
GigaScience, 8, 2019, 1–12

doi: 10.1093/gigascience/giz118
Technical Note

TE CHNICAL NO TE

SwiftOrtho: A fast, memory-efficient, multiple genome
orthology classifier
Xiao Hu1,2 and Iddo Friedberg 1,*

1Department of Veterinary Microbiology and Preventive Medicine, 2118 Veterinary Medicine, College of
Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA and 2Present address: Gianforte School of
Computing, 357 Barnard Hall Montana State University, Bozeman, MT, 59717 USA.
∗Correspondence address. Iddo Friedberg, Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State
University, Ames, IA, USA. E-mail: idoerg@iastate.edu http://orcid.org/0000-0002-1789-8000

Abstract

Background: Gene homology type classification is required for many types of genome analyses, including comparative
genomics, phylogenetics, and protein function annotation. Consequently, a large variety of tools have been developed to
perform homology classification across genomes of different species. However, when applied to large genomic data sets,
these tools require high memory and CPU usage, typically available only in computational clusters. Findings: Here we
present a new graph-based orthology analysis tool, SwiftOrtho, which is optimized for speed and memory usage when
applied to large-scale data. SwiftOrtho uses long k-mers to speed up homology search, while using a reduced amino acid
alphabet and spaced seeds to compensate for the loss of sensitivity due to long k-mers. In addition, it uses an affinity
propagation algorithm to reduce the memory usage when clustering large-scale orthology relationships into orthologous
groups. In our tests, SwiftOrtho was the only tool that completed orthology analysis of proteins from 1,760 bacterial
genomes on a computer with only 4 GB RAM. Using various standard orthology data sets, we also show that SwiftOrtho has
a high accuracy. Conclusions: SwiftOrtho enables the accurate comparative genomic analyses of thousands of genomes
using low-memory computers. SwiftOrtho is available at https://github.com/Rinoahu/SwiftOrtho

Keywords: orthology analysis; homology search; orthology inference; clustering; orthologs; paralogs

Background

Gene homology type classification consists of identifying par-
alogs and orthologs across species. Orthologs are genes that
evolved from a common ancestral gene following speciation,
while paralogs are genes that are homologous owing to dupli-
cation. Paralogs can be further classified into in-paralogs, which
evolved via gene duplication before the speciation event, and
out-paralogs, which evolved via gene duplication after the speci-
ation event [1]. Classifying orthologs and paralogs across species
is an important problem because the evolutionary history of
genes has implications for our understanding of gene function
and evolution.

While the proper inference of homology type involves tracing
gene history using phylogenetic trees [2], several proxy methods

have been developed over the years. The most common method
to infer orthologs by proxy is reciprocal best hits (RBH) [3, 4].
Briefly, RBH states the following: when 2 proteins that are en-
coded by 2 genes, each in a different genome, find each other as
the best-scoring match among all homologs, they are considered
to be orthologs [3, 4].

InParanoid extends the RBH orthology relationship to in-
clude both orthologs and in-paralogs. Specifically, InParanoid
uses RBH to identify orthologs between 2 species. The genes
in the 2 species are classified as in-paralogs if they are more
similar to the corresponding ortholog than to any gene in the
other species [5–7]. The concept of orthologous pairs between
2 species can be extended to an ”ortholog group,” which is a
set of genes that are hypothesized to have descended from a

Received: 13 February 2019; Revised: 7 June 2019; Accepted: 5 September 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-1789-8000
mailto:idoerg@iastate.edu
http://orcid.org/0000-0002-1789-8000
http://orcid.org/0000-0002-1789-8000
https://github.com/Rinoahu/SwiftOrtho
http://creativecommons.org/licenses/by/4.0/


2 SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

Figure 1 Flow chart of SwiftOrtho. SwiftOrtho is a graph-based method that
consists of 3 major steps. (i) All-vs-all homology search: a seed-and-extension
method is used to perform a homology search. (ii) Orthology inference: nodes
are gene names; edges are similarity score of pairwise genes. 1. A1-B1 are pu-

tative orthologs identified by RBH; 2. A1-A2 and B1-B2 are putative in-paralogs
because the bit scores of these pairs are greater than A1-B1; 3. A2-B1 and A2-B2

are putative co-orthologs because these pairs are not orthologs but A1-B1 are or-
thologs and A1-A2, B1-B2 are in-paralogs. (iii) Cluster analysis: Markov clustering

or affinity propagation algorithm is used to cluster orthology relationships.

common ancestor [7]. Several methods have been developed to
identify ortholog groups across multiple species, typically clas-
sified as either tree-based or graph-based methods. Tree-based
methods construct a gene tree from an alignment of homolo-
gous sequences in different species and infer orthology rela-
tionships by reconciling the gene tree with its corresponding
species tree [2, 8, 9] and can infer a correct orthology relation-
ship if the correct gene tree and species tree are provided [10].
The chief limiting factor of tree-based methods is the accuracy of
the given gene tree and species tree. Erroneous trees lead to in-
correct ortholog and in-paralog assignments [9–11]. Tree-based
methods are also computationally expensive, which limits the
ability to apply them to a large number of species [10, 12–14].
Graph-based methods infer orthologs and in-paralogs from ho-
mologs and then use different strategies to cluster them into or-
thologous groups [9, 12, 13] (Fig. 1). The Clusters of Orthologous
Groups (COG) database detects triangles of RBHs in 3 different
species and merges the triangles with a common side [15]. Or-
thologous Matrix (OMA) clusters RBHs in orthologous groups by
finding maximum weight cliques from the similarity graph [16,
17]. MultiParanoid is an extension of InParanoid, which uses In-
Paranoid to detect triangle orthologs and in-paralogs in 3 dif-
ferent species as seeds and then merges the seeds into larger
groups [18]. OrthoMCL also uses InParanoid to detect orthologs,
co-orthologs, and in-paralogs between 2 species [19, 20] and then
uses Markov clustering (MCL) [21] to cluster these relationships
into orthologous groups, where the co-orthologs are ≥2 genes
in 1 species that are orthologous to ≥1 genes in another species
due to a gene duplication event [1, 22].

Finally, there are hybrid methods that combine both graph-
based and tree-based methods [12, 23–26]. Typically, hybrid
methods first perform all-vs-all sequence alignment, then con-
struct gene families by sequence similarity or conserved gene
neighborhood. EnsEMBL first uses RBH to find the gene fami-

lies, then constructs a phylogenetic gene tree for each gene fam-
ily [24]. Finally, each gene tree is reconciled with the species tree
to infer paralogs and orthologs.

