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Abstract
Bayesian inference is becoming an increasingly popular framework for statistics in the behavioral sciences. However, its
application is hampered by its computational intractability – almost all Bayesian analyses require a form of approximation.
While some of these approximate inference algorithms, such as Markov chain Monte Carlo (MCMC), have become well
known throughout the literature, other approaches exist that are not as widespread. Here, we provide an introduction to
another family of approximate inference techniques known as Sequential Monte Carlo (SMC). We show that SMC brings a
number of benefits, which we illustrate in three different examples: linear regression and variable selection for depression,
growth curve mixture modeling of grade point averages, and in computational modeling of the Iowa Gambling Task. These
use cases demonstrate that SMC is efficient in exploring posterior distributions, reaching similar predictive performance
as state-of-the-art MCMC approaches in less wall-clock time. Moreover, they show that SMC is effective in dealing with
multi-modal distributions, and that SMC not only approximates the posterior distribution but simultaneously provides a useful
estimate of the marginal likelihood, which is the essential quantity in Bayesian model comparison. All of this comes at no
additional effort from the end user.

Keywords Bayesian inference · Sequential Monte Carlo · Bayesian model comparison · Marginal likelihood ·
Computational modelling

Introduction

Bayesian inference forms a powerful and elegant framework
for learning about causes from observed effects (Gelman
et al., 2013), and is becoming increasingly popular as a
computational modeling tool within behavioral science (Heck
et al., 2023; Schad et al., 2021; Van De Schoot et al., 2017;
Andrews & Baguley, 2013). While the expressive capabili-
ties of the Bayesian approach are almost limitless, in practice
it does suffer from one major drawback: Bayesian inference
is computationally intractable, as the normalization of the
posterior distribution usually consists of a high-dimensional
integral without closed-form solution for nearly all realis-
tically relevant models. Fortunately, not all is lost, as great
achievements have been made in the realm of approximate
inference. General techniques such as Markov chain Monte
Carlo (MCMC) and variational inference (VI) are widely
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used and still actively being developed, which ensures that
many Bayesian models can be applied in practice, despite
their intractability. However, that is not to say that no difficul-
ties remain. For example, many of the existing approximate
inference techniques have trouble with multimodal distribu-
tions, where distinct parameter configurations have the same
probability. Furthermore, estimating the marginal likelihood
of a Bayesian model (which is essential for model compari-
son and averaging) is notoriously challenging.

In this paper, we provide a tutorial on Sequential Monte
Carlo (SMC), another framework for approximate Bayesian
inference, which addresses several of these challenges.
Although the algorithm will later be discussed in detail, we
provide a simple intuition here. First, consider the ‘standard’
MCMC approach. Here, the procedure consists of a guided
random walk through the landscape of possible values of
the parameter of interest. The random walk is constructed
in such a way that the time spent at any location is propor-
tional to its (desired) posterior probability. In SMC, rather
than performing a single, lengthy, random walk, we perform
a large number of short explorations in parallel. After their
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short excursions, we evaluate the locations that the walks
have ended up in. From those walks that ended up in a
desired location (which are those with a relatively high like-
lihood), newwalks are initiated, while the unsuccessful tours
are terminated. After a number of iterations of short parallel
walks have been performed, the end locations of all remain-
ing walks are aggregated as the approximate posterior. To
put it bluntly, the SMC algorithm replaces serial exploration
of the posterior by parallel exploration. With the right com-
puter hardware, the parallel approach can bemuchmore time
efficient. The intricacies of the SMC algorithm reside in the
way the randomwalks are compared and combined, and how
they are guided towards the desired posterior. These steps are
explained in detail throughout this introduction.

It is important to emphasize that there are two distinct
modes in which SMC can be applied. Originally, SMC was
developed for the estimation of time series models, in which
data are obtained sequentially (Kantas et al., 2009). Here,
the different explorations of the SMC algorithm represent
the temporal evolution of a system, such as the position of a
vehicle (for a tutorial on this viewonSMC,we refer the reader
to Speekenbrink (2016)).More recently, however,wewitness
a shift to another perspective on SMC.With the development
of advanced variants of SMC (which we will discuss later)
(Fearnhead & Taylor, 2013; Mlikota & Schorfheide, 2023)
and the increasing availability of parallel compute hardware
(Lee et al., 2010), it has become appealing to use SMC for
approximate Bayesian inference for ‘static’ models (Chopin,
2002), as an alternative to Markov chain Monte Carlo (Wills
& Schön, 2023; Speich et al., 2021; Gunawan et al., 2020).
In this view, all data are assumed to be present from the
onset of the inference, and the different explorations of the
SMC algorithm represent potential values for latent variables
of a model. It is this view on SMC that we discuss in this
paper. We focus on how SMC can be seen as an alternative
to MCMC, as well as on the implications of using MCMC
as a component within the larger SMC algorithm. In contrast
to MCMC, SMC tends to provide better representations of
multimodality in our target distributions.Moreover, although
the name suggests otherwise, within SMCmany of the actual
computations can be performed in parallel, which can be a
tremendous advantage in the day and age of parallel compute
hardware (Lee et al., 2010). A final but important advantage
of SMC is that it provides an estimate of the marginal likeli-
hood (Chopin & Papaspiliopoulos, 2020) which can be used
for Bayesian hypothesis testing. This eliminates the need for
additional analyses, such as importance sampling or bridge
sampling.

With this tutorial, we aim to make SMC accessible to
researchers in the field of (computational) psychology. To do
so, we first provide the theoretical foundation of the algo-
rithm, and then discuss in detail three example problems that
showcase the strengths of SMC. The paper is structured as

follows. In Section “The challenge of Bayesian inference”,
weoutline the essentials of (approximate)Bayesian inference
and indicate where the computational challenge comes from.
In Section “Markov chain Monte Carlo approximations of
the posterior”, the Metropolis–Hastings MCMC algorithm
is discussed briefly. This is an essential prerequisite, as it
is part of the larger SMC algorithm, which we describe in
detail in Section “Sequential Monte Carlo approximations
of the posterior and the marginal likelihood”. Here, we also
describe two pragmatic extensions to the core algorithm,
namely adaptation and tempering. We also show how one
can estimate the marginal likelihood of a model with SMC
at (nearly) no additional computation. In the second part of
the paper, we provide examples that focus both on estima-
tion of the posterior as well as the marginal likelihood, and
we demonstrate how SMC is a competitive choice for both.
Finally, in Section “Discussion”, we discuss the potential as
well as the limitations of SMC for statistical modeling.

To accompany the paper, we provide several code exam-
ples using the Python Jax framework (Bradbury et al., 2018),
in particular with the libraries (Hinne, 2025) for modeling,
Blackjax (Cabezas et al., 2023) for MCMC/SMC sampling
and Distrax (DeepMind et al., 2020) for probability distri-
butions. Code for these worked examples is available on
GitHub.

The challenge of Bayesian inference

Bayesianmodeling typically proceeds as follows:we observe
a set of variables, D, but we are interested in (the distribution
over) their causes, the latent variables θ . Following Bayes’
theorem, we know that the distribution of θ conditioned on
the observations is given by

posterior
︷ ︸︸ ︷

p(θ | D) =
likelihood
︷ ︸︸ ︷

p(D | θ)

prior
︷︸︸︷

p(θ)

p(D)
︸ ︷︷ ︸

marginal likelihood

= p(D | θ)p(θ)
∫

p(D | θ)p(θ) dθ
.

(1)

In this fundamental expression, the prior distribution p(θ)

represents our beliefs about the latent variables θ before
any observations have been made. The likelihood p(D | θ)

describes what, given a cause θ , the distribution over the
observations D would be. Following basic axioms of prob-
ability theory, the equation then tells us how we obtain the
posterior distribution p(θ | D), representing our updated
beliefs. Inmost situations, this distribution iswhatwe need to
answer our research questions, but in other timeswe are inter-
ested in themarginal likelihood p(D) = ∫

p(D | θ)p(θ) dθ .
This term quantifies the evidence that our observations D
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provide for our model. The relative amount of this evidence
between two models, that is, the marginal likelihood of one
model divided by that of an alternative model, is a quantity
known as the Bayes factor. The Bayes factor is the key ingre-
dient in Bayesian model comparison, which makes correctly
computing marginal likelihoods essential.

Although Eq. (1) looks fairly harmless, the difficulty of
Bayesian inference hides in the integral in themarginal likeli-
hood. Except for very specific cases1, this integral (and hence
the posterior) cannot be computed exactly, which makes
computing either the posterior or the marginal likelihood
(or both) computationally intractable. The way forward is
to use approximations instead. When we are interested in
posterior inference, the most common approximation frame-
work is that of Markov chain Monte Carlo (MCMC). Since
MCMC is an essential subroutine of the Sequential Monte
Carlo method, we provide a brief introduction to MCMC
below. Readers familiar with these techniques and anxious
to learn about Sequential Monte Carlo, may skip ahead to
Section “Sequential Monte Carlo approximations of the pos-
terior and the marginal likelihood”.

Markov chain Monte Carlo approximations of the
posterior

The key idea of Markov chain Monte Carlo is to construct a
randomwalk on the support of the latent parameters θ , but in a
clever way so that the amount of time spend at any location is
proportional to the probability of that value. Although many
(more advanced)MCMCalgorithms exist, for this exposition
we focus on the canonical Metropolis–Hastings algorithm,
which nicely captures the main ideas of MCMC. It works as
follows:

1. Determine a random starting position θ(1). For instance,
we might draw this value from the prior: θ(1) ∼ p(θ).
Note that the superscripts in parentheses, such as in θ(i),
indicate an index, not a mathematical exponentiation.

2. At every subsequent iteration i a new position is sampled
from a user-defined proposal distribution q

(

θ∗ | θ(i−1)
)

.
A common choice for q is a Gaussian distribution cen-
tered at the current position, which means that a newly
proposed position is obtained via θ∗ ∼ N (

θ(i−1), σ 2
)

.
The variance of this distribution σ 2 determines how dis-
tant from the current position our proposals tend to be.

3. We then decide to accept or reject this newly proposed
value θ∗. We accept it as the new sample θ(i) with prob-

1 When the prior p(θ) is conjugate to the likelihood p(D | θ); In this
case, by construction, the posterior will be of the same distribution
class as the prior, but with updated parameters. This is convenient and
efficient, but rare in non-trivial Bayesian models.

