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Carbon-based materials are broadly used as the active component of electric double layer capacitors

(EDLCs) in energy storage systems with a high power density. Most of the reported computational

studies have investigated the electrochemical properties under equilibrium conditions, limiting the direct

and practical use of the results to design electrochemical energy systems. In the present study, for the

first time, the experimental data from more than 300 published papers have been extracted and then

analyzed through an optimized support vector machine (SVM) by a grey wolf optimization (GWO)

algorithm to obtain a correlation between carbon-based structural features and EDLC performance.

Several structural features, including calculated pore size, specific surface area, N-doping level, ID/IG
ratio, and applied potential window were selected as the input variables to determine their impact on the

respective capacitances. Sensitivity analysis, which has only been performed in this study for

approximating the EDLC capacitance, indicated that the specific surface area of the carbon-based

supercapacitors is of the greatest effect on the corresponding capacitance. The proposed SVM-GWO,

with an R2 value of 0.92, showed more accuracy than all the other proposed machine learning (ML)

models employed for this purpose.
1. Introduction

Electronic devices are becoming popular equipment in our daily
life because they reduce fossil energy utilization and don't cause
any environment pollution.1–4 Electric (electrochemical) double
layer capacitors (EDLCs), as promising and environmentally
friendly energy storage devices, have drawn great attention
because of their fast charge–discharge capability, long cycla-
bility, and high power density.5,6 Although EDLCs benet from
quite high power density, i.e., fast delivery of stored charge as
compared to ion batteries, low energy density has yet been their
limiting feature. Indeed, in contrast to batteries, such devices
directly store the charge at the electrode/electrolyte interface via
reversible adsorption of electrolyte ions on the electrode
surface.7
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According to the crucial role of the electrode active materials
for the supercapacitor performance, various novel or modied
materials have been extensively studied. Namely, carbonmaterials,
including activated carbons, graphene, carbide-derived carbons,
and carbon nanotubes, have been employed due to their high
conductivity, large specic surface area, low density, and good
chemical stability.8–11 In particular, the surface area is of great
importance in the charge storage of the electrical double layer
(EDL). A large surface area provides more available active sites for
ions to interact, and consequently, the capacitance can be
improved. In addition, experimental studies have proved that the
capacitance of the porous carbon-based material is affected by
their pore structure including pore shape, pore size (and pore size
distribution) together with electrolyte ions size.12,13

In addition, different capacitive behavior is determined by
the corresponding pore characteristics. Electrosorption in
micropores (<2 nm) is more efficient than that in mesopores (2–
50 nm) since themesopores are extremely large compared to the
size of the ions. Such process in carbon-based materials is
accompanied by further complexity such as overlapping
potential proles of the EDLs and (partially) peeling off the
solvation shell of the ions while entering the pores. This is due
to the fact that the carbon-based materials provide quite small
micropores (pores smaller than the Debye length).14,15 Addi-
tionally, having only micropores makes it difficult to access the
smaller pores due to a sieving effect. It also prevents the easy
transfer of electrolyte ions into the deeper zone in the
RSC Adv., 2021, 11, 5479–5486 | 5479
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electrodes, despite the mesopores which are useful for
providing gateways for ions to enter the micropores. Probably,
fabrication of 3D porous carbon materials, which combine
micropores, mesoporous walls, and macroporous cores, might
be a practical approach to improve the surface area and the
capacitance performance simultaneously.16 Such complex
structure causes several issues including reporting one average
pore size for non-ideal (broad) pore size distribution of micro-
porous carbon materials and inaccurate measurement methods
for representing pore structure, leading to conicting experi-
mental results.17–20 Thus, there is no clear and direct relation-
ship between the surface area/pore structure of the electrode
materials and the corresponding capacitance in the experi-
mental studies. This is due to the various mass transfer mech-
anisms and the EDL formation efficiency of different pore
structures.13,21,22 As a result, in order to improve the perfor-
mance of EDLCs in terms of energy and power density,
a quantitative relation between the carbon-based materials'
structural features and obtained capacitance is necessary to
adjust the carbon materials features efficiently.

