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Objective: Sepsis is a disease associated with high mortality. We performed bioinformatic 
analysis to identify key biomarkers associated with sepsis and septic shock.
Methods: The top 20% of genes showing the greatest variance between sepsis and controls in 
the GSE13904 dataset (children) were screened by co-expression network analysis. The differ-
entially expressed genes (DEGs) were identified through analyzing differential gene expression 
between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data 
sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs 
for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short 
Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree 
of connectivity, and the top 100 sepsis-associated genes were identified based on the area under 
the receiver operating characteristic curve (AUC). In addition, we evaluated differences in 
immune cell infiltration between sepsis patients and controls in children (GSE13904, 
GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA 
methylation levels between sepsis patients and controls in GSE138074 (adults).
Results: The common genes were associated mainly with up-regulated inflammatory and 
metabolic responses, as well as down-regulated immune responses. Sepsis patients showed 
lower infiltration by most types of immune cells. Genes in the PPI network with AUC values 
greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key 
genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, 
ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively 
dysregulated across controls, sepsis patients and patients with septic shock. In addition, the 
expression of MAPK14, FGR, and CD247 was modified by methylation.
Conclusion: This study identified several potential diagnostic genes and inflammatory and 
metabolic responses mechanisms associated with the development of sepsis.
Keywords: sepsis, septic shock, bioinformatics, diagnosis, immunosuppression

Introduction
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated 
host response to infection.1 In 2017, approximately 48.9 million sepsis cases and 
11.0 million sepsis-related deaths were recorded worldwide, accounting for 19.7% 
of all global deaths.2 According to a recently published systematic review, sepsis 
with organ dysfunction occurring during hospitalization affects 24.4% of all 
patients in intensive care units and neonatal intensive care units.3 Septic shock is 
defined as sepsis complicated by hyperlactatemia and simultaneous hypotension 
requiring vasopressin therapy. The in-hospital mortality rate of septic shock is 
30–50%.4
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The World Health Organization states that the annual 
number of deaths due to sepsis worldwide is approxi-
mately 6 million, most of which are preventable.5 The 
identification of altered molecular signatures and biochem-
ical pathways in sepsis patients has driven interest in the 
discovery of novel biomarkers.6 Early recognition of sep-
sis is essential for timely treatment and can improve sepsis 
outcomes.7,8 Mortality risk is higher when sepsis treatment 
is delayed.9 Analyzing the molecular characteristics of 
patients is an effective method to screen for potential 
diagnostic and prognostic targets.10

Patients with sepsis often present acquired 
immunodeficiency.11 Significant lymphopenia has been 
reported in sepsis patients, and apoptosis may be a major 
mechanism of lymphocyte death in sepsis.12 A number of 
anti-inflammatory and immunostimulatory agents are cur-
rently in clinical trials for sepsis and septic shock.13,14 At 
the same time, sepsis may result in prolonged methylation 
changes in monocytes, which may help stabilize them in 
an immunotolerant state.15 Multiple studies have shown 
that epigenetic alterations in sepsis may affect prognosis 
and serve as diagnostic biomarkers.16,17

Improved infection prevention and control strategies 
are urgently needed to reduce the health care burden 
associated with the development and progression of sepsis 
and septic shock, as are approaches to early diagnosis and 
appropriate treatment. The present study used bioinfor-
matics to explore biomarkers and potential therapeutic 
targets associated with the development of sepsis.

Materials and Methods
Sepsis Data Collection
Data were downloaded from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/ 
geo/). The GSE13904 dataset included array-based gene 
expression profiles of whole blood from 18 normal chil-
dren, 52 children with sepsis, and 106 children with septic 
shock. The GSE25504 dataset included array-based gene 
expression profiles of whole blood from 37 control and 25 
infected human neonates. The GSE9960 dataset included 
array-based gene expression profiles of peripheral blood 
mononuclear cells from 54 adult sepsis patients and 16 
controls. The raw data in these three datasets were pro-
cessed using the lumi package in R.18 The GSE154918 
dataset included gene expression profiles based on high- 
throughput sequencing of peripheral blood from 65 adult 

sepsis patients and 40 controls. Raw counts were pre- 
processed and normalized using DESeq2.19