Algorithm 1 Pseudo-code for the Metropolis–Hastings
Markov chain Monte Carlo algorithm.

Requires: p(θ) // The prior
p(D | θ) // The likelihood
q(θ∗ | θ) // Proposal distribution with

hyperparameters φ

θ(1) // The initial position
S // The number of samples

Returns :
{

θ(i)
}S
i=1 such that θ(i) ∼ p(θ | D) // The

samples

// The main loop
for i ← 2 to S do

θ∗ ∼ q
(

θ | θ(i−1)
)

α ← AcceptanceRatio (θ∗, θ(i−1)) // See
Eqs. (2) and (3)
u ∼ U(0, 1) // Sample a random number
u ∈ [0, 1]
if u < α then

// Accept proposal; move to new
position

θ(i) ← θ∗
else

// Reject proposal; stay in current
position

θ(i) ← θ(i−1)

end
end
return θ = (

θ(1), . . . , θ (S)
)

ability

α = min

(

1,
p (θ∗ | D)

p
(

θ(i−1) | D)

q
(

θ(i−1) | θ∗)

q
(

θ∗ | θ(i−1)
)

)

= min

(

1,
p (D | θ∗)

p
(

D | θ(i−1)
)

p (θ∗)
p

(

θ(i−1)
)

q
(

θ(i−1) | θ∗)

q
(

θ∗ | θ(i−1)
)

)

.

(2)

If we indeed accept, we set θ(i) = θ∗, else we reject it and
set θ(i) = θ(i−1) (that is, we remain in the old position).

4. Return to step 2 until sufficient samples have been
obtained.

The acceptance ratio in Eq. (2) consists of the posterior prob-
ability of the proposal, divided by the posterior probability of
the current position, corrected for the potential bias as a result
of the proposal density via q

(

θ(i−1) | θ∗) /q
(

θ∗ | θ(i−1)
)

,
a term known as the Hastings factor. Of course, we don’t
actually have access to these posterior probabilities; the
whole goal of MCMC is to approximate them, which is
intractable due to the normalization constant. This term for-
tunately drops out in the ratio in Eq. (2) so only the prior,
likelihood, and proposal densities must be computed, which
are generally (chosen to be) straightforward and tractable.

123



  125 Page 4 of 24 Behavior Research Methods           (2025) 57:125 

Furthermore, if the proposal distribution is symmetric, then
q

(

θ(i−1) | θ∗) = q
(

θ∗ | θ(i−1)
)

, so the Hastings-factor
drops out as well, which when taken together results in:

α = min

(

1,
p (D | θ∗) p (θ∗)

p
(

D | θ(i−1)
)

p
(

θ(i−1)
)

)

. (3)

This equation expresses that the probability of accepting a
newly proposed value is proportional to its probability den-
sity: a proposal with a higher density is always accepted,
whereas a proposal with a lower density is only accepted
sometimes, proportional to how much less likely it is. The
complete algorithm is shown in pseudo-code in Algorithm 1.

The distribution of sampled θ is guaranteed to converge to
the true posterior p(θ | y) for S → ∞, where S is the number
of samples collected in this fashion, but of course, in prac-
tice, only finite approximations can be attained. It therefore
remains important to assess whether the MCMC approxima-
tion has converged. Intuitively speaking, from this point on,
the samples are no longer determined by their arbitrary ini-
tial conditions, but indeed follow the target distribution. We
return to this topic in Section “Evaluating the posterior”.

Sequential Monte Carlo approximations of
the posterior and themarginal likelihood

TheMetropolis–HastingsMCMCalgorithm is easy to imple-
ment and has become a staple algorithm for approximate
Bayesian inference. In practice, however, it can suffer from
different drawbacks, such as requiring a long time to con-
verge, or having trouble accurately exploring distributions
with multiple regions of high probability density. The SMC
algorithm tends to be more robust against these challenges.
At its core, SequentialMonte Carlo (SMC) is another class of
approximate inferencemethods. Originally, it was developed
to perform inference in state-space models (Speekenbrink,
2016). In that context, data form a time series, and the model
parameters need to be updated sequentially as observations
from these time series come in. However, SMC can also
be used to perform inference with a static set of observa-
tions (Gunawan et al., 2020; Chopin & Papaspiliopoulos,
2020), and for this tutorial we focus on the latter approach.

Just as with MCMC, the specific implementation details
can vary considerably, but the general outline is as fol-
lows (Fearnhead & Taylor, 2013; Mlikota & Schorfheide,
2023; Speich et al., 2021). Roughly speaking, one can con-
sider the SMC algorithm as the parallel execution of short
MCMC chains, known as particles. In each iteration of the
algorithm, these particles are resampled so that those corre-
sponding to relatively high likelihood values are continued in
the next iteration, whereas the particles with relatively poor

scores are terminated. At the final state of the algorithm, the
weighted collection of all particles is aggregated as a discrete
approximation of the desired distribution.

The SMC algorithm

More formally, we have at every SMC iteration t = 1, . . . , T
a collection of M particles θ

(1)
t , . . . , θ

(M)
t , as well as a set

of corresponding weights: w
(1)
t , . . . , w

(M)
t . The weights are

typically initialized as w
(i)
0 = 1/M, i ∈ 1, . . . , M , and the

first value of each particle is drawn from the prior, that is
θ

(i)
1 ∼ p(θ). Then the iterative procedure starts, which is
reminiscent of evolutionary algorithms (Braak, 2006; Vrugt
et al., 2009). In each iteration, t , a couple of steps take place:

1. First, the fitness of the particles is determined by re-
weighing them, using the ratio of likelihoods

w
(i)
t =

pt
(

D | θ
(i)
t−1

)

pt−1

(

D | θ
(i)
t−1

) . (4)

The subscript t in the likelihoods indicates that these den-
sities may be dependent on the SMC iteration. We return
to this in the section on adaptive tempering below. Intu-
itively, the weights reflect howmuch each particle’s fit to
the observations was increased between two successive
iterations.
The weights are subsequently re-normalized so that they
sum to one:2

w̃
(i)
t = w

(i)
t

∑M
j=1 w

( j)
t

. (5)

This step ensures that the particles are weighted propor-
tional to their likelihood.

2. In the second step, the evolutionary selection step takes
place. Here, the particles are resampled according to their
weights. That is, a new set of particles is constructed by
sampling from the set of particles θt−1, proportional to
the weights. This ensures that particles with high likeli-
hood scores get to propagate to the next iteration, while
particles with poor scores are taken out of the collection.
The newly sampled values form the particles at iteration
t .

3. Lastly, the particles are mutated, which proceeds by per-
forming a series of S MCMC steps for each particle (see
Section “Markov chain Monte Carlo approximations of
the posterior”). The target density for this MCMC pro-
cedure is pt (θ | D) ∝ pt (D | θ)p(θ). Note again the

2 In practice, of course, one works with log-densities and hence log-
weights, for numerical stability.
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subscript t in the target density; it is possible (and useful)
that these target densities change as the SMC algorithm
proceeds; only at the last iteration is this target density
equal to the posterior distribution we were ultimately
looking for.

The set of particles at the final iteration of the algorithm are
used to approximate p(θ | D). A visual representation of the
algorithm is shown in Fig. 1.

A key property of SMC is that the mutation procedures
of the M particles are independent of one another, within
one SMC iteration. At the same time, the computations that
are performed between each iteration (the re-weighing and
re-sampling) are computationally cheap. This means that the
time-consuming particle mutation steps can be performed
in parallel. This makes it possible, roughly speaking, that
an SMC algorithm evaluates up to M times as many values
for θ in the same amount of wall-clock time as an MCMC
algorithm (assuming that within the mutation step we use the
same MCMC algorithm).

Aswewill see later, themutation step is crucial in ensuring
the particles provide useful samples of the posterior distri-
bution and meaningful contributions to marginal likelihood

Fig. 1 Visual representation of the adaptive-tempered Sequential
Monte Carlo algorithm. Shown are T = 3 iterations. The initial parti-
cles θ

(i)
0 are drawn from the prior. Next, the weight of each particle is

determined and indicated here using the relative size of each dot. Then
the particles are resampled proportional their weights. Particles with
large weights will result in multiple resampled particles. For example,
the dashed arrows indicate a particle that is resampled twice. Lastly,
particles are mutated by MCMC sampling using the tempered distribu-
tions as their target. This process is repeated until βT = 1.0, at which
point the distribution of particles follows the posterior distribution

estimates. We investigate the impact of different common
MCMC algorithms for the mutations in our applications in
Section “Applications”.

Improvements: Adaptive tempering

A naive implementation of SMC might run into a problem
known as particle collapse (or particle degeneracy): If we
resample according to the particle weights, we end up with
a new set of particles in which the high-weight particles of
the previous iteration are over-represented. After a few of
those steps, all the particles become identical; rather than
exploring the target density, we have only identified a single
high-likelihoodvalue. Toprevent this, one can use a tempered
variant of SMC (T-SMC) (Jasra et al., 2011; Speich et al.,
2021).

The intuition for tempering is as follows. Rather than sam-
pling from a target distribution p(θ | D) ∝ p(D | θ)p(θ),
we initially ignore the likelihood entirely. Thismeans the ran-
dom walks for each particle will simply explore the (wide)
prior distribution. We then, in each SMC iteration, slowly
increase the influence of the likelihood, steadily constrain-
ing the random walk behavior, until at the final iteration, the
particles’ randomwalk does follow the posterior. The advan-
tage is that the particles are less likely to collapse on one
high-likelihood value. Simultaneously, tempering is helpful
when using SMC to estimate the marginal likelihood of a
model, which we cover in more detail in Section “Marginal
likelihood estimation”.