Molecular simulation methods have been applied to inves-
tigate the relation between the microscopic structures and the
macroscopic performances for capacitance prediction of
carbon-based supercapacitors. Equivalent circuit models
(ECMs) are usually used to examine the kinetics of charging and
discharging for energy storage devices due to their simplicity
and effectiveness to correlate the experimental data. However,
such models could not provide insights on the microscopic
details of ion transport and energy storage.23 Besides, molecular
dynamics simulations (MDs) as the most accurate method can
predict the capacitance where they efficiently describe micro-
scopic phenomena of the electrode/electrolyte interface.20,24

However, one of the issues related to MDs is attributed to the
accurate atomistic models for complicated carbon structures,
which comes with a less straightforward characterization and an
excessive computational cost compared with the slit pore models.
Another challenge with MDs is ascribed to the feasible simulation
scales of time and length (in nanoseconds and nanometers), which
are usually far different from the experimental values (in milli-
seconds and micrometers).25 Hence, developing novel somodels
like machine learning (ML) technique to bridge the gap between
molecular simulations and macroscopic measurements seems
necessary. ML technique is a data-based approach and a suitable
alternative method to solve several practical complications. ML is
regarded as a computer science branch where computer systems
learn from the given data and predict or decide based on their
programmed analysis.26,27 Recently, several chemical engineering
problems have been widely studied by ML methods.28–34 In 2018,
the inuence of several parameters (specic surface area, ID/IG
ratio, calculated pore size, doping element, and voltage window)
on the capacitance was studied via an articial neutron network
(ANN)method.35 Recently Su et al. investigated the effect of porous
carbon-based materials and working potential ranges on EDL
capacitance by using various ML models. The multi-layer percep-
tion (MLP) model exhibited the best performance and determined
the relative impact of the inuencing parameters on the capaci-
tance of EDLC.36 In spite of developed correlations, it is still
5480 | RSC Adv., 2021, 11, 5479–5486
unclear how ML methods would better understand the relation
between the EDLCs performance and the structural properties of
carbon-based materials. In this work, the capacitance of carbon-
based EDCLs is accurately predicted as a function of specic
surface area, calculated pore size, ID/IG ratio (ratio of the D-band (at
1360 cm�1, which reects the amorphous carbon and the defects)
and G-band (at 1570 cm�1, which indicates the existence of the sp2

hybridized carbon) in Raman spectroscopy results), N-doping level,
and voltage window using optimized support vector machine by
the grey wolf optimization algorithm.
2. Methodology
2.1. Support vector machine

The support vector machine (SVM) is a machine learning tech-
nique that, unlike other ML methods, works on the basis of
minimizing the structural risk principle of statistical theory.37 It
was initially presented for classication problems by Vapnik in
1992 (ref. 38) which was further developed to the version used today
by Cortes and Vapnik in 1995,39 and in 1997 it was adapted to
regression problems by Vapnik et al.40 While SVM was introduced
for linear problems, beneting from its working principle, it can be
modied for nonlinear problems using kernel functions.

The SVMmethod equations are presented below.41 Eqn (1) is
a simple data set for training by the SVM regression model,
where xi, yi, R, and d are input, output, output space, and the
dimension of the input space, respectively.

{xi,yi|x ˛ Rd, y ˛ R, i ¼ 1, 2, ., n} (1)

Eqn (2) is used to map the input data from Rd space to high
dimensional space Rk (k > d).

j(x) ¼ (f(x1), f(x2), ., f(xn)) (2)

The prediction model for SVM is given in eqn (3):

f(x) ¼ uTf(x) + b, u ˛ Rk, b ˛ R (3)

where b, u, and f(x) indicate bias constant, weight, and
a nonlinear mapping function, respectively.

