a FPR
of 10% is shown for the different datasets and for vmax = 0, 5, 10%. These results show that

detection can vary with vmax. This is clear in the results obtained with the ball bearings and

the wines datasets. From these results it seems clear that vmax = 5% is generally a good

compromise.

In [3] it was shown that a repertoire composed of several independently educated sets of

detectors, could improve detection rates, when a single outlier was presented. This happens

because the number of ILists that can rank outliers on top positions is increased. The results

shown in S1 Table capture some improvement when the number of educated populations

included in the repertoire increases from 1 to 12. However, the Number of educated popula-

tions included in the repertoire does not seem to have a critical impact in anomaly detection

rates. This conclusion is valid as far as the current datasets are concerned. It is always possible

that in other datasets the most frequent anomaly would correspond to the appearance of a sin-

gle outlier. Then, the influence of the number of populations in the results could be important

[3]. This can be particularly relevant in the context of intrusion detection, because attackers try

to explore such vulnerabilities. In the remaining results presented next we choose repertoires

with 12 populations.

In [3, 43] it was shown that detector’s connectivity—the number of presenters a detector

can interact with—could have an impact in anomaly detection performances and also on train-

ing convergence. To understand this it should be recalled that, using the plausible immunolog-

ical training strategy, only a few top positions (typically not larger than 10; see Results in

section) will be ordered. That is, on top positions in ILists there will be mostly signals delivered

by presenters of the opposite subtype. In the following positions, ILists are relatively disor-

dered, with signals delivered by presenters of both subtypes. As a result, in populations with

large connectivities, the probability that a detector interacts with signals in the ordered region,

is small. Consequently detection performances tend to be poorer. Furthermore, training also

requires more time to reduce τn. On the opposite extreme, for very small connectivities, fluctu-

ations in the number of signals present in a sample and ranked on ILists top positions increase.

This also leads to a less organized dynamics.

Two types of results confirm these analyses. First in S4 Fig it is shown that, for the immuno-

logical strategy the number of iterations required to reach a given maximal pairing duration

τn, has a minimal value for intermediate connectivities. Interestingly convergence of the artifi-

cial intelligence algorithm became much more insensitive to connectivity changes. In what

concerns the impact of connectivity on the anomaly detection accuracies, results are much less

clear for both strategies, and this is likely to be due to the relatively small number of indepen-

dent features present in the datasets used. However, in the immunological plausible strategy

there are datasets—for instance, the ball bearings dataset—in which the largest connectivities

Table 3. Parameters used in cellular frustration algorithms.

Threshold Probability vmax(%) 5

Number of educated populations included in the repertoire, Npop 12

Detectors connectivity, C 20

Education Window Wτ (iterations) 104

Education time sampling window TS (iterations) 100

Detection window Wd (iterations) 104

Anergy time τA (iterations) 5

Detection pairing duration to activate response τact (iterations) τA
Calibration parameter f 0.1

https://doi.org/10.1371/journal.pone.0218930.t003
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can produce clearly poorer results. In some cases, however, results are not very sensible to

changes in connectivity, as happens for instance, with the sonar dataset. In any case, and inter-

estingly, anomaly detection performances of the new training strategy are almost insensitive to

connectivity changes for the studied datasets (see S5 Fig) except if connectivity is extremely

small. This, we believe, is due to the improved ordering in ILists. This result is important

because it reduces the number of parameters to tune. Therefore, as a general conclusion, the

connectivity should be chosen to take moderate values, within the range of a few dozens, spe-

cially for computational convenience reasons.

In order to gain good generalization capabilities, it was shown that the time sampling win-

dow TS should be small [43] and the education window Wτ, used to decrease τn, should be

large—i.e., Wτ/TS* 100—to correct detectors only depending on their performances in a

large number of samples. The results we obtained (see S6 Fig) do not exhibit such a dramatic

effect as the one reported previously [43]. In some cases, can even seem to contradict these pre-

vious results (as in the iris dataset, with virginica as normal class, or in the sonar dataset with

metal as normal class), although we believe that this can be due to the small number of samples

in these examples. More interesting, is the robustness demonstrated by the new AIS strategy to

variations in Wτ /TS. This is interesting because again it shows that results became indepen-

dent of the choice of these parameters.

Next, with respect to the detection window Wd, this was chosen to be 104 because one

needs good statistics to establish pairing lifetimes. However, as can be appreciated in S7 Fig,

increasing this value further does not further improve results.