We proceed with a more rigorous exposition of tempered
SMC. In T-SMC, we associate a temperature parameter βt

with each SMC iteration t , and we restrict β1 = 0 < β1 <

. . . βT = 1. The temperature is used to dampen the influence
of the likelihood on the target density at a specific iteration:

pt (θ | D) ∝ p(θ)p(D | θ)βt . (6)

The tempered density pt (θ | D) is also referred to as a
‘bridge’ density (Herbst & Schorfheide, 2014). In the first
iteration, where we have β = 0, the bridge density simply is
the prior distribution, while in the final iteration, the bridge
density has become the posterior distribution. The particle
weights after each SMC iteration are computed as

w
(i)
t =

p
(

D | θ
(i)
t−1

)βt

p
(

D | θ
(i)
t−1

)βt−1
= p

(

D | θ
(i)
t

)�β

, (7)

where �βt = βt − βt−1 is the difference in temperature
between consecutive iterations. As a result of this tempering,
the variance between the weights decreases, which makes it
less likely that one particle completely dominates all others.
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The rate at which the temperature is updated from 0 to 1
needs to be set by the user, and could, for example, follow
a linear or exponential scheme. An alternative to a predeter-
mined tempering schedule is an adaptive approach, in which
the increase in temperature between successive iterations is
a function of the diversity of particle weights. This can be
quantified in different ways, such as via the effective sample
size (Agapiou et al., 2017):

Meff(wt , �β) =
(
∑M

i=1 w
(i)
t

)2

∑M
i=1

(

w
(i)
t

)2 =

(

∑M
i=1 p

(

D | θ
(i)
t

)�β
)2

∑M
i=1

(

p
(

D | θ
(i)
t

)�β
)2 .

(8)

The increase in temperature corresponding to a desired
effective sample size is then determined by solving for the
roots of f (wt ,�β) = Meff(wt ,�β) − αM = 0, where α

is the fraction of particles that we want to be independent,
often heuristically set to α = 0.5 (Chopin & Papaspiliopou-
los, 2020;Herbst&Schorfheide, 2014). Solving the equation
is done via numerical methods. Not only do such adap-
tive approaches relieve the user of determining the right
tempering schedule but they have also experimentally been
shown to outperform pre-defined schedules (Zhou et al.,
2016). Throughout our examples, we will use this adaptive-
tempered SMC approach.

Pseudo-code of the SMC algorithm is provided in Algo-
rithm 2. For clarity, we emphasize which elements should
be provided by the user, assuming an SMC implementation
is available. First, one should be able to evaluate the prior
p(θ) and likelihood p(D | θ) for any value of θ . Second,
SMC assumes a subroutine is available for MCMC, that uses
a starting position (the current particle) and returns amutated
value. This routine can have several hyperparameters, such as
the number of MCMC steps to take, or the step size of a pro-
posal distribution. Lastly, one needs to determine the number
of particles M . Typically, more is better, but this depends on
the available memory. We usually set M = 1000. Finally, if
we use the recommended adaptive-tempered SMC variant,
then we need to set the fraction of effective samples α. Typ-
ically, we set α = 0.5, representing that the effective sample
size is half that of M .

Marginal likelihood estimation

So far, we have focused on using SMC as an approxi-
mate inference algorithm, and therefore as an alternative to
MCMC. However, the (adaptive) tempered SMC algorithm
also provides an estimate of the marginal likelihood (Chopin
& Papaspiliopoulos, 2020; Mlikota & Schorfheide, 2023;

Algorithm 2 Pseudo-code for the adaptive-tempered
Sequential Monte Carlo algorithm.

Requires: p(θ) // The prior
p(D | θ) // The likelihood
MCMC // An MCMC routine with

hyperparameters φ; see Section “Markov
chain Monte Carlo approximations of the
posterior”

M // The number of particles
α // The desired fraction of

effective number of samples

Returns :
{

θ(i)
}M
i=1 such that θ(i) ∼ p(θ | D) // The

weighted particles
Z ≈ p(D) // The marginal likelihood

estimate

/* Initialize algorithm */
t ← 1
βt ← 0.0
for i ← 1 to M do

w
(i)
t ← 1/M

θ
(i)
t ∼ p(θ)

end
/* The main loop */
while β ≤ 1.0 do

t ← t + 1
�βt ← AdaptTemperature(wt , α) // See
Section “Improvements: Adaptive
tempering”
β ← β + �β
{

θ
(i)
t

}M

i=1
← Resample(

{

w
(i)
t , θ

(i)
t

}M

i=1
)

pt (θ | D) ← p(θ)p(D | θ)βt // Tempered density
for MCMC
for i ← 1 to M do

θ
(i)
t ← MCMC(θ

(i)
t , S, φ, pt (θ | D)) // Mutation

step

w
(i)
t ← p

(

D | θ(i)
)�βt // Re-weighting step

end
/* Normalize weights */
for i ← 1 to M do

w
(i)
t ← w

(i)
t /

∑M
j=1 w

( j)
t

end

Zt ← 1
M

∑M
i=1 w

(i)
t

end
Z ← ∏t

s=2 Zs // Marginal likelihood estimate;
see Section “Marginal likelihood
estimation”

return
{

w
(i)
t , θ

(i)
t

}M

i=1
, Z

Zhou et al., 2016; Friel & Wyse, 2012), at negligible addi-
tional computation. The marginal likelihood quantifies how
much evidence the observations provide for our model (c.q.
hypothesis), and forms the basis of Bayesian hypothesis test-
ing (Wagenmakers et al., 2018) (see Eq. (1)). Beforewe show
how the SMC algorithm provides an estimate of this crucial
quantity, we show the two most (seemingly) obvious ways
to approximate the marginal likelihood.
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The first simply replaces the integral in Eq. (1) with a
Monte Carlo sum. This is known as the naive Monte Carlo
approximation, and is defined as

p(D) =
∫

p(D | θ)p(θ) dθ ≈ 1

S

S
∑

i=1

p
(

D | θ(i)
)

, (9)

with θ(i) ∼ p(θ). To obtain this estimate, we draw random
values from the prior, and evaluate the likelihood for each
of these. This estimator is asymptotically correct, and in the
limit of S → ∞ it will result in an unbiased estimate of the
true marginal likelihood. However, it is often prohibitively
inefficient. Since the prior support is usually much wider
than the support of the posterior, it is unlikely that by sam-
pling from the prior we encounter high-likelihood values.
This means that most of the individual samples contribute
very little to the marginal likelihood estimate, and that it is
likely that wemiss by chance those samples that would result
in high likelihoods.

The second approach does the opposite, and uses samples
from the posterior distribution instead (assuming these are
available from MCMC, SMC, or another method entirely).
This is known as the harmonic mean estimator, and is given
by

p(D) ≈
(

1

S

S
∑

i=1

1

p
(

D | θ(i)
)

)−1

, (10)

with θ(i) ∼ p(θ | D). One might think this estimator solves
the problem of the naive Monte Carlo approach. After all,
by sampling from the posterior instead, we definitely have
high-likelihood samples in our collection. Unfortunately, this
approach has been known to fail dramatically (Clyde et al.,
2007), and has been dubbed the ‘worst Monte Carlo method
ever’ by Neal (2008). The reason is that it often has infinite
variance, even in toy models. For this estimator, the opposite
happens aswith the naiveMonteCarlomethod: This time, the
high-likelihood values are over-represented (since theMonte
Carlo samples come from the posterior), and the estimator
does not properly integrate over the support of the prior.3

The SMC algorithm interpolates between these two
approaches and approximates the marginal likelihood via

p(D) =
∫

p(D | θ)p(θ) dθ

≈
T

∏

t=2

1

M

M
∑

i=1

p
(

D | θ
(i)
t

)�βt
,

(11)

3 For more details on these estimators, as well as a state-of-the-art
approach to estimating the marginal likelihood, we refer the reader
to Gronau et al. (2017), as well as to Fourment et al. (2020) and Llorente
et al. (2023) for recent reviews.

with θ
(i)
t ∼ pt (θ | D), and T the total number of SMC

iterations (Chopin & Papaspiliopoulos, 2020; Zhou et al.,
2016)4. This approach forms a middle ground between the
two other approaches: In early stages of the adaptive SMC
process (small t), the samples of θ

( j)
t are drawn from a tem-

pered distribution that is dominated by the prior. This ensures
the marginal likelihood properly integrates over the full prior
support, just like the naive Monte Carlo approach. In later
stages (large t), these samples are drawn from a distribu-
tion that closely resembles the posterior, thus contributing
mostly the high-likelihood values. As a result, the estimator
combines the best of both approaches.

Understanding the theoretical limits and convergence
guarantees of adaptive-tempered SMC algorithms is chal-
lenging, since the estimates at different iterations depend
on both the target density as well as the current (random)
set of particles (Del Moral et al., 2012). For the standard
SMC algorithm (without adaptive tempering), Chopin and
Papaspiliopoulos (2020) show that it provides an unbiased
estimate of the marginal likelihood, but this proof does not
apply to the adaptive variants of SMC. Despite the lack
of formal guarantees, Chopin and Papaspiliopoulos (2020)
empirically find that the adaptive SMC algorithm similarly
results in a consistent and well-behaved estimator. We return
to this topic in our experiments.

Toy example

The following toy example demonstrates the SMC algorithm
in action. We assume a simple scenario consisting of a con-
jugate likelihood and prior pair, so that we can compare the
SMC approximation with a ground truth. First, we simulate
N = 100 observations y = (y1, . . . , yN )�, from a Gaussian
distribution with parameters μ = 5 and σ = 3. We then try
to recover the true posterior p(μ | y) from the observations,
as well as the marginal likelihood p(y) using the following
conjugate model:

μ ∼ N
(

μ0, σ
2
0

)

yi ∼ N
(

μ, σ 2
)

, i = 1, . . . , N ,
(12)

where we set μ0 = 0.0, σ0 = 2.0. We assume the standard
deviation σ = 3.0 is known.

Because the Gaussian prior on μ is conjugate to the like-
lihood, the posterior distribution p(μ | y) is once more a

4 One might be surprised to see the product in Eq. (11) start at t = 2.
However, recall that �βt = βt − βt−1, which is not defined for t =
1. Instead, for the first iteration, the temperature is simply 0. At this
temperature, and with uniformly initialized weights, the contribution
to the marginal likelihood is simply a multiplication with 1.0. A more
detailed explanation is provided in (Chopin and Papaspiliopoulos, 2020,
Eq. (16.9)).