The u and b can be determined according to the principle of
structural risk minimization by eqn (4)

minR ¼ 1

2
kuk2 þ c� Remp (4)

where kuk2 controls the model difficulty, c is the regularization
coefficient, and Remp is a function to control the error. For the opti-
mization objective, theRemp of standard SVM is the linear termof the
error. Using the relaxation factors of xi and x*i and the insensitivity
loss function of 3, eqn (4) can be transformed into eqn (5):

minJ ¼ 1

2
kuk2 þ c

Xn

i¼1

xi þ x*i

8>><
>>:

yi � uTfðxiÞ � b# 3þ xi

uT fðxiÞ þ b� yi # 3þ xi

xi; x
*
i $ 0 ði ¼ 1; 2;.; nÞ

(5)

To solve the SVM, the Lagrange function is used as in eqn (6).
© 2021 The Author(s). Published by the Royal Society of Chemistry
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(6)

where ai;ai
*; bi; bi

*N indicate Lagrange factors.
Considering the Karush–Kuhn–Tucker optimization condi-

tions (eqn (7)) and the symmetric kernel function (eqn (8)), the
optimization problem is developed as eqn (9).

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

vL

vu
¼ 0/u ¼

Xn

i¼1

�
ai � a*

i

�
fðxiÞ

vL

vb
¼ 0/u ¼

Xn

i¼1

�
ai � a*

i

� ¼ 0

vL

vxi
¼ 0/c� ai � bi ¼ 0

vL

vxi
*
¼ 0/c� ai

* � bi
* ¼ 0

(7)

K(xi,xj) ¼ f(xi)
Tf(xj) (8)

maxW ða;a*Þ ¼ �1

2
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�
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i
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j

�
K
�
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Xn
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i

�
3

s:t:

8><
>:

Xn
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� ¼ 0

0#ai;a
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i # c

(9)

Thus, the SVM regression model can be written as in eqn
(10).

f ðxÞ ¼
Xn

i¼1

�
ai � a*

i

�
K
�
xi; xj

�þ b (10)

Various kernel functions are used for the SVM method. In
this study, the radial basis kernel function is selected (eqn (11)),
where s is the width parameter of the function.

K
�
xi; xj

� ¼ exp

��kxi � xjk2
2s2

	
(11)

2.2. Grey wolf optimization

In 2014, Mirjalili et al. introduced the Grey wolf optimization
(GWO) as a new meta-heuristic algorithm.42 It is inspired by the
© 2021 The Author(s). Published by the Royal Society of Chemistry
social hunting of grey wolves. In general, the social hierarchy of
grey wolves is divided into four categories: (1) alpha (a), which is
the leader and responsible for making decisions about every-
thing, (2) beta (b), which supports or consults the alpha wolves,
(3) delta (d), which is the third class of grey wolves, (4). They
should surrender to alpha and beta wolves, and the rest of the
wolves are the omega (u), which must follow the order of the
alpha and beta. They also have to help other wolves whenever
needed.43,44 Therefore, the power level decrease from a to u (see
Fig. 1(a)). The GWO splits the solutions to a specic optimiza-
tion issue into four categories. The top three solutions are the
best (a, b, and d) and other solutions are considered as u

wolves. According to the three best solutions, the hierarchy is
updated in each iteration. The description of the relocation is
presented in Fig. 1(b). The GWO process includes the main
principle of searching, surrounding, hunting, and attacking the
prey. The surrounding of grey wolves is represented by eqn (12)

X(t + 1) ¼ Xp(t) � A � D (12)

where; X(t + 1), Xp(t), t, A, and D indicate the next location of
a grey wolf, the position vector of any wolf, the current iteration,
matrix coefficient, and the distance between the grey wolf and
the prey, which can be calculated by eqn (13)–(15)

D ¼ |C � Xp(t) � X(t)| (13)

A ¼ 2ar1 � a (14)