Coexpression Analysis
The variance of gene expression in GSE13904 (children) 
was first calculated, and the top 20% of the greatest 
variance was screened to construct a coexpression network 
through weighted gene coexpression network analysis 
(WGCNA) using the WGCNA package in R.20 The con-
nections among different pairs of genes were identified 
and weighted based on the correlated expression levels 
across patients and control samples. Then the adjacency 
matrix was converted into a topological overlap matrix 
(TOM) to detect gene connectivity in the network. Genes 
were separated into different clusters (modules) based on 
their connectivity and covariance coefficients, then hier-
archically clustered. The WGCNA package was employed 
to test the independence and average connectivity of dif-
ferent modules under different power values, and the 
power values corresponding to an independence index of 
R2 = 0.9 were selected. The minimum size of the gene 
dendrogram was 30. Potential correlations between mod-
ules and clinical characteristics of patients were explored 
through Pearson correlation analysis.

Difference Analysis
Gene expression profiles were constructed for each sample 
of septic shock patients, sepsis patients and controls. 
Differential analysis between sepsis patients and healthy 
individuals in GSE13904 (children) or GSE154918 
(adults) was performed after using the limma package in 
R.21 A screening threshold of P < 0.05 was set to obtain 
the differentially expressed genes (DEGs) between sepsis 
patients and controls. Then, DEGs whose expression dif-
fered in the same direction in patients (up- or down- 
regulation) were screened for intersection analysis with 
module genes to obtain the common genes. DEGs between 
septic shock patients and sepsis patients in GSE13904 
(children) was obtained using the limma package in 
R and a significance criterion of P < 0.05.

Enrichment Analysis
We used the clusterProfiler package in R22 to perform gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis of common 
genes. P < 0.05 was considered statistically significant for 
enrichment. The significantly enriched terms were subjected 
to gene set variation analysis (GSVA)23 to calculate the 
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score for the enrichment using the gene expression profile. 
The up-regulation or down-regulation of enrichment terms 
in septic patients relative to controls was evaluated using the 
GSVA score in the limma package in R. Gene set enrich-
ment analysis (GSEA) was used to identify KEGG pathway 
using GSEA software. The fgsea package in R was used to 
display the results of the GSEA.

Single Sample Gene Set Enrichment 
Analysis (ssGSEA)
The marker gene sets for immune cell types were obtained 
from Bindea et al24. The gene signatures expressed by the 
immune cell populations were quantified using the single- 
sample gene set enrichment analysis (ssGSEA) function in 
GSVA. Differences in immune cell infiltration between sep-
sis patients and healthy controls were then calculated, and 
a significance criterion of P < 0.05 was applied. Correlations 
between levels of infiltration by different types of immune 
cells were calculated using Pearson’s correlation, based on 
ssGSEA scores for the immune cell types.

PPI Network Analysis
The common genes were analyzed using the online tool 
STRING (https://string-db.org), and the protein-protein 
interaction (PPI) network based on the criterion of 
a combined score > 900 was constructed and displayed 
using Cytoscape software. Genes were ranked based on 
their degree of connectivity with other genes. The pROC 
package in R25 was used to calculate the the area under the 
receiver operating characteristic curve (AUC) for the top 100 
genes showing the greatest connectivity in the PPI network.

Short Time-Series Expression Miner 
(STEM) Analysis
We performed STEM analysis to cluster the common 
genes in healthy individuals, sepsis patients and septic 
shock patients in the GSE13904 database (children).26 

Significant clustering was defined as P < 0.05. The sig-
nificantly clustered genes showed a trend of gradual up- or 
down-regulation as one moved from controls to sepsis 
patients and then to septic shock patients.

Methylation Analysis
The GSE138074 dataset contains array-based gene methy-
lation profiles of monocytes from 14 adult septic patients 
and 11 healthy donors. Data were processed using the 
ChAMP package in R.27 Differences in methylation levels 

between sepsis patients and healthy donors were calcu-
lated using the limma package in R.

Results
Coexpression Network of Sepsis-Related 
Genes
The flow chart of this study is shown in Figure 1. We 
calculated variance of gene expression in GSE13904 (chil-
dren) and then screened 4093 genes in the top 20% great-
est variance genes in order to identify coexpression 
patterns. WGCNA identified a coexpression network con-
taining 2550 genes (Figure 2A). These genes clustered into 
eight coexpression modules: the brown module had the 
strongest positive correlation with sepsis shock, whereas 
the pink module had the strongest negative correlation 
with sepsis shock (Figure 2B). By calculating the expres-
sion profiles of the modules in different clinical samples, 
we identified the expression trend for each module in 
sepsis development (Figure 2C). The brown module 
showed gradual up-regulation, while the pink module 
showed gradual down-regulation, in the order: controls < 
patients with sepsis < patients with septic shock.