In theory, graph-based methods are less accurate than tree-
based methods because the former identify orthologs and in-
paralogs using proxy methods rather than directly inferring ho-
mology type from gene and species evolutionary history. How-
ever, graph-based methods have been found to be comparably
accurate to tree-based methods [10, 11, 27]. Moreover, a com-
parison of several methods found that tree-based methods had
an even worse performance than graph-based methods on large
data sets [11].

One study compared several common methods, including
simple RBH, graph-based, tree-based, and hybrid methods, and
found that the tree-based methods of InParanoid and OrthoMCL
exhibit the best balance of sensitivity and specificity [28]. Several
studies have also shown that graph-based methods find a bet-
ter trade-off between specificity and sensitivity than tree-based
methods [11, 28, 29]. For these reasons, graph-based methods
are generally preferred for analyzing large-scale data sets. Or-
thoMCL and InParanoid have been applied to analyze hundreds
of genomes; at the same time, they require considerable compu-
tational resources that may not be readily available [20, 30]. More
recently, several graph-based tools, such as SonicParanoid, OMA,
and ProteinOrtho [17, 31, 32], have been developed to speed up
orthology analysis on large-scale data sets. These tools also tend
to require high-performance computers with large memory to
analyze large-scale data.

Here we present SwiftOrtho, a fast method for orthol-
ogy classification that makes minimal use of computational
resources, especially memory. SwiftOrtho uses a seed-and-
extension method to speed up homology search, a binary search
method and RBH rule to infer orthologs and in-paralogs, and
the affinity propagation algorithm to reduce memory usage
in cluster analysis. We compare SwiftOrtho with several ex-
isting graph-based tools using the gold standard data set Or-
thobench [13], and the Quest for Orthologs service [33]. Using
both benchmarks, we show that SwiftOrtho provides a high ac-
curacy with lower CPU and memory usage than other graph-
based methods. SwiftOrtho is the only tool that completed an
orthology analysis of 1,760 bacterial genomes on a very low-
memory computer. With the growing number of genomes, es-
pecially microbial genomes, we see SwiftOrtho to be a tool of
choice for a fast and accurate ortholog classification, while re-
quiring low computational resources, as are found in conven-
tional desktop or laptop computers.

Application of SwiftOrtho
Data sets

We applied SwiftOrtho to 3 data sets to evaluate its predictive
quality and performance:

(1) The Euk set was used to evaluate the quality of predicted
orthologous groups. This set contains 420,415 protein se-
quences from 12 eukaryotic species, including Caenorhabditis
elegans, Drosophila melanogaster, Ciona intestinalis, Danio rerio,
Tetraodon nigroviridis, Gallus gallus, Monodelphis domestica, Mus
musculus, Rattus norvegicus, Canis familiaris, Pan troglodytes,
and Homo sapiens. The protein sequences for these genes
were downloaded from EMBL v65 [34].

(2) The QfO 2011 set was used to evaluate the quality of pre-
dicted orthology relationships. This set was the reference



First et al. 3

proteome data set (2011) of The Quest for Orthologs [33],
which contains 754,149 protein sequences of 66 species.

(3) The large Bac set was used to evaluate performance, includ-
ing CPU time, real time, and RAM usage. This set includes
5,950,817 protein sequences from 1,760 bacterial species. The
protein sequences were downloaded from GenBank [35]. For
a full list see [64], file: readme.txt. .

We also compared SwiftOrtho with several existing orthology
analysis tools for predictive quality and performance. The meth-
ods compared were OrthoMCL (v2.0), FastOrtho, OrthAgogue,
and OrthoFinder.

Orthology analysis pipeline

The pipeline for all the tools follows the standard steps of graph-
based orthology prediction, (i) all-vs-all homology search, (ii) or-
thology inference, and (iii) cluster analysis.

Homology search
SwiftOrtho used its built-in module to perform all-vs-all homol-
ogy search. For all 3 sets, the E-value was set 10−5. The amino
acid alphabet was set to the regular 20 amino acids for the 3
sets. The spaced seed parameter was set to ”1011111,11111” for
the Euk, ”11111111” for the QfO 2011, and ”111111” for Bac.

OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder use
BLASTP (v2.2.27+) [36] to perform all-vs-all homology search.
The first 3 tools require the user to do this manually. To compare
the methods, the -e (e-value), -v (number of database sequences
to show one-line descriptions), and -b (number of database se-
quence to show alignments) parameters of BLASTP were set
to 10−5, 1,000,000, and 1,000,000 for OrthoMCL, FastOrtho, and
OrthAgogue. The OrthoFinder calls BLASTP, and the e-value of
BLASTP has been set to 10−3.

Orthology inference
SwiftOrtho, OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder
were applied to perform orthology inference on the homologs.
The first 4 tools are able to identify (co-)orthologs and in-
paralogs, and the coverage (fraction of aligned regions) was set
to 50%, while other parameters were set to their default values
(see Supplementary Materials section 4.2. for full details).

FastOrtho does not report (co-)orthologs and in-paralogs di-
rectly. However, the relevant information is stored in an inter-
mediate file, from which we have extracted that information.
Orthofinder does not report orthology relationships.

Cluster analysis
All the tools in this study use MCL [21] for clustering. To control
the granularity of the clustering, MCL performs an inflation op-
eration set by the -I option [21, 37]. In this study, -I was set to
1.5. To take advantage of multiprocessor capabilities, we set the
thread number of MCL to 12. SwiftOrtho has an alternative clus-
tering algorithm (Affinity Propagation Cluster [APC]), which we
have also applied to Euk and Bac.

Evaluation of prediction quality

Evaluation of predicted orthologous groups
The OrthoBench set was used to evaluate the quality of pre-
dicted orthologous groups in Bac. This set contains 70 manu-
ally curated orthologous groups of the 12 species from Bac and
has been used as a high-quality gold standard benchmark set
for orthologous group prediction [13]. We used OrthoBench v2

(Supplementary Table S1). Each manually curated group of the
OrthoBench v2 set finds the best match in the predicted orthol-
ogous groups, where the best match means that the number
of genes shared between manually curated and predicted or-
thologs is maximized, and the method to calculate precision and
recall is shown in Supplementary Figure S1.

Evaluation of predicted orthology relationships
The Quest of Orthologs web-based service (QfO) was used to
evaluate the quality of the orthology relationships predicted
from the QfO 2011 set [33]. The QfO service evaluates the pre-
dictive quality by performing 4 phylogeny-based tests, Species
Tree Discordance Benchmark, Generalized Species Tree Dis-
cordance Benchmark, Agreement with Reference Gene Phylo-
genies: SwissTree, and Agreement with Reference Gene Phy-
logenies: TreeFam-A, and 2 function-based tests, Gene Ontol-
ogy conservation test and Enzyme Classification conservation
test [33].