C ¼ 2ar2 (15)

where; r1, r2 are random vectors from (0 to 1).
These equations allow the solution to reposition around the

prey in a hypersphere form (Fig. 1(b)). Accordingly, the u wolves
update their positions by the following eqn (16):

X ðtþ 1Þ ¼ X1 þ X2 þ X3

3
(16)

where; X1, X2, and X3 are obtained by the following equations:

X1 ¼ Xf(t) � A1 � Df (17)

X2 ¼ Xb(t) � A2 � Db (18)

X3 ¼ Xd(t) � A3 � Dd (19)

Df ¼ |C1 � Xf(t) � X(t)| (20)

Db ¼ |C2 � Xb(t) � X(t)| (21)

Dd ¼ |C3 � Xd(t) � X(t)| (22)

3. Data collection and feature
selection

In the present work, 681 sets of carbon-based supercapacitors
with different variables of the test system (i.e. test voltage range,
RSC Adv., 2021, 11, 5479–5486 | 5481



Fig. 1 (a) The social hierarchy of grey wolves, (b) reposition mechanism of u wolves according to positions of a, b and d wolves.
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electrolyte, and the obtained specic capacity) and physico-
chemical properties of the carbon materials (i.e. pore volume,
specic surface area, the ratio of ID/IG, micropore volume, and
doping elements) were obtained from more than 300 published
papers for ML methods. All these data are available in the ESI.†
Five parameters of specic surface area, ID/IG ratio, calculated
pore size, voltage window, and N-doping level, have been
selected as inputs for the SVM method because they are quite
effective on the corresponding capacitance. It is notable from C
¼ 330A/d (where C, 3, 30, A, and d indicate the capacitance, the
dielectric constant of the electrolyte, the vacuum permittivity,
the specic surface area, and the distance between the carbon
surface and the center of ion, respectively) the specic surface
area has a signicant inuence on the capacitance of super-
capacitors.45,46 Therefore, increasing the surface area is neces-
sary for enhancing the capacitance. Besides, the pore size of the
electrode inuences the accessibility of the electrolyte ions.
Different detection molecules and various mathematical
methods have been used to analyze the pore size of carbon
materials, which result in incompatibility among many studies.
Therefore, the Wheeling equation (eqn (23))35 has been selected
to calculate the average pore size:

Pore size ¼ 4000� pore volume

specific surface area
(23)

The electrical conductivity of the carbon materials is inu-
enced by their crystallinity. The crystallization degree of carbon
materials can be investigated by the intensity ratio between the D-
band (at 1360 cm�1, which reects the amorphous carbon and the
defects) and G-band (at 1570 cm�1, which indicates the existence
of the sp2 hybridized carbon) (ID/IG) in Raman spectroscopy
results.35,36 In addition to the structural features, the constitute
components signicantly affect capacitive performance. Nitrogen
is themost doped hetero atom in carbonousmaterials because the
5482 | RSC Adv., 2021, 11, 5479–5486
nitrogen-containing functional groups could induce additional
pseudocapacitance and quantum capacitance and consequently
enhance the capacitance.47

The materials of the experimental system, especially the
electrolyte, are also important for the performance of the
capacitor.46 Different electrolytes adjust the voltage window (V),
which could change the energy density (E) of the super-
capacitor, according to E ¼ CV2.45
4. Results and discussion
4.1. Sensitivity analysis

Sensitivity analysis (SA) is a mathematical method used to
investigate the inuence of input parameters' on the output. It
is also useful to recognize vital regions, nd methodological
errors, and determine research priorities.48,49 Sensitivity analysis
can be applied in two forms: local and global. Local SA evaluates
one effect of input on the result while all the other inputs are
xed.50 Besides, the usual method of global SA investigates the
impact of the inputs on the outcome when all of them are
changed.