123



  125 Page 8 of 24 Behavior Research Methods           (2025) 57:125 

Gaussian distribution. However, we will pretend approxi-
mate inference is necessary, and run the SMC algorithm.
This requires we provide first the likelihood and prior as
given above. Furthermore, we use the Metropolis–Hastings
MCMC algorithm as described in Section “Markov chain
Monte Carlo approximations of the posterior” to mutate the
particles, using a Gaussian proposal distribution with a stan-
dard deviation of 0.01 and S = 1000mutation steps per SMC
iteration. We choose M = 100, 000 particles.

Figure 2 shows the resulting approximated posterior
together with the true exact posterior distribution. Also indi-
cated are the intermediate bridge densities that correspond
to temperatures βt < 1.0. The algorithm took 18 adap-
tive SMC cycles to increase the temperature from 0 to 1.
As the figure shows, the algorithm gradually warms up and
becomes increasingly more influenced by the likelihood.
When the final temperature is reached (that is, βt = 1.0), the
approximation agrees nearly perfectly with the true poste-
rior. Similarly, the SMC algorithm closely approximates the
marginal likelihood, estimating it at −261.156, compared to
the true value of −261.157.

Evaluating the posterior

When using Markov chain Monte Carlo methods, the tar-
get distribution p(θ | D) is approximated by a finite set of
samples. However, if the collected samples are mostly deter-
mined by the random initial conditions of the algorithm, they
do not reflect the posterior. To ensure sufficient samples have
been collected and that they actually represent the posterior,
one typically evaluates the collected samples according to
heuristic criteria known as convergence checks. Once these
are satisfactorily met, we say that for a sample with index
i , θ(i) ∼ p(θ | D). Different measures and criteria exist to
make this call.

A common convergence heuristic is based on the follow-
ing intuition. First, we perform multiple runs of the MCMC
algorithm, known as ‘chains’, that are all initialized uniquely.
Once the distributions estimated by the different chains are
sufficiently similar and are no longer determined by the initial
condition, we assume they represent the desired distribution.
This is quantified using the potential scale reduction factor
(PSRF) R̂θ , which measures the ratio of between-to-within
chain variance for each variable in θ (Gelman&Rubin, 1992;
Brooks & Gelman, 1998). A heuristic threshold is applied to
this score, often set to 1.1, so that if R̂θ < 1.1 for each vari-
able θ , we assume convergence has been attained.

While forMCMCmethods convergencemeasures like the
PSRF are well-established, determining similar criteria for
SMC is an area of ongoing research (Dai et al., 2022; Beskos
et al., 2016). Unfortunately, just completing the adaptive-
tempering procedure (thus reaching β = 1 at which point the
obtained samples allegedly come from the posterior) does not
guarantee convergence in practice. As a pragmatic solution
for the convergence checks, we therefore use the follow-
ing procedure in the examples below: we re-run multiple
independent runs of the SMC algorithm with an increased
number of mutations per SMC cycle, St , until the final col-
lected samples have converged according to the PSRF. In
contrast to MCMC, this requires restarting the algorithm,
instead of appending subsequent samples to the previously
collected samples, which is much less efficient.

Once convergence is established, it is common practice
to determine, per variable, the effective sample size (ESS).
Different from the effective sample size Meff that was used
in Eq. (8) to quantify particle diversity, here the ESS gives
a measure of how independent the samples of our approxi-
mation are. For example, if we had collected 1000 samples
with anMCMC algorithm, but found an ESS of 200, then we
would have essentially obtained the information equivalent

Fig. 2 Approximate inference using Sequential Monte Carlo on a
model with a Gaussian likelihood and a (conjugate) Gaussian prior
on the mean. Superimposed on the approximated distribution is the

exact solution (dashed line), which can be derived analytically from the
conjugacy. The shaded distributions show the tempered distributions at
different iterations of the SMC algorithm
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of only 200 independent samples. This increases the uncer-
tainty in subsequent Monte Carlo estimates. In the context of
SMC, autocorrelated samples should in theory pose less of
an issue than for MCMC, since rather than a single Markov
chain (which is autocorrelated by definition), we have dif-
ferent particles that individually mutate. Still, particles may
spawn from the sameparent particle at the previous SMC iter-
ation, so autocorrelation can be present here as well. In the
applications below, we quantify this by computing the ESS
for different inference algorithms. For details on the compu-
tation and implementation of the ESS, we refer to Gelman
et al., (2013).

Applications

After this introductory exposition of the Sequential Monte
Carlo algorithm, we proceed here to give three worked exam-
ples of Bayesian models one might use in practice, and
showcase the practical usefulness of SMC. Each of the exam-
ples highlights a different feature of SMC: its efficiency in
approximating a posterior distribution, the ability to dealwith
multimodal distributions, and the quality of its marginal like-
lihood estimate. Each of these forms the focus of one of the
examples below.

Inference: Variable selection in depression

The first example shows how the posterior estimates obtained
with SMC agree with popular MCMC algorithms.

We consider the problem of variable selection. This is
a commonly encountered challenge in psychology, and is
used, for instance, to improve the quality of screening instru-
ments for psychiatric disorders (Lu & Petkova, 2014; Akyol,
2020), to identify predictors of psychopathology (Meehan
et al., 2020), and to learn which factors influence a person’s
mental well-being after experiencing stressful events (Liu
et al., 2021). Here, we use variable selection to determine
which factors are associated with depression.

The core of the model is linear regression, with regression
coefficients corresponding to each of these factors. Let N be
the number of observations, for which we observe the values
for p predictors xi = (xi1, . . . , xip)�, as well as the corre-
sponding response variable yi . We aggregate the predictors
in a matrix X = (x1, . . . , xN )�, and similarly we collect all
responses into the vector y = (y1, . . . , yN )�. The regression
model is given by

log σ ∼ N (0, 1) ,

β j ∼ p(β j ) , j = 1, . . . , p

yi | β, xi , σ ∼ N (x�
i β, σ 2) , i = 1, . . . , N .

(13)

Several candidate variable selection distributions exist for
the prior on the coefficients p(β j ) (O’Hara & Sillanpää,
2009). Common choices include a Gaussian or a Laplace
distribution, the regularized horseshoe distribution (Piironen
& Vehtari, 2017), or spike-and-slab distributions (Malsiner-
Walli & Wagner, 2017). All of these distributions encourage
the values for the regression coefficients to be small or even
exactly zero, which implies that the corresponding predictor
is not relevant for the prediction of depression. The choice for
a particular prior can be motivated by several reasons, such
as the interpretation of additional model parameters, or prag-
matic considerations. For example, if one uses the popular
NUTS algorithm for inference (Hoffman & Gelman, 2014),
then one of the requirements of this approach is that themodel
does not contain discrete latent variables, since the algorithm
depends on the computation of gradients.

Here, we use the logit-normal continuous analogue of the
spike-and-slab (Thomson et al., 2019) (LN-CASS) prior on
the coefficients. It is, as the name implies, a continuous dis-
tribution with strong conceptual similarities to the discrete
spike-and-slab distribution (George & McCulloch, 1993).
The advantage of this particular prior is that it consists only
of continuous variables, as opposed to spike-and-slab distri-
butions, which makes it amenable to gradient-based MCMC
approaches such as NUTS, while maintaining the conceptual
interpretation of the spike-and-slab. The full mathematical
definition of the prior is provided in Appendix A.1.

Data

Our observations consist of a sample (N = 715) from the
general population taken from the Nathan Kline Institute
Rockland Sample (Nooner et al., 2012), a publicly available
dataset aimed at improving scientific research into psychia-
try. A large number of self-reported measures are available
for these participants. We follow the setup described by
Bainter et al. (2023) and include the following potentially
relevant predictors (the abbreviated name for the correspond-
ing predictors is shown in parentheses): four subscales of the
Adult Temperament Questionnaire (ATQ) (Evans & Roth-
bart, 2007), four subscales of the Interpersonal Reactivity
Index (IPRI) (David, 1983), five subscales of the Domain
Specific Risk Taking Scale (DOSP) (Blais & Weber, 2006),
five subscales of the Urgency, Premeditation, Perseverance,
Sensation-Seeking and Positive Urgency impulsive behav-
ior scale (UPPS) (Whiteside & Lynam, 2001), the total
sleep quality score from the Pittsburgh Sleep Quality Index
(PSQI) (Buysse et al., 1989), the Fagerström Test for Nico-
tine Dependence (Nicotine) (Heatherton et al., 1991), and
the total time that a person is physically active using the
International Physical Activity Questionnaire (IPAQ) (Craig
et al., 2003). In total, p = 24 predictors are collected. Finally,
the targets for prediction y were the depression symptom
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severity as measured by the Beck Depression Inventory II
(BDI-II) (Beck et al., 1996). A list of the variable names is
provided in Appendix A.3.

Comparing different approximate inference methods

We perform the approximate inference of the posterior dis-
tribution using six distinct approaches. The first are three
MCMC-based methods: A Metropolis–Hastings MCMC
algorithm (MH; see Section “Markov chain Monte Carlo
approximations of the posterior”) with Gaussian proposals,
a block-Gibbs sampler, in which individual variables are
updated in turn, using a separate MH step for each, and an
adaptively tuned No-U-Turn-Sampling Hamiltonian Monte
Carlo (NUTS) algorithm (Hoffman &Gelman, 2014), which
canbe considered the state-of-the-art. The second threemeth-
ods consist of the adaptive-tempered SequentialMonte Carlo
(SMC) algorithm as described in the previous section, com-
bined with each of the three MCMC approaches for the
mutation step. The details of the inference settings are pro-
vided inAppendixA.2. In each case, we ran four independent
chains with as many MCMC steps as required until con-
vergence was reached, quantified using the potential scale
reduction factor heuristic (Gelman & Rubin, 1992) (see Sec-
tion “Evaluating the posterior”).