We also applied two more orthology prediction tools, Sonic-
Paranoid [31] and InParanoid (v4.1) [5], on the QfO 2011 set and
used their results as control because InParanoid has the best per-
formance among the results from the QfO service website and
SonicParanoid is a fast implementation of InParanoid. The pair-
wise orthology relationships were extracted from the predicted
orthologous groups of all the tools, including SonicParanoid and
InParanoid, and then submitted to the QfO web service for fur-
ther evaluation.

Hardware

Unless specified otherwise, all tests were run on the Condo clus-
ter of Iowa State University with Intel Xeon E5-2640 v3 at 2.60
GHz, 128 GB RAM, 28 TB free disk. The Linux command ”time
-v” was used to track CPU and peak memory usage.

Findings

We compared the orthology analysis performance of SwiftOrtho,
OrthoMCL, FastOrtho, OrthAgogue, and OrthFinder using Euk,
QfO 2011, and Bac. The orthology analysis consisted of homol-
ogy search, orthology inference, and cluster analysis.

Orthology analysis on Euk

The results of orthology analysis on Euk are summarized in
Table 1 and are elaborated upon below.

Homology search
The homology search results show that BLASTP detected the
largest number of homologs, 947,203,546. SwiftOrtho found
57.50% of the homologs detected by BLASTP but was 38.7 times
faster than BLASTP. SwiftOrtho used longer k-mers, which re-
duced both specific and non-specific seed extension. The longer
k-mers cause seed-and-extension methods to ignore sequences
with low similarity. According to the RBH rule, orthologs should
have higher similarity than non-orthologs, so the decrease in
homolgs of SwiftOrtho does not significantly affect the next or-
thology inference.

We compared RBHs inferred from homologs detected by
BLASTP and SwiftOrtho, and the numbers of RBHs for BLASTP
and SwiftOrtho were 899,473 and 957,387, respectively. Identi-
cal RBHs were 767,884 (85.37% of BLASTP). These results show
that although SwiftOrtho found fewer homologs than BLASTP,
it did not significantly reduce the number of RBHs. The fol-



4 SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

Table 1. Comparative orthology analysis on the Euk set

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology search Method SwiftOrtho built-in BLASTP

Hits 162,695,330 947,203,546 654,792,861

Unique Hits 162,695,330 297,107,872 266,104,611

Orthology
inference

(Co-)orthologs 1,422,920 8,279,424 3,297,613 1,265,553 N/A

In-paralogs 631,033 2,517,166 2,546,296 759,989 N/A

Clustering Algorithm MCL APC MCL

Orthologous Groups 44,551 38,748 36,901 40,943 51,297 19,904

APC: Affinity Propagation Cluster; MCL: Markov clustering; N/A: not available.

lowing results in Fig. 3 also show that there is no significant
difference between SwiftOrtho and BLASTP in predicting or-
thologous groups. Homology searches against a large number
of protein sequences are a major bottleneck in bioinformatics
pipelines. For that reason, many tools have been developed to
speed up this process including, among others, BLAT, Usearch,
LAST, DIAMOND, and Topaz [38–42]. All these tools use longer
k-mers than BLASTP to speed up performance. We also com-
pared SwiftOrtho with them in speed and sensitivity (Supple-
mentary Table S9). Because BLASTP is widely considered the
gold standard for comparing protein sequences, we use its re-
sults as the benchmark to evaluate the sensitivity of other ho-
mology search tools. We found Usearch and LAST to be the
fastest; however, they only found 0.88% and 2.97% of BLASTP’s
hits, respectively. Topaz and BLAT used the most CPU time but
found only 33.48% and 28.34% of the BLASTP hits, respectively.
SwiftOrtho and DIAMOND (more sensitive mode) had the high-
est sensitivity and found 52.72% and 58.30% of the BLASTP hits
in a moderate amount of time, respectively. These results show
that SwiftOrtho delivers a good trade-off between speed and
sensitivity.

Orthology inference
OrthoMCL and FastOrtho found more orthology relationships
than SwiftOrtho and OrthAgogue. This is because OrthoMCL and
FastOrtho use the negative log ratio of the e-value as the edge-
weighting metric. The BLASTP program rounds e-value <10−180

to 0. Consequently, for homolgs with an e-value <10−180, Or-
thoMCL and FastOrtho treat them as the RBHs, overestimating
the number of orthologs. An example showing the OrthoMCL
and FastOrtho overestimation can be found in Table S4.

Use of computational resources
OrthoMCL v2.0 used the most CPU time and real time because
of the required input/output (I/O) operations. The RAM usage of
OrthoMCL was 3.45 GB, while the generated intermediate file oc-
cupied >19 TB of disk space. OrthAgogue was the most efficient
in real time, because of its ability to exploit a multi-core proces-
sor. However, the RAM usage of OrthAgogue was >100 GB, which
exceeds that of common workstations and many servers. The
orthology inference module of FastOrtho was the most memory
efficient among all the tools and was also fast. SwiftOrtho was
the most CPU time efficient, although its real time was twice as
that of OrthAgogue. Because the orthology inference module of

SwiftOrtho was written in pure Python, we retested it by using
the PyPy interpreter, an alternate implementation of Python [43].
When running with PyPy the real run time of SwiftOrtho was
close to that of OrthAgogue (Table S5).

Cluster analysis
OrthoFinder identified the smallest number of orthologous
groups. Other tools identified many more orthologous groups
than OrthoFinder, ranging from 36,901 to 51,297. The APC algo-
rithm found fewer clusters than the MCL algorithm.

Evaluation of predicted orthologous groups
The quality of predicted orthologous groups is shown in Fig. 2.
OrthoFinder had the best recall, while SwiftOrtho and Or-
thAgogue had top precision values but lower recall values
than other tools. Because SwiftOrtho and OrthAgogue use
a more stringent standard to perform orthology inference,
this strategy often increases precision but decreases recall
[11, 28, 29].

Because SwiftOrtho uses its built-in homology search mod-
ule and its recall is lower than BLASTP’s, it may reduce the recall
of orthologous groups. To address this problem, we made 2 re-
placements. We replaced SwiftOrtho’s homology module with
BLASTP for SwiftOrtho and replaced BLASTP with SwiftOrtho’s
homology module for OrthoMCL, FastOrtho, OrthAgogue, and
OrthoFinder. We then reran the orthology analysis on Euk.
The results show that for most tools, replacing BLASTP with
SwiftOrtho’s built-in homology search module does not signifi-
cantly reduce the recall (Fig. 3). The difference in recall between
using SwiftOrtho’s homology search and using BLASTP is <4%
except for OrthoMCL and FastOrtho. The recall for OrthoMCL and
FastOrtho decreased by 8% and 7%, respectively. The most likely
reason is that the E-value of SwiftOrtho’s homology search mod-
ule is more precise than that of BLASTP, which reduces the false
RBHs as mentioned above. These results show that SwiftOrtho’s
homology search module is a reliable and fast alternative to
BLASTP.