Figure 1 Flowchart of this study. The following datasets were used for the 
identification of potential diagnostic genes and mechanisms associated with the 
development of sepsis: GSE13904 (children), GSE25504 (children), GSE9960 
(adults) and GSE154918 (adults). 
Abbreviations: AUC, area under the receiver operating characteristic curve; 
GSVA, gene set variation analysis; PPI, protein-protein interaction; STEM, short 
time-series expression miner; WGCNA, weighted gene coexpression network 
analysis.
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DEGs in Sepsis
Of the four sets of sepsis data that we obtained, GSE13904 
(children) and GSE154918 (adults) had the largest samples 
(Figure 3A). In GSE13904 (children), we obtained 7850 
DEGs between sepsis and control samples (Figure 3B, 
Table S1). In GSE154918 (adults), we obtained 12496 
DEGs between sepsis and control samples (Figure 3B, 
Table S2). By comparing the DEGs between adult and 
pediatric sepsis, we found 5638 genes that were common 
to both, 2212 that may be specific to the pediatric condi-
tion and 6857 that may be specific to the adult condition 
(Figure 3C). Genes at the intersection may be strongly 
associated with sepsis in adults and children. In addition, 
we screened 5143 DEGs that were simultaneously up- or 

down-regulated in GSE13904 (children) and GSE154918 
(adults). Intersection analysis of these genes with module 
genes yielded 1274 common genes for subsequent analysis 
(Figure 3D).

Biological Functions of Selected Genes
Enrichment analysis showed that, based on the common 
genes identified above, defensive responses to bacteria, 
complement-dependent cytotoxicity, and canonical glyco-
lysis were significantly up-regulated in sepsis patients, 
whereas interleukin-17 production, B cell activation, and 
T cell receptor signaling were significantly down-regulated 
(Figure 4A). KEGG results showed that Hypoxia- 
Inducible Factor 1 (HIF-1) signaling pathway, Tumor 

Figure 2 WGCNA of genes showing large expression variance in sepsis patients. (A) Network heatmap of unsupervised cluster analysis of module genes. Different colors in 
columns and rows represent different modules. (B) Correlation of modules with clinical traits. Each column represents a different module; each row, a different clinical 
phenotype. Red indicates positive correlation; blue, negative correlation. (C) Progressive up- or down-regulation in a module in the trend: healthy controls < sepsis < sepsis 
shock.
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Necrosis Factor (TNF) signaling pathway, and glycolysis/ 
gluconeogenesis were significantly up-regulated in sepsis, 
whereas Th1 and Th2 cell differentiation, Th17 cell differ-
entiation, and T cell receptor signaling pathways were 
significantly down-regulated (Figure 4B). KEGG results 
in GSEA similarly found that metabolism-related path-
ways were up-regulated while immune related pathways 
were down-regulated (Figure 4C).

Immune Cell Infiltration in Sepsis
In the enrichment results, we found that a large number of 
immune-related biological functions were significantly 
down-regulated in sepsis samples. Therefore, we assessed 
immune cell infiltration in sepsis patients (Figure 5A). 
Unsurprisingly, sepsis was associated with significantly 
reduced infiltration by most types of immune cells, except 

that infiltration by macrophages, mast cells, and neutro-
phils was elevated. Cytotoxic T cell types were defined 
based on gene markers, and CD8+ T cells were treated as 
one subtype of T cells with different gene markers than 
other subtypes.24 The ssGSEA scores for these different 
subtypes were used to generate immune cell interaction 
networks. We grouped the differentially infiltrated immune 
cells into four clusters (Figure 5B).