Figure 3 shows the estimated regression coefficients using
the LN-CASS prior. Importantly, the approaches provide
identical estimates. All six identify the same ordering of
importance of the individual factors, with nicotine depen-
dence and sleep quality being among the most important
predictors, although the former predictor is associated with
a large amount of uncertainty. Furthermore, the inset bar
chart shows the (average) relative wall-clock time that was
required for the algorithms to converge. Both Gibbs and
NUTS are much more time-efficient than the Metropolis–
Hastings MCMC algorithm, but MH and Gibbs benefit most
from being embedded in the larger SMC routine; their com-
putation times drop drastically (from 5226 to 2654 seconds
for MH, 329 to 45 seconds for Gibbs), while their effective
numbers of samples increase. This benefit does not apply to
NUTS, where the additional computation time does not out-
weigh the benefits of SMC; both NUTS and NUTS-in-SMC
take about the same time (299 seconds for NUTSHMC com-
pared to 336 when embedded within SMC), although the
number of effective sample size also goes up substantially
when using NUTS within SMC. The SMC routine takes
47.25, 51.75, and 47 adaptive cycles, for MH, Gibbs, and
NUTS mutations, respectively, showing that type of muta-
tion algorithm has only a limited impact on the number of
SMC cycles. The conclusion of this first demonstration is
that SMC is an effective approximate inference tool, with
the potential to reduce running time and increase effective
sample sizes substantially.

Multimodality: A growthmixture model for grade
point averages

In this second example, we consider mixture models and
the challenges they provide for approximate inference algo-
rithms. With the advent of increasingly larger data sets, it
is becoming clear that modeling heterogeneous populations
with a single parametric distribution does not do justice to the
complex structure in these data (Moreau & Corballis, 2019;
Gao et al., 2023; Feczko et al., 2019). Instead, often a pop-
ulation consists of the combination of differently distributed
sub-populations, which can be represented using mixture
models (Harring & Hodis, 2016). For example, Bak et al.
(2017) use a Gaussian mixture model to identify two distinct
groups of patients suffering from schizophrenia. Similarly,
Abu-Akel et al. (2019) use a Weibull mixture model to accu-
rately represent the heterogeneity in a population of people
with autism spectrum disorder, and Mora et al. (2008) use
growth mixture models to distinguish different patterns in
the timing and severity of depression symptoms of women
with perinatal depression.

Here, we consider a Bayesian growth mixture model
(GrMM; Ram and Grimm, 2009) to model the progress
of grade point averages (GPA) for college students as they
progress through the semesters of their studies. The intuition
behind such a model is that we expect groups of students
to progress in different ways; such as a group consisting of
students that quickly progress in terms of their GPA, versus
a group of students that performmore or less the same across
the different semesters.

Data

The data are available from the website of the statistical anal-
ysis software JASP (JASP Team, 2024) and were originally
collected by Hox (2010). The data consist of the GPAs mea-
sured at T = 6 consecutive semesters, for N = 200 college
students. The GPA scores range from 1.7 to 4.0.

Model

In a growth mixture model, a single observation i is a time
series yi = (yi1, . . . , yiT )� of length T , with i = 1, . . . , N .
Stacking these columns together results in the matrix Y ∈
R

N×T . Corresponding to these observations, we have the
locations (time points) as the vector xi = (xi1, . . . , xiT )�.
Throughout this example, we assume that all observations
are performed at the same input locations, so we are only
concerned with a single vector of locations x.

We assume the different students are not independent, but
are clustered instead; each student is assigned to a latent
mixture component using the variable zi ∈ {1, . . . , K }, with
K the number of these components. In practice, this discrete
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Fig. 3 Estimated regression coefficients using Bayesian linear regres-
sion together with the LN-CASS prior. Predictors are sorted by their
mean absolute value. The most important predictors are nicotine and
sleep quality. All six methods result in the same posterior distributions,
although the number of effective samples that they obtain differ (see

top row). Using SMC improves the number of effective samples, while
at the same time reducing wall clock running time. The Gibbs-in-SMC
algorithm is by far the fastest, and results in the highest number of
effective samples per second

variable can be marginalized out to result in a model that is
more amenable to inference. The likelihood of such a model
is

p (Y | x, θ) =
N

∏

i=1

p (yi | x, θ) , (14)

where θ represents the collection of latent parameters of the
model, and with the probability of a single point yi given by

p (yi | x, θ) =
K

∑

k=1

wk

T
∏

t=1

N
(

D
∑

d=0

βdk x
d
t , σ 2

k

)

. (15)

In the last expression, we see that each of the K compo-
nents brings their own contribution to the likelihood. Within
each component, each observation at time point t is assumed
to follow a Gaussian distribution. The summation over D
indicates the degree of the polynomial that is used to model
the component growth curve. Here, we simply set D = 1,
representing each component’s growth with a linear curve
based on an intercept β0k and a slope β1k . The model is
completed by specifying the priors on the latent parameters
θ , which are the component weights w, the growth curve
regression coefficients B = {βdk}, which are specific to each

mixture component, and the different observation noise terms
σ = (σ1, . . . , σK )�. The choices for these priors are pro-
vided in Appendix B.1.

Learning the growth mixture model consists of estimat-
ing the posterior p(w,B, σ | x,Y). However, approximating
this distribution is less straightforward than it may seem.
The distribution is multi-modal, which means that it con-
tains different areas in the posterior distributionwith the same
probability. In general, such multimodality can occur due to
different reasons, such as model misspecification leading to
problemswith identifiability, or simply different valid param-
eter configurations that are all supported by the observations,
but that represent qualitatively different posterior beliefs. In
mixture models, this is the case as well. Any permutation of
the labels of the different mixture components would result
in the exact same probability density, which leads to multiple
configurations of parameter values with the same probabil-
ity. For instance, switching all parameters associated with
component 2 with all of those associated with component
3 leaves the density unchanged, and so forth. This issue is
known as label switching, and can hamper effective mixing
of MCMC algorithms: the sampler will remain stuck in one
configuration of the labels, and will not explore the others. In
specific cases, themultimodality could simply be removed by
imposing an ordering constraint on some of the parameters.
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For instance, if we assume β j1 < . . . < β j K , the labels of
the components could no longer be switched without chang-
ing the posterior density. However, in higher dimensional
mixture models, it is not obvious how the elements can be
similarly constrained. For the purpose of the illustration here,
we deliberately leave the multimodality present so that we
can evaluate the comparative performance of the inference
algorithms in this difficult scenario.

Experiment

Once more, we apply three MCMC-based algorithms and
three MCMC-within-SMC algorithms to estimate the pos-
terior distribution of this model. For this example, we pick
K = 4, although one might use the marginal likelihood to
determine the optimal K .

Determining the required number of MCMC samples and
evaluating the results proceeds differently compared to the
previous example. A regular convergence check is difficult
here, as multimodality causes independent chains to become
stuck in different modes of the posterior. Even though the
algorithms would be sampling high-probability parameter
values, the chains would seem very distinct, so the potential
scale reduction factor heuristic would lead us to conclude
that the algorithms have not converged. In fact, convergence
issues can often be attributed to multimodality and uniden-
tifiability issues. As an alternative, we track the posterior
expectation of the likelihood (PELL), that is

Ep(θ |x,Y)

[

log p (Y | x, θ)
] ≈ 1

S

S
∑

i=1

log p
(

Y | x, θ(i)
)

,

(16)

θ(i) ∼ p(θ | x,Y) and see for how many MCMC samples
or SMC mutation steps this value is within 2% of the result
of a long adaptively tuned NUTS approximation.

Once we are satisfied with convergence, we look at the
recovery of themultimodal posterior by comparing the distri-
bution of p(β1k | x,Y), that is, the slope of the linear growth
curve, across the different components. If the multimodal-
ity is captured correctly, the distributions of p(β11 | x,Y),
up to p(β1K | x,Y) should be indistinguishable, as the
different permutations of label switching should all be repre-
sented. If instead the algorithm is stuck in a singlemode, then
these distributions can differ wildly. We quantify the similar-
ities between these distributions using the Kullback–Leibler
divergence (seeAppendixB.3 for details on its computation).
Finally, we collect the running time of each algorithm.

Table 1 shows the results of the analysis. The algorithms
reach similar predictive performance, showing that they are
exploring high-probability areas of the posterior. However,
from both the Kullback–Leibler divergence and the effec-
tive sample sizes, it is apparent that MCMC-based methods
quickly find a local mode and have trouble leaving it; the
distributions of the coefficients of the different mixture com-
ponents remain clearly separated. For SMC this is not the
case, as shownby themuch lowerKLdivergence. Thismeans
the different components have very similar posterior distribu-
tions, indicating that the label switching is accounted for. At
the same time, SMC generally converges more quickly, espe-
cially in the case of Gibbs where a more than tenfold speed
increase is observed. Similar to the previous example, we see
that the additional computation required for NUTS offsets
the benefits of SMC, as NUTS-within-SMC takes longer to
converge thanNUTS on its own. However, the effective num-
ber of samples shows that NUTS-within-SMC provides the
best posterior representation. The number of required SMC
cycles is stable, with on average 38.5, 38.75, and 39.25 for
MH, Gibbs, and NUTS as mutation algorithm, respectively.

In Fig. 4A, the posterior fit of the growth mixture model
is superimposed on the observations. This figure confirms
that all inference approaches find a solution that fits the
data well, and that they all agree on what this solution is.

Table 1 Evaluation of the six different inference approaches (indicated are mean and standard error over four chains, when applicable)

Algorithm PELL KL ESS Time (s)

MH −158.45 ± 4.00 12.22 ± 1.55 4.94 456.53

Gibbs −157.98 ± 2.92 11.04 ± 2.18 4.16 550.91

NUTS −156.45 ± 0.27 14.73 ± 0.16 2.15 242.05

MH-in-SMC −157.20 ± 0.29 2.02 ± 1.18 19.66 173.04

Gibbs-in-SMC −157.30 ± 0.61 0.64 ± 0.13 17.77 40.22

NUTS-in-SMC −156.84 ± 0.40 0.32 ± 0.16 69.75 303.27

The top row shows the posterior expectation of the log-likelihood (PELL) for the growth mixture model with K = 4 components (larger is better).
The results indicate that in terms of predictive performance, the approaches perform nearly identically. However, the multimodality is captured
much better by the SMC-based approaches, as shown by the Kullback–Leibler divergence (KL). Since the different chains are more consistent for
SMC, the effective sample size (ESS) is higher as well. At the same time, SMC converges faster thanMCMC in wall-clock time, with Gibbs-in-SMC
being particularly quick
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However, Fig. 4B shows the posterior distributions of the
regression coefficients for each of the mixture components,
that is, p(β0k | x,Y) and p(β1k | x,Y), for k = 1, . . . , K ,
and these are quite distinct. This demonstrates how SMC is
able to represent several of the different modes in this pos-
terior distribution, while the MCMC-based algorithms are
stuck in isolated modes (that is, in one of the peaks of high
probability density near 2.4, 2.6, 2.7, and 2.9 for the inter-
cept β0, and around 0.25, 0.4, 0.7, and 1.0 for the slope β1).
Despite this improved representation of the multimodal pos-
terior, it should be noted that such distributions and their
approximations should still be treated with caution. In par-
ticular we see that the different modes are not completely
uniformly distributed over the particles; some modes seem
to be preferred over others. This might erroneously suggest
that one mode is more likely than another, while in fact this is

probably due to a random fluctuation in which particle ends
up in which node. Increasing the number of particles will
reduce this problem, but at the cost of additional computa-
tional resources.