To test the differences exhibited by the clustering compo-
nent of SwiftOrtho, we ran SwiftOrtho with MCL and APC on
the same data. The results (Fig. 4) show that the performance
of APC is close to that of MCL. APC improves the recall of most
tools (Fig. 4). These results show that APC has a performance
similar to that of the MCL algorithm and is a reliable alternative
to MCL.



First et al. 5

Figure 2 Evaluation of predicted orthologous groups. Evaluation of different tools on OrthoBench database. SO+MCL: SwiftOrtho with MCL; SO+APC: SwiftOrtho with

Affinity Propagation Clustering; OM: OrthoMCL v2; FO: FastOrtho; OA: OrthAgogue; OF: OrthoFinder.

Precision

Figure 3 Comparing BLASTP and SwiftOrtho’s homology search module on the quality of orthologous group prediction. BLASTP and SwiftOrtho’s search module

performed an all-vs-all search on the Euk set, respectively. Then, all the orthology prediction tools were used for orthology inference. Finally, the predicted orthology
relationships were clustered into orthologous groups by MCL algorithm.

Orthology analysis on QfO 2011

The results of the orthology analysis on QfO 2011 are presented
in Table 2 and elaborated below.

Homology search
SwiftOrtho found 183,883,417 unique hits while BLASTP found
462,876,579 unique hits. However, SwiftOrtho was ∼163 times
faster than BLASTP.



6 SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

Figure 4 Markov clustering (MCL) versus Affinity Propagation Clustering (APC). Both algorithms were applied to cluster the orthology relationships of the Euk set
inferred by different orthology prediction tools into orthologous groups. Because OrthoFinder does not report orthology relationships, the affinity propagation cannot

be applied to its results.

Table 2. Comparative orthology analysis on the Quest for Orthologs reference proteome 2011 data set.

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology search Method SO built-in BLASTP

Hits 183,883,417 642,372,369 935,579,809

Unique Hits 183,883,417 317,333,885 462,876,579

Orthology inference (Co-)orthologs 2,209,243 3,743,779 2,588,851 2,716,128 N/A

In-paralogs 6,929,058 11,427,118 13,649,582 13,694,208 N/A

Clustering Algorithm MCL

Orthologous groups 60,418 50,970 55,530 50,203 166,217

MCL: Markov clustering; APC: Affinity Propagation Cluster; N/A: not available.

Orthology inference
OrthoMCL found many more orthologs and co-orthologs than
the other tools. SwiftOrtho found fewer in-paralogs than other
available tools. The CPU time of SwiftOrtho was the least of
all tools. When the PyPy interpreter was used, the real time of
SwiftOrtho was also close to that of the fastest one, OrthAgogue
(Supplementary Table S6).

Cluster analysis
Overall, the clustering numbers of SwiftOrtho, OrthoMCL, Fas-
tOrtho, and OrthAgogue were similar. However, the number of
clusters found by OrthoFinder was 3 times that of other tools,
and the next evaluation also shows that OrthoFinder performed
poorly on QfO 2011.

Evaluation of predicted ortholog relationships
The evaluation shows that the performance of SwiftOrtho was
close to that of InParanoid (Fig. 5). In some tests (Fig. 5D–
E), SwiftOrtho outperformed InParanoid. SwiftOrtho had the
best performance in the Generalized Species Tree Discordance
Benchmark and Agreement with Reference Gene Phylogenies:
TreeFam-A tests. In the Species Tree Discordance Benchmark,
SwiftOrtho had the minimum Robinson-Foulds distance. In the
Enzyme Classification (EC) conservation test, SwiftOrtho had the

maximum Schlicker similarity. These 2 metrics reflect the ac-
curacy of the algorithm, and the results show that SwiftOrtho
has an overall higher accuracy than the other tools. At the same
time, the recall of SwiftOrtho was lower in some of the QfO tests,
the main reason being that SwiftOrtho uses a stringent metric
system to identify orthology relationships.

Orthology analysis on Bac

The results of orthology analysis on Bac are summarized in
Table 3.

Homology search
SwiftOrtho detected 8,966,131,536 homologs in the Bac set
within 1,247 CPU hours.

Because it takes a long time to perform all-vs-all BLASTP
search on the full Bac, we randomly selected 1,000 protein se-
quences from Bac and used them to search against the full
Bac set. It took BLASTP 5.1 CPU hours to find the homologs
of these 1,000 protein sequences. We infer that the estimated
CPU time of BLASTP on the full Bac set should be ∼30,000
CPU hours. SwiftOrtho was almost 25 times faster than BLASTP
on Bac.



First et al. 7

A B

C D

E F

Figure 5 Benchmarking in Quest for Orthologs. (A) Species Tree Discordance Benchmark. InParanoid had the minimum average Robinson-Foulds distance. SwiftOrtho’s
average RF distance was close to that of InParanoid. The prediction inferred by OrthoFinder was not available for this test. (B) Generalized Species Tree Discordance

Benchmark. InParanoid had the minimum average Robinson-Foulds distance. The prediction inferred by OrthoFinder was not available for this test. (C) Agreement with
the Reference Gene Phylogenies of SwissTree. SwiftOrtho had the highest positive prediction value rate (recall). InParanoid had the highest true-positive rate (precision).
(D) Agreement with Reference Gene Phylogenies of TreeFam-A. SonicParanoid had the highest positive prediction value rate (recall); however, its true-positive rate
(precision) was close to zero. SwiftOrtho had the second highest recall and precision. (E) Gene Ontology conservation test. OrthoMCL had the highest average Schlicker

similarity. (F) Enzyme Classification conservation test. SwiftOrtho had the highest average Schlicker similarity. OrthoMCL detected the most orthology relationships
and had the highest recall.

Orthology inference
SwiftOrtho, OrthoMCL, FastOrtho, and OrthAgogue were used to
infer (co-)orthologs and in-paralogs from the homologs detected
by the homology search module of SwiftOrtho in the Bac set.
We did not test Orthofinder because Orthofinder does not accept
a single file of homologs as input. For the 1,760 proteomes in
Bac, OrthoFinder needs to perform 3,097,600 pairwise species-
by-species comparisons, which will generate the same number
of files. Then, OrthoFinder performs the orthology inference on
these 3,097,600 files. Even at 1 minute per file, it will take an
estimated 6 CPU years to process all the files.