As shown in Fig. 2, specic surface area has the strongest
inuence on supercapacitance performance with the relevancy
factor of 0.32. This is mainly since the specic surface area
directly affects the electrosorption ability of the electrode
material. The high surface area can cause more adsorption of
electrolyte ions and increases the capacitance. The relative
factor of pore volume, micropore volume, N-doping, micropores
surface area, and O-doping are not large, and their importance
scores are 0.19, 0.16, 0.16, 0.14, and 0.17, respectively. It is also
has been reported modication with non-carbon elements (e.g.
O, N, S, B) and defects allows providing additional capacity.51,52

Accordingly, in the design of carbon-based electrodes for
EDLCs, the specic surface area is crucial factor to be
considered.
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Sensitivity analysis for determining effective variables on the capacitance of the carbon-based EDCLs.
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4.2. Designing GWO-SVM model

As discussed before, C, 3, and g control the SVM algorithm
performance. For that reason, the GWO has been used to opti-
mize these factors.

The scheme and the detail of the GWO-SVM algorithm are
described in Fig. 3 and Table 1. As mentioned, in the GWO,
alpha, beta, and delta are the top three solutions to examine the
prey location. The GWO will stop when the nal criterion is
determined.
4.3. Outlier analysis

Outlier diagnosis, as one of the fundamental statistical
methods, is applied to distinguish sets of data behaving
differently from the whole dataset. A useful technique of
leverage statistics is used to detect the outliers with the
Fig. 3 Flowchart of optimized SVM with GWO algorithm.

© 2021 The Author(s). Published by the Royal Society of Chemistry
parameters of the Hat indices (H), the critical Leverage limit
(H*), and the standardized (R).53 H and H* are introduced
below:

H ¼ X(XtX)�1Xt (24)

H* ¼ 3n

ðpþ 1Þ (25)

where t and X in eqn (24) are the transpose matrix and the two-
dimensional (n � k) matrix, respectively. In eqn (23), n and p
indicate the training points and the number of input parame-
ters, respectively. In this study, the possible Hat solutions are
along the main diagonal of H. The outlying candidates are
recognized by the representation of the Williams plot (stan-
dardized residuals (R) against Hat index (H)).49 The feasible data
region is dened as a squared area restricted to the cut-off value
(which is �3 usually) and the warning leverage value on the
vertical and horizontal axis, respectively. The data (R and H),
which are placed out of the valid zone ([�3, 3] and [0, H*],
respectively) are categorized as the outliers. The Williams plot
related to the outputs of GWO-SVM is represented in Fig. 4. It
can be clearly seen themost of the capacitance values studied in
Table 1 Details of the employed GWO-SVM algorithm

Parameter Value/comment

Kernel function Gaussian
No. of train data 511
No. of test data 170
Optimization
technique

GWO

C 185 366.985
3 0.108846
G 0.056684

RSC Adv., 2021, 11, 5479–5486 | 5483



Fig. 4 William's plot of the proposed GWO-SVM to find outliers. Fig. 6 Regression plot of the train and test dataset of the capacitances
of carbon-based EDCLs.
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this work, located in the valid domain other than 31 points
situated higher than H* value, demonstrating that in addition
to being useful in statistics, the GWO-SVM algorithm could also
reveal the inherent relationships between the input parameters
and capacitance value in a much more acceptable approach.
4.4. Model evaluation

In Fig. 5, the capacitance values obtained from the proposed
model are described versus the data index, showing the training
and testing results. It demonstrates that the suggested model is
considerably capable of predicting the capacitance of carbon-
based supercapacitors.

In order to evaluate the proximity of obtained values to real
values, the coefficient of determination (R2) is dened. It varies
from 0 to 1, which closeness to unity signies more accuracy of
the model prediction. Fig. 6 represents the cross diagram of
actual and simulated values. The major part of capacitance
values is along the bisector line and the obtained R2 values for
training and testing data sets of the GWO-SVMmodel are 0.9281
and 0.8958, respectively; thus, conrming the high capability of
the GWO-SVM model towards precise prediction. The deviation
percentage for the GWO-SVM model is shown in Fig. 7. The
Fig. 5 Experimental versus predicted capacitances of the carbon-
based EDLCs from the GWO-SVM.