Although in cases like this the multimodality can be
avoided by imposing ordering constraints on some param-
eters, this becomes much harder when the dimensionality
of the data increases or higher-order regression functions
are used. In other cases, we might not even be aware that
the multimodality exists in our posterior, and we might have
trouble reaching convergence. In such cases, SMC provides
clear benefit by actually showing the multimodality in the
posterior. Importantly, due to the parallel computation across
particles, this benefit is obtainedwhile converging faster than
the other methods as well.

Fig. 4 Posterior distribution of the growth mixture model with K = 4
components and D = 1, that is, linear regression per component.A The
fit of the posterior distribution to the observations, for each of the six
approximate inference methods: Metropolis–Hastings MCMC, Gibbs
MCMC, NUTS HMC, and SMC with each of these MCMC algorithms
in the mutation step. B Posterior distributions of the intercepts and

slopes for each of the K mixture components. If the multimodality was
captured perfectly, the distributions in each panel of a row would be
similar and showing evidence of multiple modes. Although no method
performs perfectly, SMC covers several of the modes, while the three
MCMC-based alternatives are stuck in individual modes
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Themarginal likelihood: The expectancy-valence
model

The previous examples highlighted SMC as an efficient and
effective algorithm for approximate inference, even in the
challenging case ofmultimodality. In this section,we demon-
strate how SMC can be applied in the context of cognitive
modeling, and we emphasize how SMC can be used to obtain
an estimate of the log marginal likelihood together with the
samples of the posterior distribution.

We consider the Iowa Gambling Task (IGT; Bechara
et al., 1994) and the expectancy-valence model (Busemeyer
&Stout, 2002) that is often used in conjunctionwith it, as this
combination of task and model has been used previously to
study the estimation of marginal likelihoods (Steingroever
et al., 2016; Gronau et al., 2017) and therefore allows for
a comparison with competitive methods. In the IGT partici-
pants are presentedwith four decks of cards, and the different
cards in these decks are associated with either a reward or a
penalty. The participants are instructed to sequentially pick
cards from these decks that will maximize their total reward.
The participants are not aware of the distributions of cards in
the decks, nor of the fact that two decks contain high-reward
cards, but in the long run will result in a lower profit than
the decks containing moderate-reward cards. It is up to the
participants to explore the reward distributions of the decks,
and exploit these once they have an idea which decks lead to
the best eventual result. For an overview of applications of
the IGT, we refer to Aram et al. (2019).

A popular computational model for behavior of the IGT
is the expectancy-valence (EV) model (Busemeyer & Stout,
2002). The model uses three types of observations from
the IGT: the participant choice of a card deck at trial t ,
k, k ∈ {1, 2, 3, 4}, and the corresponding reward W (t) or
penalty L(t). It then makes the following assumptions about
the cognitive process of the participant: first, the participant
has an internal representation of the utility uk(t) of deck k,
which is updated based on the choice of deck, according to

uk(t) = (1 − w)W (t) + wL(t) . (17)

The first model parameter w determines the extend to which
a participant is either reward-seeking (small values of w),
or loss-avoiding (large values of w), and can be interpreted
as the degree to which the participant is loss-oriented (Ahn
et al., 2008.

Next, the EV model assumes that, based on the experi-
enced utility ukt , the expected utility E[ukt ] is updated using
the Rescorla-Wagner rule (Rescorla & Wagner, 1972):

E[uk(t)] = E[uk(t − 1)]+ a (uk(t) − E[uk(t − 1)]) , (18)

with a ∈ [0, 1]. This equation implies that if the expe-
rienced utility is larger than what was expected (uk(t) >

E[uk(t − 1)]), then the expectation is adjusted upward, and
vice versa if the experienced utility is lower than expected.
The parameter a is the second model parameter, and it deter-
mines the degree to which beliefs are updated based on the
experienced utility. Here, a small value for a indicates that
beliefs are strongly adhered to, and only weakly updated
based on observed deviations. Alternatively, for values of a
close to 1, the expected utility is updated radically depending
on what was actually observed.

Subsequently, the model assumes that the updated set of
expected utility determines which deck of cards the partici-
pant will select on their next trial. That is, the probability of
deck k at the next trial is given by

π(t + 1)k = σ (θ(t)E [uk(t)])k , (19)

in which σ(·) is the softmax function defined as

σ(w)k = softmax(w)k = exp(wk)
∑K

k′=1 exp(wk′)
. (20)

The sensitivity parameter θ(t) determines the degree to
which the expected utility determines the probabilities of
selecting each deck. For values close to zero, the term
E[uk(t)] has little effect, and choices are made at random,
while larger values of θ(t) indicate that the participant bases
their choices entirely on the expected utility. The sensitivity
parameter θ(t) is not itself a free parameter of the model, but
instead is derived from the third and final model parameter,
known as the response consistency c ∈ R, via the expression

θ(t) = (0.1t)c , (21)

which formalizes the assumption that the adherence to the
acquired beliefs changes with time. If c is larger than 1, the
successive choices become more and more determined by
the expected utilities while negative values of c indicate the
participant behaves in an increasingly random way, ignor-
ing the expected utilities. Note that the domain constraint
on c varies between studies, as Busemeyer and Stout (2002)
assume c ∈ [−5, 5], while Gronau et al. (2017) suggest that
c ∈ [−2, 2] providesmore numerically stable parameter esti-
mates. We follow the latter choice.

Together, the reward-seekingversus reward-averse param-
eter w, the belief update parameter a, and the response
consistency parameter c form the latent variables of the
model, and their distributions are to be conditioned on the
participants’ choices of decks, as well as the rewards and
penalties received by the participants.
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Data

We train the expectancy-valence model on observations col-
lected by Stout et al. (2001); Busemeyer and Stout (2002).
These data were studied previously in the context ofmarginal
likelihood estimation by Steingroever et al. (2016) using
importance sampling, and by Gronau et al. (2017) using
bridge sampling, and therefore serve as an ideal compari-
son. The data consist of T = 100 card deck selections and
their corresponding rewards and/or penalties for N = 30
healthy participants.

Training and evaluation of the EVmodel using Sequential
Monte Carlo

We first estimate the log marginal likelihoods of the EV
model for each of the 30 participants independently. The
priors were chosen to be uninformative (see Appendix C.1
for more details), and we set the initial expected utility
E[uk(0)] = 0, for k ∈ {1, 2, 3, 4}. We used 1000 par-
ticles and each of the three different MCMC algorithms
for the mutations steps; Metropolis–Hastings, Gibbs, and
NUTS. Details on the inference settings are provided in
Appendix C.2. The desired fraction of effective samples
in the adaptive tempering scheme was set to α = 0.5.
The results for the log marginal likelihoods are compared
with those obtained by importance sampling (Steingroever
et al., 2016) and bridge sampling (Gronau et al., 2017), and
this comparison is shown in Fig. 5. All three mutation ker-
nels resulted in the same log marginal likelihood estimates,
and therefore only the result for MH-in-SMC is shown. As
the figure indicates, the log marginal likelihood estimates
obtained by SMC are virtually identical to those from impor-
tance sampling and bridge sampling.

A hierarchical extension of the EVmodel

The previous section showed that Sequential Monte Carlo
obtains reliable estimates of marginal likelihoods for cogni-
tive models. However, the individual models contained only
three latent parameters. We now turn to case of a hierarchi-
cal formulation of the expectancy-valence model (Wetzels et
al., 2010; Gronau et al., 2017), which contains many more
parameters, and is therefore much more challenging.

In the previous setup, the individual participantswere con-
sidered to be conditionally independent, which means that
the SMC algorithm was ran N times. In a hierarchical for-
mulation, we instead assume a shared structure between the
parameters of each individual. That is, we define a group-
level mean and standard deviation for w, a, and c, and use
these to inform the priors on the participant-specific param-
eters wi , ai , and ci , for i = 1, . . . , N (a detailed description
of this hierarchical prior is provided in Appendix C.1). This
way, the prior distribution of each participant-level parameter
is informed by the N − 1 other participants, which tends to
result in much more robust parameter estimates (Kruschke,
2014). Due to this coupling of parameters, however, we now
need to estimate all 6 + 3N parameters in one single dis-
tribution, which results in a 96-dimensional posterior. Here,
we demonstrate that SMC can also be used in such high-
dimensional model settings, and we explore what the effect
of the number of mutation steps is on both the posterior and
log marginal likelihood estimates (Dai et al., 2022).

We estimate the posterior and log marginal likelihood
of the hierarchical EV model using SMC, using 1000 par-
ticles, using both MH-in-SMC and Gibbs-in-SMC. The
NUTS-in-SMC approach turned out to be too slow to be
practical, and therefore is omitted from this example. Since
the number of mutation steps has substantial impact on the
estimated marginal likelihood, we doubled the number of
mutation steps until the marginal likelihood was similar to
that obtained via bridge sampling, which we use as a gold
standard here (more details on this step are provided in

Fig. 5 Log marginal likelihood estimates for the expectancy-valence
model for N = 30 participants using the data obtained by Busemeyer
and Stout (2002). Shown are the estimates obtained with SMC, as well

as with importance sampling (Steingroever et al., 2016) and bridge sam-
pling (Gronau et al., 2017). As the scatter plots show, the estimates are
virtually identical
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Appendix C.3). This procedure is repeated ten times, so that
we obtain both ameasure of the reliability of the logmarginal
likelihood estimates, as well as an indication of convergence
of the approximation of the posterior.