Due to memory limitations, only SwiftOrtho and FastOrtho
finished the orthology inference on Bac. The results are provided
in Table 3. The numbers of (co-)orthologs and in-paralogs in-
ferred by SwiftOrtho and FastOrtho were similar. The number of

common orthology relationships between SwiftOrtho and Fas-
tOrtho was 861,619,519 (98.2% of SwiftOrtho and 90.6% of Fas-
tOrtho). Compared with Euk, SwiftOrtho and FastOrtho had a
similar predictive quality on Bac. There are 3 possible explaina-
tions for these results. The first is that Euk contains many pro-
tein isoforms that cause FastOrtho to overestimate the number
of orthologs and in-paralogs. The second is that the gene du-
plication rate in macteria is lower than that in eukaryotes [44,
45]. For Bac, each gene in 1 species has only a small number of
homologs in other species, which makes FastOrtho unlikely to
overestimate the number of RBHs. The third is that SwiftOrtho
uses double-precision floating-point to store the e-value, which
increases the precision of the e-value from 10−180 to 10−308. This
improvement also reduces the possibility that FastOrtho may re-
port false RBHs.



8 SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

Table 3. Comparative orthology analysis on the Bac set

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology search Method SO built-in N/A

Hits 8,478,732,753 N/A

Unique Hits 8,478,732,753 N/A

Orthology inference (Co-)orthologs 876,766,940 N/A 950,683,849 N/A N/A

In-paralogs 622,292 N/A 663,052 N/A N/A

Clustering Algorithm MCL APC MCL

Orthologous groups 240,162 167,355 N/A 242,816 N/A N/A

MCL: Markov clustering; APC: Affinity Propagation Cluster; N/A: not available.

Computational resource use varied: of the programs tested,
only SwiftOrtho and FastOrtho finished the orthology inference
step. FastOrtho and OrthAgogue did not finish the tests ow-
ing to insufficient RAM; OrthoMCL aborted after running out of
disk space because it needed >18 TB. The peak RAM usage of
SwiftOrtho and FastOrtho was 90.6 and 99.5 GB, respectively.
When we used the PyPy interpreter, the peak RAM usage of
SwiftOrtho was reduced to 72.1 GB. FastOrtho was ∼1.52 times
faster than SwiftOrtho, which ran the tests in the CPython
interpreter. When using the PyPy interpreter, SwiftOrtho ran
1.58 times faster than FastOrtho. The memory usage and CPU
time are reported in Table S7.

Cluster analysis
The clustering numbers of SwiftOrtho and FastOrtho were sim-
ilar. We compared the APC algorithm and the MCL algorithm,
and APC found fewer clusters than MCL. The APC used much
less memory and less CPU time than MCL. However, owing to
the lack of support for multi-threading and a large number of
I/O operations, the real run time of APC is longer than that of
MCL.

Tests on a low-memory system
Because SwiftOrtho is designed to process large-scale data on
low-memory computers, we used it to analyze Bac on a range of
computers with different specifications.

The results show that the memory usage of SwiftOrtho is
flexible and adapts to the size of the computer’s memory. In the
tests, SwiftOrtho finished an orthology analysis of the Bac set on
a computer with only 4 GB RAM in a reasonable time (Table S8).

Comparison with other orthology analysis pipelines

SonicParanoid, OMA, and ProteinOrth are also graph-based
methods and have been optimized for large-scale data sets [17,
31, 32]. We compared SwiftOrtho with these tools in both speed
and memory usage. The results are presented in Table S10. OMA
seems to be the slowest because it uses the Smith-Waterman
algorithm to perform all-vs-all alignment. In our tests, OMA
took 0.84 CPU hours to align 2 species (4,064 and 4,140 genes)
of the Bac set. For the Bac set, OMA needs to perform 3,097,600
species-by-species alignments and the total time will be >2
million CPU hours. SonicParanoid worked well on the Euk and
QfO 2011 sets. Compared with SwiftOrtho, SonicParanoid ran
faster and required less RAM on small data sets. However, it ex-
ited abnormally when applied to the large Bac set. Proteinortho

also worked well on the Euk and QfO 2011 sets. When ap-
plied to the Bac set, Proteinortho needed to perform 1,547,920
species-by-species proteome alignments. It took Proteinortho
186.5 CPU hours, using DIAMOND, to complete 23,331 (1.5%)
alignments; we therefore estimate that Proteinortho will take
∼12,355 CPU hours to finish a full homology search. Because
LAST is much faster than DIAMOND, we reran Proteinortho on
the Bac set, using LAST for homology search. The CPU time for
LAST on the Bac set was 2,368 hours. Although the previous
results (Supplementary Table S9) show that LAST is ∼20 times
faster than SwiftOrtho, LAST required much more CPU time than
SwiftOrtho in the all-vs-all homology search step. We think it
is because the species-by-species alignment approach requires
>1.5 million I/O operations, which significantly reduces the
speed. The CPU utilization of orthology inference and clustering
of Proteinortho was very low (<10%) when applied to the Bac set,
which led to an exceptionally long real time run (>150 hours).
The reason for this exceptionally long run time is because Pro-
teinortho occupied ∼85% of physical memory when applied to
large-scale data, which resulted in frequent data exchange be-
tween RAM and swap space and greatly reduced the speed. In
sum, these results show that SwiftOrtho is a top performer on
large-scale data.

Discussion

We present SwiftOrtho, a new high-performance graph-based
homology classification tool. Unlike most tools that only per-
form orthology inference, SwiftOrtho integrates all the mod-
ules necessary for a full orthology analysis, including homology
search, orthology inference, and cluster analysis. SwiftOrtho is
designed to analyze large-scale genomic data on a normal desk-
top computer in a reasonable time. In our tests, SwiftOrtho’s
homology search module was nearly 30 times faster than
BLASTP. The orthology inference module of SwiftOrtho was
nearly 500 times faster than OrthoMCL when applied to Euk.
When applied to the large-scale data set, Bac, SwiftOrtho was
the only program that finished the orthology inference test on a
workstation with 32 GB RAM. The cluster module of SwiftOrtho
using APC can handle data that are much larger than the avail-
able RAM. In our test, APC had comparable recall and accuracy
but required considerably less memory than MCL. It should be
noted that APC improved the F1-measure score by increasing re-
call in most cases. With the help of these optimized modules,
SwiftOrtho has successfully finished an orthology analysis of
proteins from 1,760 bacterial genomes on a machine with only 4



First et al. 9

GB RAM, which makes SwiftOrho usable for large-scale analyses
for researchers who may not have access to expensive compu-
tational resources. SwiftOrtho is not only fast but also accurate,
as shown in the results produced when running on orthobench
and QfO [13, 33].