PPI Network of Common Genes
In addition, we performed PPI network analysis of the 
common genes and ranked the connectivity degree 
between the genes in the network (Figure 6A). We 
screened the top 100 genes with the greatest connectivity 
(Figure 6B). By calculating the AUC values of these genes 
in GSE13904 (children) and GSE154918 (adults), we 

Figure 3 Identification of common genes in sepsis. (A) Petal plot of sample size for sepsis and control groups in four datasets. Red petals represent healthy controls; blue 
petals, sepsis patients. (B) Manhattan plot of differentially expressed genes between sepsis patients and healthy controls in GSE13904 and GSE154918. Up, up-regulation in 
sepsis; Down, down-regulation in sepsis; Not, no significant difference from controls. The three genes in each group showing the largest fold difference are labeled. (C) Venn 
diagram of differentially expressed genes in GSE13904 (children) and GSE154918 (adults). (D) Venn diagram showing DEGs in GSE13904 (children) and GSE154918 (adults) 
as well as module genes, that are common to adults and children or specific to each one of those groups.
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Figure 4 Biological functions and KEGG pathways enriched in common genes. (A) Common genes of sepsis patients relative to controls involved in up- or down-regulated 
biological processes, as quantified by gene set variation analysis (GSVA). FC, fold change. (B) Common genes of sepsis patients relative to controls involved in up- or down- 
regulated KEGG pathways, as quantified by single-sample GSVA. FC, fold change. (C) Common genes involved in up- or down-regulated KEGG pathways of GSEA results in 
sepsis patients relative to controls. P < 0.05 was considered statistically significant.
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identified genes with AUC values greater than 0.9 in both 
sets of data, which we defined as key genes (Figure 6C). 
Among them, MAPK14, FGR, RHOG were up-regulated 
in sepsis, while LAT, PRKACB, UBE2Q2, ITK, IL2RB, 
and CD247 were down-regulated (Figure 6D). 
Importantly, the patterns of differential expression of 
these key genes were consistent across GSE13904, 
GSE154918, GSE25504, and GSE9960. Correlation ana-
lysis found that up-regulated genes had stronger negative 
correlation with immune cells, while down-regulated 
genes had stronger positive correlation with immune 
cells, especially T cells (Figure 6E).

Genes Associated with Sepsis 
Development
To identify the change in gene expression during the 
course of development from sepsis to septic shock, we 
utilized STEM software to identify 712 common genes 
showing progressive dysregulation during sepsis progres-
sion. These genes fell into five significant clusters (Figure 
7A). Interestingly, all the key genes that we identified 
above were detected in these clusters (Figure 7B). The 
expression of MAPK14, FGR, RHOG was gradually up- 
regulated from control to sepsis then to septic shock, while 
the expression of LAT, PRKACB, UBE2Q2, ITK, IL2RB, 
and CD247 was gradually down-regulated (Figure 7C). 
The pathway heatmap built by GSEA algorithm showed 

that starch and sucrose metabolism, complement and coa-
gulation cascades, and legionellosis were gradually up- 
regulated during the development of sepsis, while Th1 
and Th2 cell differentiation, IgA production in the intest-
inal immune network, as well as antigen processing and 
presentation were gradually down-regulated (Figure 7D).

Methylation Marks in Sepsis
To identify the sepsis key genes whose methylation may 
be modified in the disease, we first analyzed differentially 
methylated positions (DMPs) between sepsis samples and 
controls in GSE138074 (adult) (Figure 8A). DMPs with 
delta beta values in the opposite direction to the expression 
value of common DEGs were filtered and identified as 
methylation marks. A total of 1313 methylation marks 
were identified (Figure 8B). These included MAPK14, 
FGR, and CD247. The methylation levels of MAPK14 
(cg18213931) and FGR (cg16922167) were lower in sep-
sis than control, and that of CD247 (cg21161394) was 
higher in sepsis (Figure 8C).

Discussion
Early recognition of sepsis is key to timely treatment. In 
this study, we subjected sepsis-related sequencing data to 
bioinformatics analysis in order to explore the sepsis- 
related molecular dysregulation mechanisms. Compared 
to other studies using the same datasets,28,29 the present 
work used WGCNA and PPI networks to identify potential 