The results for the marginal likelihood estimates, as well
as the approximate posterior at the final number of muta-
tion steps, are shown in Fig. 6. Regardless of the number
of mutations, the MH-in-SMC takes approximately 41 adap-
tive SMC cycles, while Gibbs-in-SMC takes about 45 cycles.
The approximation of the posterior requires only a limited
number of mutation steps, as the potential scale reduction
factor R̂ drops below 1.1 for 500 MCMC steps for MH-in-
SMC, and within 100 steps for Gibbs-in-SMC. The marginal
likelihood estimate takes considerably longer to converge.
Importantly, however, we see that or MH-in-SMC, the mean
of the marginal likelihood estimates agrees with bridge sam-
pling after about 32,000 mutations (7 h), and its variance
reduces furtherwhen increasing the number ofmutation steps
to 64,000 (14 h). For comparison, the computation time for
inference and bridge sampling is shown in the figure as well
(9 h).

Perhaps surprisingly, Gibbs-in-SMC does not appear to
converge to the correct marginal likelihood, at least not for
these numbers of mutation steps. The reason that Gibbs-in-
SMC works so well for inference (as seen in the previous
examples) and for the marginal likelihood estimates in the
smaller EV model, but not here, is presumably that the step
sizes for the individual parameter updatesworkwell at higher
temperatures (that is, β approaching 1), and thus leading

to good approximations of the posterior, while accepting
much fewer samples when the temperature is low (when β

is small and the bridging distribution is closer to the prior),
and consequently integrating more poorly over the prior. The
same observation was made by Buchholz et al. (2021), who
conclude that for high-dimensional models, ideally themuta-
tion step parameters should be adapted during the tempering
process, so that acceptance rates are appropriate for all tem-
peratures of the SMC algorithm.

The results for the independent and hierarchical variants
of the expectancy-valence model demonstrate that SMC can
approximate marginal likelihoods, even when the model is
high-dimensional and contains many correlated parameters,
as in the hierarchical case. The marginal likelihood estimates
up to par with bridge sampling, albeit with the caveat that
the quality is dependent on the quality of the mutation steps.
Future work into adaptive proposal distributions to improve
mixing at all temperatures will most likely improve the qual-
ity of these estimates further.

Discussion

In this tutorial, we have discussed how Sequential Monte
Carlomay be used as an alternative approach for approximate
inference, as well as (possibly simultaneously) a method to
estimate the marginal likelihood of a model. At the core of
SMC lies the parallel execution of a large number of MCMC
samplers, that are reweighed and resampled at every iteration

Fig. 6 SMC estimation results for the hierarchical expectancy-valence
model (Wetzels et al., 2010) A. The marginal likelihood estimates for
different numbers of mutation steps, for MH-in-SMC and Gibbs-in-
SMC. The mean estimate across the ten chains is shown as a dot with
a thick border. The log marginal likelihoods obtained by bridge sam-

pling (Gronau et al., 2017) are shown by the gray interval and dashed
line. B The marginal posterior distributions for the three hierarchical
mean parameters, μw , μα , and μc. The plotted distributions are the
result of a kernel density estimate on the final 1000 particles
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of the algorithm. This parallelism brings a number of impor-
tant benefits over existing approximate inference approaches
such as MCMC. First, it enables the algorithm to more effec-
tively explore the target distribution. In the first example, we
saw that with the right MCMC mutations, SMC can be both
faster as well as more providing more effective samples than
conventional MCMC algorithms. Furthermore, the exam-
ple on growth mixture models demonstrated that compared
to standard MCMC samplers, SMC can obtain comparable
model fit, while better representing the multimodality better
and being faster in wall-clock running time. Of course, the
latter comes with the caveat that in order to be efficient, SMC
requires hardware that supports parallel computation, such as
GPUs.While this is on one hand a constraint, as practitioners
using SMCwill need the required hardware, at the same time
it provides a way to have the Bayesian framework leverage
the nowadays ubiquitous parallel compute (Lee et al., 2010).
Setting up SMC for inference takes hardly any additional
effort over setting upMCMC, especially when the tempering
schedule is determined adaptively. Two remaining choices
are the number of particles and the desired effective sam-
ple size of the particle weights. The first choice directly
determines the ‘resolution’ of the approximate posterior dis-
tribution. In our examples and experiments, we found that
1000 − −2000 particles typically sufficed. If the posterior
shows signs of multimodality, it is recommended to increase
the number of particles further, so that each mode can have a
reasonably smooth representation. For the second choice, we
found that the default of 0.5 (that is, half of the total number
of particles) worked well in all our examples.

Next to being a competitive approach for approximate
inference, SMC, and in particular the tempered variant we
have discussed in this tutorial, also provides a useful and
effective way to estimate the marginal likelihood of a model.
Importantly, this estimator requires very little effort from
the end user. It suffices to provide the likelihood and the
prior, and – depending on the MCMC step within each SMC
cycle – a proposal distribution like one would provide in
MCMC. We saw that the approach is competitive, even in
high-dimensional cases such as the hierarchical expectancy-
valencemodel (Busemeyer&Stout, 2002). The effectiveness
of this estimator comes from the tempering procedure, which
interpolates the target density between the prior (at low tem-
perature) and the posterior (at high temperature). Concretely,
thismeans that theMonteCarlo estimate of themarginal like-
lihood that SMC provides is based both on the entire support
of the prior (in the early stages of the algorithm), as well as
on parameter values with high likelihood (in the later stages
of the algorithm). However, to obtain reliable estimates, a
large number of mutation steps (that is, MCMC steps for
each particle within a single SMC iteration) is needed, and
this can impose substantial computational demands, as the
algorithm duration scales linearly with this number. In the

hierarchical expectancy-valence model, we saw that as many
as 64, 000 steps were needed to obtain estimates similar to
those obtained by bridge sampling. Furthermore, the better
the MCMC algorithm in the mutation step, the more impor-
tant it becomes to correctly set the step sizes of the proposal
distributions. Here, a balancemust be struck so that themuta-
tion step explores reasonably well in both the prior and the
posterior. In high-dimensional models, this can be challeng-
ing, and adaptation of the mutation kernels will be necessary,
as discussed by Buchholz et al. (2021). Nevertheless, we
believe that its ease-of-use and effectiveness make SMC a
useful technique in the toolbox of researchers that need the
marginal likelihood to perform model selection and model
averaging (Clyde et al., 2011; Hinne et al., 2020).

There are, of course, also a number of downsides to SMC.
The most obvious one is the aforementioned reliance on par-
allel computation hardware; if all computations were to be
performed sequentially, the algorithmwould be prohibitively
slow. Furthermore, we saw that the quality of the marginal
likelihood depends strongly on the number ofmutation steps,
and it is not obvious how todetermine these a priori. The com-
monly used potential scale reduction factor R̂ can be used
to determine convergence of the approximation of the poste-
rior (Gelman&Rubin, 1992), but this does not seem to imply
any bounds on the marginal likelihood estimate. To illus-
trate this, recall Fig. 6, which shows the marginal likelihood
as a functional of the number of mutations. At S = 2 560,
R̂ < 1.1, commonly used as a threshold for convergence, but
the marginal likelihood estimate is still far from the bridge
sampling estimate. The intricate relationship between the
mutation phase of SMC and the adaptive-tempering proce-
dure, and their impact on the marginal likelihood estimate,
is not completely clear, although recent work has set impor-
tant steps in this direction (Beskos et al., 2014; Dai et al.,
2022). Of course, this remains a fundamentally challenging
problem, in particular for high-dimensional models, that also
affects other approaches such as bridge sampling (Gronau
et al., 2017) or nested importance sampling (Tran et al.,
2021). These have both proven to be effective, but have
drawbacks as well; for instance, Wong et al. (2020) point
out that particular steps within the bridge sampling approach
can introduce a bias to the estimator. For SMC, Chopin and
Papaspiliopoulos (2020) show that the tempered variant of
this algorithm results in an unbiased estimate, but also indi-
cate that such a guarantee does not exist when the algorithm
is adaptive. Lastly, sampling until convergence is a common
processwithMCMC,with several diagnostic heuristics avail-
able that help the practitioner. With MCMC one can simply
proceed to sample for longer until convergence is reached,
but with the adaptive-tempered SMC algorithm the entire
procedure is restarted from scratch. This can make the pro-
cess of finding the right number of mutation steps wasteful.
Recent work by Dau and Chopin (2022) suggests how this
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waste can be avoided, but further developments are needed
to streamline the procedure.

Despite these drawbacks, SMC appears to be a highly
promising tool for computational psychology (Dai et al.,
2022). The SMC procedure can be improved further to be
(even) more efficient, both for approximating posterior dis-
tributions, as well as for estimating marginal likelihoods. For
example, Buchholz et al. (2021) and Salomone et al. (2023)
discuss the use of Hamiltonian Monte Carlo (HMC) for the
mutation steps, rather than Metropolis–Hastings, and also
investigate how the parameters ofHMCcan be adapted based
on previous SMC iterations. This makes exploring each tem-
pered distributionmore efficient, potentially greatly reducing
the number of mutation steps needed at every iteration. Even
more straightforward is to re-calibrate the proposal distribu-
tion of the mutation step in between the different tempered
distributions (Dau & Chopin, 2022).

In the future, the uptake of SMC as a tool for inference
and model comparison will depend critically on its avail-
ability in easy-to-use probabilistic programming languages
(PPLs). Currently, the de facto standard for such software is
the (adaptive) NUTS algorithm, which is available in most
of the popular languages such as Stan (Carpenter et al.,
2017). To the best of our knowledge, only PyMC (Oriol
et al., 2023) currently offers an (adaptive and tempered)
SMC implementation. For our examples, we made use of
the Blackjax (Cabezas et al., 2023) Python library. On top of
this library, we have developed the Bayesian modeling tool-
box bamojax to streamline the modeling and implementation
process. We hope that this toolbox lowers the threshold for
Bayesian practitioners to try out SMC, and others may exper-
iment and adopt SMC in their ownwork.We provide all code
for the examples in this paper at our GitHub repository.