Potential Implications

In summary, SwiftOrtho is a fast and accurate orthology predic-
tion tool that can analyze a large number of sequences with min-
imal computational resource use. The installation and configu-
ration of SwiftOrtho is simple and does not require the user to
have any experience in database configuration. It is easy to use
because the only input required by SwiftOrtho is a FASTA for-
mat file of protein sequences with taxonomy information in the
header line. SwiftOrtho can be integrated into various common
pipelines where fast orthology classification is required such
as pan-genome analysis, large-scale phylogenetic tree construc-
tion, and other multi-genome analyses. It is specifically suited
for microbial community analyses, where a large number of se-
quences and species are involved.

Methods
Algorithms

Here we outline the homology search, orthology inference, and
clustering as implemented in SwiftOrtho.

Homology search
SwiftOrtho uses a seed-and-extension algorithm to find homol-
ogous gene pairs [46, 47]. At the seed phase, SwiftOrtho finds
candidate target sequences that share common k-mers with
the query sequence. k-mer size is an important factor that af-
fects search sensitivity and speed [38, 48]. SwiftOrtho therefore
uses long (≥6) k-mers to accelerate search speed. At the same
time, k-mer length is negatively correlated with sensitivity [38].
To compensate for the loss of sensitivity caused by increasing
the k-mer size, SwiftOrtho uses 2 approaches: non-consecutive
k-mers and reduced amino acid alphabets. Non-consecutive k-
mer seeds (known as spaced seeds) were introduced in Pattern-
Hunter [19, 49]. The main difference between consecutive seeds
and spaced seeds is that the latter allow mismatches in align-
ment. For example, the spaced seed 101101 allows mismatches
at positions 2 and 5. The total number of matched positions in a
spaced seed is known as the weight, so the weight of this seed
is 4. A consecutive seed can be considered as a special case of
spaced seed in which its weight equals its length. Spaced seeds
often provide a better sensitivity than consecutive seeds [49, 50].
Several tools such as PatternHunter, Usearch, LAST, and DIA-
MOND [19, 39–41, 49] have used spaced seed to increase sen-
sitivity. PatternHunter and Usearch allow users to use custom
spaced seed. The default spaced seed patterns of SwiftOrtho are
1110100010001011, 11010110111—two spaced seeds with weight
of 8—but the user can define their own spaced seeds. Seed pat-
terns were optimized using SpEED [50] and manual inspection.
The choice of the spaced seeds and default alphabet are elab-
orated upon in the Methods section and in the Supplementary
Materials sections 2.1 and 3.. At the extension phase, SwiftOrtho
uses a variation of the Smith-Waterman algorithm [51], the k-
banded Smith-Waterman or k-SWAT, which only allows for k
gaps [52]. k-SWAT fills a band of cells along the main diagonal
of the similarity score matrix (Figure 6B), and the complexity of
k-SWAT is reduced to O[k · min(n, m)], where k is the maximum
allowed number of gaps.

Reduced alphabets are used to represent protein sequences
using an alternative alphabet that combines several amino acids
into a single representative letter, based on common physico-
chemical traits [53–55]. Compared with the original alphabet
of 20 amino acids, reduced alphabets usually improve sensi-
tivity [56, 57]. At the same time, reduced alphabets also intro-
duce less specific seeds than the original alphabet, reducing the
search speed.

Orthology inference
The orthology inference step in Fig. 1 shows the algorithm to in-
fer orthologs and in-paralogs from homologs: gene A1 in genome
A and B1 in genome B are considered to be orthologs according to
the RBH rule. If the bit score between gene A1 and A2 in genome
A is higher than that between A1 and all its orthologs in other
genomes, A1 and A2 are considered in-paralogs in genome A. If
A1 in genome A and B1 in genome B are orthologs, in-paralogs of
A1 and B1 are co-orthologs. Because orthology inference requires
many queries, it is better to store the data in a way that facili-
tates fast querying. First, SwiftOrtho sorts the data and stores
it in the file system. Then, it uses binary search to query the
sorted data, dramatically reducing memory usage when com-
pared with a relational database management system or a hash
table. With the help of this query system, SwiftOrtho can process
data that are much larger than the computer memory.

The inferred relationships are treated as the edges of a graph.
Each edge is assigned a weight for cluster analysis, where using
appropriate edge-weighting metrics can improve the accuracy of
cluster analysis. Gibbons et al. [58] compared the performance
of several BLAST-based edge-weighting metrics and found that
the bit score had the best performance. Therefore, SwiftOrtho
uses the normalized bit score as edge-weighting metric. The
normalization step takes the same approach as OrthoMCL [20].
For orthologs or co-orthologs, the weight of (co-)ortholog (Fig. 1)
A1 in genome A and B1 in genome B is divided by the average
edge-weight of all the (co-)orthologs between genome A and
genome B. For in-paralogs, SwiftOrtho identifies a subset S of all
in-paralogs in genome A, with each in-paralog Ax-Ay in subset
S, Ax or Ay having ≥1 ortholog in another genome. The weight of
each in-paralog in genome A is divided by the mean edge-weight
of subset S in genome A [20].

Clustering orthology relationships into orthologous groups
SwiftOrtho provides 2 methods to cluster orthology relation-
ships into orthologous groups. One is the Markov cluster al-
gorithm (MCL), an unsupervised clustering algorithm based on
simulation of flow in graphs [21]. MCL is fast and robust on small
networks and has been used by several graph-based tools [19,
59–61]. However, MCL may run out of memory when applied to
a large-scale network. To reduce memory usage, we cluster each
individual connected component instead of the whole network
because there is no flow among components [21]. For large and
dense networks a single connected component could still be too
large to be loaded into memory.

For large networks, SwiftOrtho uses an APC algorithm [62].
The APC algorithm finds a set of centers in a network, where the
centers are the actual data points and are called “exemplars.” To
find exemplars, APC needs to maintain 2 matrices: the responsi-
bility matrix R and the availability matrix A. The element Ri, k in
R reflects how well suited node k is to serve as the exemplar for
node i while the element Ai, k in A reflects how appropriate node
i is to choose node k as its exemplar [62]. APC uses Equation (1)
to update R and Equation (2) to update A, where i, k, i′, k′ denote



10 SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

A B

Figure 6 Comparing standard Smith-Waterman with banded Smith-Waterman. A. Similarity score matrix for standard Smith-Waterman. The standard Smith-
Waterman algorithm needs to calculate all the entries. B. Similarity score matrix for banded Smith-Waterman. The banded Smith-Waterman algorithm only needs to
calculate the entries on and near the diagonal.

the node number and Si,k′ denotes the similarity between node
i and node k′.