The anergy time τA was chosen having in mind that the distribution of pairing durations

decays exponentially. Therefore the occurrence of pairings lastings longer than typical pairing

lifetimes may not provide additional information. On the contrary, using small values for τA
improves statistical accuracy since more pairings can be tested. In fact, since detectors mini-

mum pairing lifetime is of the order of 5, the number of pairings lasting longer than this value

can represent 40% of the total number of pairings. Therefore, τA’ 5—the value used in [43],

seems an acceptable choice. However, values up to τA’ 20 would produce similar, if not

slightly better results (see S8 Fig). Finally, we should mention that τA should be always larger

or equal to 2 because otherwise generalized kinetic proofreading would not take place. How-

ever, we should note that in a single iteration there are agents that are selected by more than 10

agents for interaction. Therefore, even for small τA values, kinetic proofreading is already

deeply present.

Finally, the calibration parameter f was chosen to be 0.1. However, its impact in the anom-

aly detection performance of the algorithm is also reduced provided f is not too small (see S9

Fig). The f parameter was first introduced in [58] to take into account knowledge of the typical

pairing durations observed in the calibration stage. Since detection mechanisms involve the

number of long lived pairings, it could be expected that only those agents performing the lon-

gest pairings should be considered. The results we present in S9 Fig, show that if f< 0.05,

performances deteriorate. This can be due to the fact that not enough agents that play an

important role in the discrimination are participating. Therefore, f should take larger values.

The interesting result if that if f takes maximum values the results are almost not changed.

This suggests that the calibration stage could be eliminated, which represents an important

simplification in the algorithm. However, it is not clear to us how general this conclusion may

be, especially having in mind future developments of the algorithm. This was the reason why

the calibration stage was kept in this work. To conclude, while there are several parameters at

play, whose values have to be defined, selection of reasonable values is not difficult to establish

following our understanding of the detection mechanisms. Consequently, the results presented

in Fig 11 are robust relatively to their variation.
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In contrast, the choice of the kernel in one-class SVM influences considerably the results.

For the results presented in Fig 11, we chose the kernel that gave better overall results (a poly-

nomial kernel with degree 2 and c = 0, ν = 1/Nf [56]). A comparison with results obtained with

other kernels can be found in S1 Fig.

Anomaly detection mechanisms. Detection in CFAs can arise from two types of mecha-

nisms: detection of outliers or detection of an increased number of absent frequently displayed

signals. The two mechanisms can take place simultaneously, and consequently except in spe-

cial cases (as those discussed in [43]), it is not always easy to clearly point which mechanism is

playing a crucial role. In order to enlighten this point with respect to the present datasets,

Table 4 compares the performance of CFAs with vmax = 0% and vmax = 5% and with results

deriving from two methods based on simple rules. These two methods simply count the num-

ber of rare signals appearing in each sample in the detection stage and establish the TPR as the

fraction of anomalous samples having a number of rare signals larger than found in 90% of the

normal samples.

The two methods based on simple rules differ on how sample elements (i.e., features) are

mapped onto rare signals. In the first method (columns 8 and 9 in Table 4) an element in a

sample is mapped onto a rare signal if it lies in a tail (either, left or right tail) of the correspond-

ing feature distribution. Only data used during training is used to estimate the tail region.

Therefore, for 0% tails (column 8 in Table 4), only sample features outside the range of values

observed during training produce rare signals. The second method (results in the last column

in Table 4) counts the number of rare signals in the detectors ILists used in the CFAs with

results listed in columns 5 and 7 of Table 4).

Analysing Table 4 it is possible to conclude that:

1. in some tests, detection of outliers is responsible for the anomaly detection. This happens in

tests 1, 3, 4, 7, 12, for which the simple rule counting the number of outliers in samples (the

number of rare signals in 0% tails) produces similar TPRs than CFAs with vmax = 0%.