A Variable selection in linear regression

A.1 The prior

As discussed in Section “Inference: Variable selection in
depression”, we implement the continuous analogue of the
spike-and-slab distribution suggested by Thomson et al.
(2019) as the prior on the regression coefficients. For compar-
ison, we also show the traditional spike-and-slab distribution
here George and McCulloch (1993):

z j ∼ Bernoulli(0.5) j = 1, . . . , p

τ ∼ InverseGamma(0.05, 0.05)

β j ∼ z jN
(

0, τ 2
)

+ (1 − z j )δ0 j = 1, . . . , p ,

(22)

where δ0 represents the Dirac delta, which can loosely be
interpreted as a distribution with density zero everywhere

except at 0, and that integrates to 1 as a probability density
function:

∫ ∞

−∞
δ0(x) dx = 1 . (23)

For variable selection, δ0 is known as the spike, and
N (0, τ 2) as the slab. However, since the spike-and-slab dis-
tribution contains the discrete latent parameters z j , it cannot
be used in conjunction with gradient-based MCMC algo-
rithms such as NUTS. As an alternative, Thomson et al.
(2019) introduced a continuous generalization:

logit(λ j ) ∼ N (μλ, σλ) j = 1, . . . , p

τ ∼ InverseGamma(0.05, 0.05)

β j ∼ N
(

0, (λ jτ)2
)

j = 1, . . . , p .

(24)

We set μλ = logit(0.2) and σλ = 1.0. In comparison to
the spike-and-slab distribution above, λ j plays the role of
a continuous extension of the selector variable z j ; if λ j →
0, the variance of the distribution of β j is reduced to zero,
mimicking the Dirac delta function. If instead λ j → 1, the
distribution on β j is simply a Gaussian with width τ , similar
to the slab distribution.

A.2 Inference settings

For all three approaches, that is, MH-MCMC, Gibbs-
MCMC, and NUTS HMC, as well as MH-in-SMC, Gibbs-
in-SMC, and NUTS-in-SMC, we increased the number of
samples or mutation steps until convergence was attained, as
determined by a PSRF (see Section “Evaluating the poste-
rior”) score below 1.1 for all model parameters.

For MH, we used Gaussian proposals with a step size of
σ = 0.001. For Gibbs, Gaussian proposals where used for
each variable, with step sizes of 0.001, 0.01, 0.01, and 0.2
for the variables β, λ, σ , and τ , respectively. For NUTS,
we used window adaptation for 500 samples to determine
the optimal step size and inverse mass matrix adaptively.
All MCMC output was downsampled to 1000 samples after
convergence.

The adaptive-tempered SMC algorithm used M = 1000
particles and the fraction of desired effective samples was set
to α = 0.5. The mutation kernels used the same step sizes as
in the MCMC approach.

A.3 List of variable names

Table 2 lists the variables that were used in the variable
selection experiment in Section “Inference: Variable selec-
tion in depression”.
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Table 2 Variables used in the linear regression variable selection exper-
iment

Abbreviation Full variable name

– Age

– Gender

Nicotine Nicotine dependence

ATQ 82 Negative Affect

ATQ 90 Extraversion/Surgency

ATQ 94 Orienting Sensitivity

ATQ 86 Effortful Control

IPRI 29 Perspective-Taking Scale

IPRI 30 Fantasy Scale

IPRI 31 Empathic Concern Scale

IPRI 32 Personal Distress Scale

DOSP 91 Ethical Subscale (Risk Taking)

DOSP 94 Recreational Subscale (Risk Taking)

DOSP 95 Social Subscale(Risk Taking)

DOSP 92 Financial Subscale (Risk Taking)

DOSP 93 Health/Safety Subscale (Risk Taking)

UPPS 60 Negative Urgency Score

UPPS 61 Premeditation Score

UPPS 62 Perseverance Score

UPPS 63 Sensation Seeking Score

UPPS 64 Positive Urgency Score

PSQI 18 Total Sleep Disturbance

IPAQ 72 Total Physical Activity Met

B The growthmixture model

B.1 Priors for the GrMM

The growth mixture model (GrMM) as discussed in Sec-
tion “Multimodality:A growthmixturemodel for grade point
averages” is completed by defining the following prior dis-
tributions for its latent parameters:

βdk ∼ N (0, 2) d = 0, . . . , D, j = 2, . . . , K

w̃1 = 0

w̃k ∼ N (0, 1) k = 2, . . . , K

w = softmax (w̃)

log σk ∼ N (0, 1) k = 1, . . . , K ,

(25)

in which

softmax(w)k = exp(wk)
∑K

k′=1 exp(wk′)
. (26)

The wider prior on the regression coefficients βdk ensures
that the SMC algorithm has a wide variety of initial particles.
The centered softmax transformation for w, instead of, for
example, a Dirichlet distribution, is a pragmatic choice. It
allows us to easily create proposals w∗ ∼ q(w∗ | w); we
simply take Gaussian steps for each of the elements w̃k (with
k = 2, . . . , K ) and using the softmax transformation we
ensure that w is a vector of probabilities.

B.2 Inference settings

Since in the growth mixture model example, the PSRF mea-
sure does not provide a useful indicator of convergence (due
to the presence of multiple modes), we instead sampled until
the posterior expectation of the log-likelihoodwaswithin 2%
of a long NUTS run. For MCMC, this required 2, 000, 000
samples forMH, 1 250 000 for Gibbs, and 20, 000 for NUTS.
All MCMC output was then downsampled to 2000 samples.
For SMC with M = 2000 particles, the same approach
resulted in 800 mutation steps for MH, 50 for Gibbs, and
1 for NUTS.

For MH, we used a Gaussian proposal distribution with a
step size of 0.01. ForGibbs,Gaussianproposalswere used for
each variable, all with a step size of 0.1. For NUTS, window
adaptation for 500 samples was used to determine the step
size and inverse mass matrix. The same settings were used
for MCMC and for using these MCMC kernels within SMC.

B.3 Quantifyingmultimodality

To determine how robust the inference methods are when
dealingwithmultimodal posterior distributions, wemake use
of the fact that in the growth mixture model the component
labels can be permuted arbitrarily. This means that if the
multimodality is captured well, the respective distribution of
the slope and intercept parameters β0k and β1k should be the
same across the different components k ∈ 1, . . . , K ; all of
the modes should be represented in each. This further means
that, for example, p(β0k | x,Y) and p(β0 j | x,Y) should be
the same, for k = j . We quantify this similarity using the
Kullback–Leibler divergence:

K L(p‖q) ≈
∑

x∈X
p(x) log

p(x)

q(x)
, (27)

where x ∈ X indicates we sum over a linearly spaced grid of
the domain of the input variable, here β0k and β1k , respec-
tively. In our implementation, p and q are derived using
a Gaussian kernel density estimator applied to the sam-
ples/particles of the approximate inference schemes, which
results in smooth densities that can be queried at every x . Fur-
thermore, to avoid division-by-zero errors, a small number
is added to both p(x) and q(x).
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C The expectancy-valencemodel

C.1 Priors for the EVmodel

The following uninformative priors were used for the priors
in the original expectancy-valence model::

w ∼ beta(1.0, 1.0)

a ∼ beta(1.0, 1.0)

ĉ ∼ beta(1.0, 1.0)

c = 4ĉ − 2 ,

(28)

in which the last step ensures that c ∈ [−2, 2], as desired.
For the hierarchical extension, the following prior structure
is used (Wetzels et al., 2010; Gronau et al., 2017):

μw ∼ N (0.0, 1.0)

μa ∼ N (0.0, 1.0)

μc ∼ N (0.0, 1.0)

ŵi ∼ N (μw, σw)

âi ∼ N (μa, σa)

ĉi ∼ N (μc, σc)

σw ∼ U(0.0, 1.5)

σa ∼ U(0.0, 1.5)

σc ∼ U(0.0, 1.5)

wi = �(ŵi )

ai = �(ŵi )

ci = 4�(ŵi ) − 2 ,

(29)

where i = 1, . . . , N , and �(·) is the standard Gaussian
cumulative density function, which ensures that the parame-
ters have the correct support.

C.2 Inference settings

C.2.1 Independent EVmodel

For Metropolis–Hastings within SMC we used a Gaussian
proposal distribution with a step size of σ = 0.01, and
S = 100 mutations. For Gibbs within SMC, for each of the
variables w, a, and c a Gaussian proposal distribution was
used with a step size of σ = 0.05, and S = 50 mutations.
ForNUTSHMC,weused twowarm-up samples to determine
the inverse mass matrix and step size adaptively, and S = 20
mutations. Computation of the log marginal likelihoods for
all 30 subjects took about 1 min for all three methods.

C.2.2 Hierarchical EV model

For MH, we used a step size of σ = 0.01. We first set the
number of mutations to S = 500, and then doubled it if the
computation time per chainwas smaller than the computation
time for the baseline (see below). The final MH-in-SMC run
used S = 64, 000 mutation steps and took 14 h.

For Gibbs, we used Gaussian proposals for each of the
individual variables of the hierarchical EVmodel. For param-
eters μw, μa , and μc, we set the step size to σ = 0.5, for
σw, σa , and σc this was set to σ = 0.2, and finally for w, a,
and c the step size was σ = 0.02. The first run used S = 100
mutation steps, whereas the final run used S = 25 600 steps
and took 18 h to finish.

ForNUTS,we again usedwindowadaptation to determine
the ideal step size and inverse mass matrix. However, this
analysis took exceedingly long (while returning logmarginal
likelihoods still far below the baseline) so that this approach
was aborted. We conclude that NUTS-in-SMC is too slow
for high-dimensional models like this.

C.3 Bridge sampling

The bridge sampling approach by Gronau et al. (2017) con-
sists of two steps. In the first, the posterior distribution of
the hierarchical EVmodel is approximated usingMCMC, as
implemented in the JAGS software (Plummer, 2003). Two
MCMC chains of 150,000 samples are sampled, of which
the first 30,000 are discarded to allow the sampler to reach
the target distribution. The remaining 120,000 samples per
chain are then reduced to 30,000 by keeping every 4th sample
and discarding the rest. In the second step, the first half of
the samples is used to obtain a tailored proposal distribution.
The second half of the samples is then used in an iterative
scheme to estimate the marginal likelihood (for the details of
bridge sampling we refer to Gronau et al. (2017)). Finally,
the entire procedure is repeated ten times to obtain an esti-
mate of the reliability of the approach. Per run, this required
approximately 9 h.
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