Ri,k = Si,k − maxk′ �=k{Ai,k′ + Si,k′ }, (1)

Ai,k =
⎧⎨
⎩

min{0, Rk,k + ∑
i ′ �∈{i,k} max{0, Ri ′,k}, if i �= k

∑
i ′ �=k max{0, Ri ′,k}, if i = k

(2)

The node k that maximizes Ai, k + Ri, k is the exemplar of node
i, and each node i is assigned to its nearest exemplar. APC can
update each element of matrix R and A one by one, so it is unnec-
essary to keep the whole matrix of R and A in memory. Generally,
the time complexity of APC is O(N2 · T), where N is the number
of nodes and T is the number of iterations [62]. In this case, the
time complexity is O(E · T), where E stands for edges, which is
the number of orthology relationships, and T is the number of
iterations. We implemented APC in Python, using Numba [63] to
accelerate the numeric-intensive calculation parts.

Availability of Source Code and Requirements

Project Name: SwiftOrtho
Project Home Page: https://github.com/Rinoahu/SwiftOrtho
Operating System(s): SwiftOrtho was tested on GNU/Linux dis-
tribution Ubuntu 16.04 64-bit, but we expect SwitOrtho to work
on most ∗nix systems
Programming Language: Python
Other Requirements: Python 2.7, Python 3.7, PyPy2.7 v7.0 or
higher
License: GPLv3
RRID:SCR 017122

Availability of Supporting Data and Materials

The data sets supporting the results of this article are available
in the GigaDB repository [64].

Additional Files

Supplementary Material S1. Further details on the methodolgy.

Abbreviations

APC: Affinity Propagation Clustering; BLAST: Basic Local Align-
ment Search Tool; BLAT: BLAST-Like Alignment Tool; COG: Clus-

ters of Orthologous Groups; CPU: central processing unit; I/O:
input/output; MCL: Markov clustering; RBH: reciprocal best hit;
OMA: Orthologous Matrix; QFO: Quest for Orthologs; RAM: ran-
dom access memory.

Competing Interests

The authors declare that they have no competing interests.

Funding

This study has been funded, in part, by National Science Foun-
dation award ABI 1458359. The funders had no role in the design
of the study and collection, analysis, and interpretation of data
and in writing the manuscript.

Author information

I.F. is an associate professor at the Department of Veterinary Mi-
crobiology and Preventive Medicine at Iowa State University. He
is also the chair of the Interdepartmental Bioinformatics and
Computational Biology graduate program. X.H. was a postodco-
toral associate at Iowa State University at the time of this work,
and currently is a postdoctoral associate at the Gianforte School
of Computing, Montana State University.

Author’s Contributions

Both authors conceived the study. X.H. wrote the software and
performed the analysis. Both authors wrote the manuscript.

Acknowledgments

The authors acknowledge fruitful discussions with all members
of the Friedberg Laboratory.

References

1. Koonin EV. Orthologs, paralogs, and evolutionary genomics.
Annu Rev Genet 2005;39:309–38.

2. Fitch WM. Distinguishing homologous from analogous pro-
teins. Syst Zool 1970;19(2):99.

https://github.com/Rinoahu/SwiftOrtho
https://scicrunch.org/browse/resources/SCR_017122


First et al. 11

3. Overbeek R, Fonstein M, D’souza M, et al. The use of gene
clusters to infer functional coupling. Genetics 1999;96:2896–
901.

4. Rivera MC, Jain R, Moore JE, et al. Genomic evidence for
two functionally distinct gene classes. Genetics 1998;95:
6239–44.

5. Remm M, Storm CE, Sonnhammer EL. Automatic clustering
of orthologs and in-paralogs from pairwise species compar-
isons. J Mol Biol 2001;314(5):1041–52.

6. O’Brien KP, Remm M, Sonnhammer ELL. Inparanoid: a com-
prehensive database of eukaryotic orthologs. Nucleic Acids
Res 2005;33(Database issue):D476–80.

7. Gabaldón T, Koonin EV. Nat Rev Genet 2013;14(5):360–6.
8. Goodman M, Czelusniak J, Moore GW, et al. Fitting the gene

lineage into its species lineage, a parsimony strategy illus-
trated by cladograms constructed from globin sequences.
Syst Biol 1979;28(2):132–63.

9. Kristensen DM, Wolf YI, Mushegian AR, et al. Brief Bioinform
2011;12(5):379–91.

10. Gabaldón T. Large-scale assignment of orthology: back to
phylogenetics?. Genome Biol 2008;9(10):235.

11. Hulsen T, Huynen MA, de Vlieg J, et al. Benchmarking or-
tholog identification methods using functional genomics
data. Genome Biol 2006;7(4):R31.

12. Kuzniar A, van Ham RCHJ, Pongor S, et al. The quest for
orthologs: finding the corresponding gene across genomes.
Trends Genet 2008;24(11):539–51.

13. Trachana K, Larsson TA, Powell S, et al. Orthology prediction
methods: a quality assessment using curated protein fami-
lies. Bioessays 2011;33(10):769–80.

14. Ward N, Moreno-Hagelsieb G. Quickly finding orthologs as
reciprocal best hits with BLAT, LAST, and UBLAST: how much
do we miss?. PLoS One 2014;9(7): e101850.

15. Tatusov RL, Galperin MY, Natale DA, et al. The COG database:
a tool for genome-scale analysis of protein functions and
evolution. Nucleic Acids Res 2000;28(1):33–6.

16. Roth ACJ, Gonnet GH, Dessimoz C. Algorithm of OMA
for large-scale orthology inference. BMC Bioinformatics
2008;9(1):518.

17. Altenhoff AM, Glover NM, Train CM, et al. The OMA or-
thology database in 2018: retrieving evolutionary relation-
ships among all domains of life through richer web and
programmatic interfaces. Nucleic Acids Res 2018;46(D1):
D477–85.

18. Alexeyenko A, Tamas I, Liu G, et al. Automatic clustering
of orthologs and inparalogs shared by multiple proteomes.
Bioinformatics 2006;22(14):e9–15.

19. Li M, Ma B, Kisman D, et al. PatternHunter II: highly sensitive
and fast homology search. Genome Inform 2003;14(3):164–
75.

20. Fischer S, Brunk BP, Chen F, et al. Using OrthoMCL to as-
sign proteins to OrthoMCL-DB groups or to cluster pro-
teomes into new ortholog groups. Curr Protoc Bioinformatics
2011;35(1):6.12.1–19.

21. van Dongen S. Graph clustering by flow simulation. 2000.
Ph.D. Thesis, University of Utrecht.

22. Sonnhammer ELL, Koonin EV. Orthology, paralogy and pro-
posed classification for paralog subtypes. Trends Genet
2002;18(12):619–20.

23. Cannon SB, Young ND. OrthoParaMap: distinguishing or-
thologs from paralogs by integrating comparative genome
data and gene phylogenies. BMC Bioinformatics 2003;4:35.