Figure 5 Immune cell suppression in sepsis patients. (A) Differences in immune cell infiltration between sepsis and controls. Each row represents a type of immune cell; 
each column, a different dataset. Red nodes represent significant up-regulation in sepsis; blue nodes, significant down-regulation. (B) Clustering and correlation of immune 
cell types based on infiltration levels. The size of each node represents the single-sample gene set enrichment analysis (ssGSEA) scores of each immune cell type, 
transformed by log10 (Log rank test P-value). Connections between immune cell types represent interactions between the two. The thickness of the line indicates the 
strength of the correlation, based on Pearson correlation analysis. Red lines represent positive correlations; blue lines, negative correlations. Immune cell cluster A is shown 
in yellow; cell cluster B, blue; cell cluster C, red; and cell cluster D, brown.
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Figure 6 Identification of potential diagnostic genes for sepsis. (A) PPI network of common genes (top 100 with highest degree of connection). Darker color indicates 
higher degree of connectivity. (B) Heatmap of the top 100 genes based on degree of connectivity in the PPI network. Data from sepsis patients are shown in yellow; sepsis 
shock patients, green; and controls, brown. (C) Genes with areas under the receiver operating characteristic curve (AUCs) greater than 0.9 in GSE13904 (children) and 
GSE154918 (adults). Red represents genes with up-regulated expression in sepsis; blue, genes with down-regulated expression. The lengths of the bars represent the mean 
AUC values of the genes. (D) Differential expression of key genes between sepsis patients and controls. Red nodes represent genes with up-regulated expression in sepsis; 
blue nodes, genes with down-regulated expression; grey nodes, no significant difference from controls. (E) Correlation between key genes and immune infiltrating cells, 
based on Pearson correlation analysis. Red nodes represent positive correlations; blue nodes, negative correlations. *P < 0.05, **P < 0.01.
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Figure 7 Identification of persistently dysregulated genes during progression from sepsis to septic shock. (A) Heatmap of persistently dysregulated genes identified by STEM 
in the trend: healthy controls < sepsis patients < septic shock patients. Gene sets were arranged based on cluster assignment in order to generate simplified expression 
profiles. We graphically depicted only five clusters with >10 genes. (B) The box plots of STEM genes in five clusters. Line plots and box plots were used to display log2 (fold 
change). Representative genes were highlighted using red lines. Key genes were in significant STEM clustering and located on the right side of the box map. *P < 0.05, **P < 
0.01. (C) Expression of key genes were persistently elevated during sepsis development. (D) Signaling pathways persistently up- or down-regulated as sepsis develops. Red in 
the heatmap represents an enrichment score greater than 0; blue represents an enrichment score less than 0.
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diagnostic markers for sepsis not only in adults but also in 
children. We further identified potential biomarkers asso-
ciated with septic shock as well as methylation modifica-
tion status. We found that in patients with sepsis, multiple 
metabolic pathways were significantly up-regulated, 
whereas infiltration by immune cells was significantly 
decreased. We identified nine potential biomarkers asso-
ciated with sepsis progression. In addition, we found evi-
dence that the expression of MAPK14, FGR, and CD247 
is modified by methylation, which may facilitate the diag-
nosis of sepsis and septic shock.

Based on analysis of variance, WGCNA and differential 
expression analysis, we identified genes that may be associated 
with sepsis and septic shock. Enrichment analysis revealed that 
the genes involved in inflammatory and metabolic responses 
were up-regulated in sepsis, whereas the genes corresponding 
to immune responses were significantly suppressed. This is 
similar to previous findings.30 Increased galactosylation of the 

crystallizable immunoglobulin G fragment has been linked to 
increased complement-dependent cytotoxicity, which in turn 
may contribute to pediatric sepsis.31 In patients with sepsis, 
increased levels of both C3a and C5a in serum have been 
reported.32 Monocytes from sepsis patients have significantly 
higher basal glycolysis than monocytes from healthy 
controls.33 Aerobic glycolysis has been found to contribute to 
sepsis development by regulating inflammasome activation in 
macrophages.34 Both bacterial and fungal sepsis have been 
observed to cause a shift in cellular metabolism towards gly-
colysis, which is associated with an impaired ability of leuko-
cytes to produce pro-inflammatory cytokines upon a second 
stimulus.35 Moreover, lymphocyte loss, equally affecting 
B and T cells, was demonstrated in septic patients.36,37 

Accumulating evidence supports that immunosuppression is 
one of the major contributors to sepsis-related mortality, and 
that T cell exhaustion is one of the most severe responses.38,39