2. detection in tests 6, 10, 11, 12 can be explained as resulting from the presence of a larger

number of features with values in the tails than typically happens in normal samples, since

the number of rare signals in ILists is enough to explain CFAs results with vmax = 5%. Still,

it should be noted that tails of different sizes must be considered and it would not be

Table 4. TPR for 10% FPR for the two strategies (AIS and IS) when vmax = 0% and vmax = 5%. On the last three columns are the results using a simple rule using simply

the number of rare signals mapped from each sample, as explained in the text.

test dataset normal training data AIS IS #rare signals #rare sig. in ILists

0% [0, 5]% 0% [0, 5]% 0% 5% [0, 5]%

1 ball bearings new 79.8 76.1 79.8 74.5 80.6 79.6 79.6

2 worn out 10.4 22.0 10.4 19.7 8.0 12.1 13.4

3 iris setosa 98.8 99.5 95.6 96.4 99.4 99.4 100.0

4 versicolour 90.9 89.8 90.1 92.5 90.6 90.6 90.3

5 virginica 82.5 82.3 84.4 81.5 74.5 74.5 78.4

6 sonar metal 19.5 17.4 17.7 20.9 10.3 12.4 19.3

7 rock 22.3 25.9 23.2 23.4 29.3 29.2 26.9

8 wines 3,4,5 12.4 18.5 12.5 19.6 13.8 14.2 17.6

9 4,5,6 11.8 16.5 11.8 16.3 12.4 13.2 15.6

10 5,6,7 15.8 28.2 15.8 26.9 16.7 26.1 28.1

11 6,7,8 13.4 20.7 13.4 20.1 14.2 20.0 20.1

12 7,8,9 18.7 20.7 18.7 20.9 21.2 17.0 21.1

https://doi.org/10.1371/journal.pone.0218930.t004
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enough to consider a single tail with 5% of the values. Therefore, even if a simple rule could

be devised, it requires already some computational complexity.

3. test 2, and to a lesser extent, tests 5 and 8, indicate detection of correlations in the absence

of frequent signals.

In general terms, one can conclude that, although the majority of datasets may not require

algorithms as elaborate as CFAs to achieve results with the accuracies reported here, it is clear

that this cannot be known in advance, and also that some tests demonstrate the need for using

this type of algorithms. Indeed, test number 2 clearly demonstrates that this class of algorithms

is needed to perform accurate anomaly detection.

Conclusions

The cellular frustration framework showed a new way of looking into cellular interactions in

the adaptive immune system and how they could work to produce an effective surveillance sys-

tem. In particular, in a recent work we showed that cellular frustrated systems could be used to

perform location statistical tests with performances that could outperform well known statisti-

cal tests, like the t-test or the KS-test [43]. In that work, using synthetic data we also showed

that CFSs could compete with support vector machines.

The goal of this work was two folded. On one side we wanted to test cellular frustration

algorithms using real datasets. On the other side we wanted to understand if simpler versions

of the cellular frustration algorithm could be devised to produce similar, if not better results.

These improved algorithms would not have to follow the immunological reality closely, taking

instead a more general artificial intelligence approach. Therefore, in this work, in the training

stage, instead of replacing detectors establishing the most stable pairings by new agents, small

corrections were introduced in their ILists to incorporate this new knowledge. The new algo-

rithm proved to be at least one-fold more efficient in computational terms, and anomaly detec-

tion rates remained equivalent to the ones obtained with the more immunological version of

the algorithm. Furthermore, the new algorithm also gained robustness, since it was found that

anomaly detection rates only depended on a single parameter (within the reasonable ranges of

variation of the parameters). This robustness improvement can also increase by one extra fold

the computational efficiency of the algorithm since it reduces the size of the detectors reper-

toire used.

Therefore, the algorithm proposed here reduced the complexity in initial proposals [3, 43,

58] by eliminating the need of using the calibration stage and by reducing the number of

parameters that one should tune to only one. It should be mentioned, however, that these con-

clusions are restricted to semi-supervised anomaly detection applications with stationary data.

It is possible that in dynamic contexts or in the adaptation of the algorithm to classification

tasks, some of these conclusions do not apply.

In this work we also compared CFAs with SVMs and deep autoencoders (DAEs). SVMs

and DAEs showed similar accuracy performances. In comparison with CFAs it was found that

CFAs displayed more consistent results because, in several cases SVMs and DAEs were unable

to identify anomalies—this did not happen with CFAs. Robustness can be critical for general

semi-supervised anomaly detection applications because then, little is known about the type of

anomalies that will appear. On the other side, it should be mentioned that SVMs and DAEs

have the advantage of being considerably faster than CFAs (by almost two orders of magni-

tude) when datasets have a small number of samples and a small number of features. For large

datasets CFAs can be competitive, although we leave investigation on this issue for future

work.
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To sum up, this work highlighted how frustration can be used to generate another type of

swarm behaviour with practical relevance. Here we showed that CFAs can be competent data

mining algorithms for anomaly detection tasks and that several different implementation strat-

egies can be developed, contributing and receiving inspiration from research in theoretical

immunology and the artificial intelligence field.
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