24. Cutts T, Down T, Dyer SC, et al. Ensembl 2007. Nucleic Acids
Res 2007;35(Database issue):D610–7.

25. Ruan J, Li H, Chen Z, et al. TreeFam: 2008 update. Nucleic
Acids Res 2008;36(Database issue):D735–40.

26. Goodstadt L, Ponting CP. Phylogenetic reconstruction of or-
thology, paralogy, and conserved synteny for dog and hu-
man. PLoS Comput Biol 2006;2(9):e133.

27. Vilella AJ, Severin J, Ureta-Vidal A, et al. EnsemblCompara
GeneTrees: complete, duplication-aware phylogenetic trees
in vertebrates. Genome Res 2009;19(2):327–35.

28. Chen F, Mackey AJ, Vermunt JK, et al. Assessing perfor-
mance of orthology detection strategies applied to eukary-
otic genomes. PLoS One 2007;2(4):e383.

29. Altenhoff AM, Dessimoz C. Phylogenetic and functional as-
sessment of orthologs inference projects and methods. PLoS
Comput Biol 2009;5(1):e1000262.

30. Sonnhammer ELL, Östlund G. InParanoid 8: orthology analy-
sis between 273 proteomes, mostly eukaryotic. Nucleic Acids
Res 2015;43(Database issue):D234–9.

31. Cosentino S, Iwasaki W. SonicParanoid: fast, accurate and
easy orthology inference. Bioinformatics 2019;35(1):149–51.

32. Lechner M, Findeiß S, Steiner L, et al. Proteinortho: detection
of (co-)orthologs in large-scale analysis. BMC Bioinformatics
2011;12:124.

33. Altenhoff AM, Boeckmann B, Capella-Gutierrez S, et al. Stan-
dardized benchmarking in the quest for orthologs. Nat Meth-
ods 2016;13(5):425–30.

34. Curwen V, Eyras E, Andrews TD, et al. The Ensembl auto-
matic gene annotation system. Genome Res 2004;14(5):942–
50.

35. Benson DA. GenBank. Nucleic Acids Res 2000;28(1):15–8.
36. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architec-

ture and applications. BMC Bioinformatics 2009;10:421.
37. Brohée S, van Helden J. Evaluation of clustering algorithms

for protein-protein interaction networks. BMC Bioinformat-
ics 2006;7:488.

38. Kent WJ. BLAT – The BLAST-Like Alignment Tool. Genome
Research 2002;12:656–64.

39. Edgar RC. Search and clustering orders of magnitude faster
than BLAST. Bioinformatics 2010;26(19):2460–1.

40. Kiełbasa SM, Wan R, Sato K, et al. Adaptive seeds tame ge-
nomic sequence comparison. Genome Res 2011;21(3):487–93.

41. Buchfink B, Xie C, Huson DH. Fast and sensitive protein align-
ment using DIAMOND. Nat Methods 2014;12(1):59–60.

42. Medlar A, Holm L. TOPAZ: asymmetric suffix array neigh-
bourhood search for massive protein databases. BMC Bioin-
formatics 2018;19(1):278.

43. Rigo A, Pedroni S. PyPy’s approach to virtual machine con-
struction. In: Proceedings of OOPSLA ’06 Companion to the
21st ACM SIGPLAN Symposium on Object-Oriented Program-
ming Systems, Languages, and Applications, Portland, OR.
New York, NY: ACM;2006:944–53.

44. Bratlie MS, Johansen J, Sherman BT, et al. Gene duplications
in prokaryotes can be associated with environmental adap-
tation. BMC Genomics 2010;11:588.

45. Katju V, Bergthorsson U. Copy-number changes in evolution:
rates, fitness effects and adaptive significance. Front Genet
2013;4:273.

46. Pearson WR, Lipman DJ. Improved tools for biologi-
cal sequence comparison. Proc Natl Acad Sci U S A
1988;85(8):2444–8.

47. Altschul SF, Gish W, Miller W, et al. Basic Local Alignment
Search Tool. J Mol Biol 1990;215(3):403–10.

48. Shiryev SA, Papadopoulos JS, Schäffer AA, et al. Improved
BLAST searches using longer words for protein seeding.
Bioinformatics 2007;23(21):2949–51.



12 SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier

49. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive
homology search. Bioinformatics 2002;18(3):440–5.

50. Ilie L, Ilie S, Khoshraftar S. Seeds for effective oligonucleotide
design. BMC Genomics 2011;12(1):280.

51. Smith TF, Waterman MS. Identification of common molecu-
lar subsequences. J Mol Biol 1981;147(1):195–7.

52. Chao KM, Pearson WR, Miller W. Aligning two se-
quences within a specified diagonal band. Bioinformatics
1992;8(5):481–7.

53. Landès C, Risler JL. Fast databank searching with a re-
duced amino-acid alphabet. Comput Appl Biosci 1994;10(4):
453–4.

54. Murphy LR, Wallqvist A, Levy RM. Simplified amino acid al-
phabets for protein fold recognition and implications for
folding. Protein Eng Des Sel 2000;13(3):149–52.

55. Peterson EL, Kondev J, Theriot JA, et al. Reduced amino
acid alphabets exhibit an improved sensitivity and se-
lectivity in fold assignment. Bioinformatics 2009;25(11):
1356–62.

56. Edgar RC. Local homology recognition and distance mea-
sures in linear time using compressed amino acid alphabets.
Nucleic Acids Res 2004;32(1):380–5.

57. Ye Y, Choi JH, Tang H. RAPSearch: a fast protein sim-
ilarity search tool for short reads. BMC Bioinformatics
2011;12(1):159.

58. Gibbons TR, Mount SM, Cooper ED, et al. Evaluation of
BLAST-based edge-weighting metrics used for homology in-
ference with the Markov Clustering algorithm. BMC Bioinfor-
matics 2015;16:218.

59. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algo-
rithm for large-scale detection of protein families. Nucleic
Acids Res 2002;30(7):1575–84.

60. Emms DM, Kelly S. OrthoFinder: solving fundamental bi-
ases in whole genome comparisons dramatically improves
orthogroup inference accuracy. Genome Biol 2015;16(1):
157.

61. Davis JJ, Gerdes S, Olsen GJ, et al. PATtyFams: protein fami-
lies for the microbial genomes in the PATRIC database. Front
Microbiol 2016;7:118.

62. Frey BJ, Dueck D. Clustering by passing messages between
data points. Science 2007;315(5814):972–6.

63. Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python
JIT compiler. In: Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC, Austin, TX. New York,
NY: ACM; 2015, doi:10.1145/2833157.2833162.

64. Hu X, Friedberg I. Supporting data for “SwiftOrtho: a
fast, memory-efficient, multiple genome orthology classi-
fier.” GigaScience Database 2019. http://dx.doi.org/10.5524/1
00633.

http://dx.doi.org/10.5524/100633