5484 | RSC Adv., 2021, 11, 5479–5486
determined deviation is not more than 100% band, demon-
strating the incredible precision of the model. Moreover,
statistical analyses of the proposed SVM-GWO model has been
presented in Table 2. As can be seen, the proposed model is
satisfactorily accurate for estimating the capacitance of carbon-
based supercapacitors.
4.5. Comparison with literature

In order to compare the results obtained from the proposed
GWO-SVM model, a statistical comparison was carried out in
Table 3 between the current model and previously developed
models by Su et al.36, Zhu et al.35 and Zhou et al.54 for estimating
the capacitance of carbon-based supercapacitors. Su et al.
proposed four models, including linear regression (LR), support
vector regression (SVR), regression trees (RT), and MLP, of
which MLP and RT performed better with RMSE of 67.62 and
68.45, respectively. They introduced MLP as the best model
because, unlike RT, it could obtain all the relative contribution
of the input variables to the EDL capacitance. Furthermore, it
shows only a negeligible lower accuracy as compared to RT.
They used the CVParameterSelectionmodule in the open source
Fig. 7 Relative deviation plot of GWO-SVM for the capacitance of
carbon-based EDCLs.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 2 Statistical analyses of the proposed SVM-GWO model

Set R2 RMSE STD

Train 0.928 31.6207 23.7707
Test 0.896 39.2215 31.5096
Total 0.920 39.2215 25.9192

Table 3 Comparison of the proposedmodel with the other previously
developed models to predict the corresponding capacitance

Model R2 RMSE Reference

LR 0.2809 97.1 Su et al.36

SVR 0.4489 81.97
RT 0.5776 67.62
MLP 0.5625 68.45
ANN 0.91 — Zhu et al.35

GLR 0.3555 54.9068 Zhou et al.54

SVM 0.6552 40.1598
RF 0.6891 38.1331
ANN 0.7167 36.4013
GWO-SVM 0.92 39.2215 Current model

Paper RSC Advances
package of WEKA. The number of nodes and the learning rate in
the hidden layer were 0.2 and 20, respectively. Zu et al. reported
ANN achieved more accurate results than LR and Lasso. They
combined three layers and applied the “tanh” function as an
activation function to build the ANN model. In a very recent
study, Zhou et al. found out among the four different ML
models, the ANN algorithm exhibits the best performance. They
chose Bayesian regularization backpropagation function to
train the ANN model. They also claimed the proposed ANN
algorithm could capture the dependence of the EDL capacitance
onmicropore andmesopore surface areas in a wide range of the
scan rate. As presented in Table 3, the proposed GWO-SVM
model, with a minimum RMSE and maximum value of R2, is
the most accurate model to estimate the EDL capacitance
carbon-based materials.

5. Conclusions

In summary, this work applied SVM-GWO to investigate the
impact of the structural features on electrical double-layer
capacitors performance. Pore size, specic surface area, N-
doping level, ID/IG ratio, and voltage window were selected as
the input physico/chemical properties. The experimental data
were extracted from more than 300 published papers. The
proposed SVM-GWO model showed the best accuracy as
compared to the other proposed ML models in the literature,
showing its great potential for assisting to objectively design the
corresponding EDL materials. Moreover, the sensitivity analysis
showed that the specic surface area of carbon-based super-
capacitors followed by pore volume have the greatest effect on
supercapacitance. Moreover, from a model selection perspec-
tive, the proposed GWO-SVM model in this study with
a minimum RMSE and a maximum value of coefficient of
© 2021 The Author(s). Published by the Royal Society of Chemistry
determination is the most accurate model to estimate the EDL
capacitance of most carbon-based materials.
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