Figure 8 Screening of key methylation markers for sepsis in GSE138074. (A) Differentially methylated positions (DMPs) between sepsis and controls. Of all DMPs, 49.58% 
were hypermethylated and 50.42% were hypomethylated. The 10 sites with the highest methylation levels are labeled. Each feature color represents a different methylation 
site. (B) The methylation levels and the expression levels of methylation marks. Key genes are labeled. (C) Differences in key gene methylation levels between sepsis and 
controls. P for CD247 was 0.039; MAPK14, 0.047; FGR, 0.047.
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Consistent with our KEGG enrichment results, HIF-1α 
contributes to the pathogenic role of macrophages in 
sepsis.40,41 HIF-1α promotes the expression of multiple gene 
products, including enzymes that promote glycolysis.42 Some 
studies consider HIF as a potential biomarker of sepsis, but this 
remains controversial.43 Tumor necrosis factor α (TNF-α) 
contributes to sepsis immunosuppression by increasing 
apoptosis.44 TNF-α levels in plasma increase progressively as 
sepsis progresses, with the highest values found in patients 
with septic shock. This finding supports a prognostic biomar-
ker role for this cytokine.45 Th17 cytokine production is 
reduced in sepsis, which may adversely affect long-term 
mortality.46 Treatment with IL-7 increases the responsiveness 
of Th17 cells and reduces the mortality of secondary fungal 
infections, making IL-17 a potential therapeutic agent.47 

A ratio of Th2 to Th1 cells are clearly up-regulated in severe 
sepsis patients, and their continuous dynamic elevation is 
associated with acquired infection and 28-day mortality in 
the intensive care unit.48

Patients with sepsis have impaired innate and adaptive 
antibacterial immunity, which renders them unable to con-
trol primary and secondary infections.49 Our analysis of 
immune cell infiltration in sepsis patients showed that the 
levels of infiltration of some innate immune cells, such as 
macrophages and mast cells, were significantly higher. The 
host defends against pathogens by mounting a systemic 
inflammatory response in innate immune cells, such as 
macrophages, which produce pro-inflammatory cytokines 
and chemokines and which initiate coagulation cascade 
within minutes.50 In our clustering of immune cell types 
based on differential infiltration, we identified four clus-
ters. Each is characterized by unique immune responses 
that may influence the disease state of the patient.51

On the other hand, we found 9 key genes that may influence 
the development of sepsis. Among them, MAPK14, FGR, and 
CD247 expression may be modified by methylation. MAPK14 
has already been identified as a key gene and potential ther-
apeutic target in neonatal sepsis.52,53 Deficiency of MAPK14 
in macrophages protects mice from lipopolysaccharide (LPS)- 
induced sepsis.54 FGR proto-oncogene (FGR) is a Src family 
kinase that is expressed in innate immune cells, including 
macrophages and granulocytes, and is considered a major 
signaling molecule downstream of many immune cell 
receptors.55 FGR −/− mice have leukocyte migration disorder, 
and FGR is involved in the release of proinflammatory 
mediators.56 Studies have shown that CD247 is a potential 
new biomarker for sepsis and may be beneficial for the prog-
nosis of patients with sepsis.57,58 CD247 is involved in the 

immune response to sepsis caused by Staphylococcus aureus 
infection.59

For the other key genes, RHOG has already been linked 
to sepsis through its participation in inflammatory 
processes.60 The amount of LAT on the cell surface may 
determine the extent of T cell activation.61 Systemic inflam-
mation in patients with acute sepsis causes persistent T cell 
dysfunction, which leads to immunosuppression.37 

PRKACB is differentially expressed in neonatal sepsis, and 
it may influence disease progression via the MAPK signaling 
pathway.62,63 ITK has been found to regulate thermal home-
ostasis during sepsis via its effects on mast cells.64 Previous 
work has found that IL2RB is down-regulated in sepsis, 
which is consistent with our study,65 and that IL2RB is 
negatively correlates with organ failure and mortality in 
sepsis.66 Our results reveal UBE2Q2 as a potential key 
gene for sepsis diagnosis, and we are unaware of previous 
studies showing an association between UBE2Q2 and sepsis.

Our study also has certain limitations. First, the data for this 
analysis were from public databases and involved small sam-
ples, which may lead to biased interpretation of the results. 
Second, molecular experiments for validation are missing, and 
follow-up with larger clinical samples is needed to validate our 
main results. Third, further study is required to confirm 
whether methylation modifications found in key genes are 
associated with the progression of sepsis.

Conclusion
The present study demonstrated heightened metabolic 
response and suppressed immune response in patients 
with sepsis and septic shock. The nine key genes that we 
identified may be useful for diagnosing sepsis and mon-
itoring its development, while their specific functions and 
mechanisms in the disease need further study. Indeed, 
further experimental analysis is needed to validate our 
major results.
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