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Abstract. Nuclear receptor related‑1 protein (Nurr1) serves 
important roles in hippocampal‑dependent cognitive process. 
In the present study, the protein expression of Nurr1 was 
compared in the hippocampi of young [postnatal month 3 
(PM  3)], adult (PM 12) and aged (PM 24) gerbils using 
western blot analysis and immunohistochemistry. Results 
indicated that the protein level of Nurr1 was significantly 
and gradually decreased in the gerbil hippocampus with 
increasing age. In addition, strong Nurr1 immunoreactivity 
was primarily observed in pyramidal neurons and granule 
cells of the hippocampus in the young group, which was 
determined to be reduced in the adult group and to a greater 
extent in the aged group. Collectively the data demonstrated 
that Nurr1 immunoreactivity was gradually and markedly 
decreased during normal aging. These results indicate that 
gradual decrease of Nurr1 expression in the hippocampus may 
be associated with the normal aging process and a decline in 
hippocampus‑dependent cognitive function.

Introduction

As part of the normal aging process, neuroanatomical and 
neurophysiological changes occur in the central nervous system 
(CNS) (1,2), and our group previously reported age‑dependent 
increase in antioxidant‑like protein‑1 expression in the gerbil 
hippocampus (3). In the brain, normal aging affects the func-
tions of N‑methyl‑D‑aspartate receptors, which may serve 
important roles in the initiation of long‑term potentiation and 
be associated with age‑related decline in memory (4,5). Critical 
for learning and memory, the hippocampus is considered to be 
one of the brain regions most sensitive to changes induced by 
the normal aging process (6,7).

Nuclear receptor related‑1 protein (Nurr1), also known as 
nuclear receptor subfamily 4 group a member 2, is a member 
of the inducible nuclear receptor superfamily of transcrip-
tion factors (8). Nurr1 mRNA expression has been reported 
in several regions of the CNS, including parts of the cortex, 
hippocampal formation and substantia nigra, in developing 
and adult mice and rats (9). It has been documented that Nurr1 
is associated with differentiation, maturation, function and 
survival of midbrain dopaminergic neurons and that reduction 
of Nurr1 expression or polymorphisms in the Nurr1 gene may 
be associated with Parkinson's disease etiology (10‑15). Nurr1 
may protect against inflammation‑induced dopaminergic 
neuronal death by inhibiting expression of pro‑inflammatory 
mediators in microglia and astrocytes (16). Furthermore, a 
recent study demonstrated that Nurr1 participated in the regu-
lation of adult hippocampal neurogenesis, and that activation 
of Nurr1 using amodiaquine increased hippocampal neurogen-
esis by stimulating neural stem cells (17). In addition, Nurr1 
has been observed to be under the regulation of neural activity 
in cultured hippocampal neurons, in that basal expression of 
Nurr1 was reduced when neuronal activities were blocked (18).

A number of studies on Nurr1 have been performed in dopa-
minergic neurons, and significant decrease in Nurr1 expression 
has been reported in dopaminergic neurons of the substantia 
nigra in aged humans and rats (19,20). However, whether there 
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is age‑related change of Nurr1 expression in the hippocampus, a 
region which has been associated with neurogenesis and neural 
activity (21), is yet to be fully elucidated. Therefore, the objective 
of the present study was to investigate age‑dependent change 
of Nurr1 protein expression in the hippocampi of young, adult 
and aged gerbils, as a suitable model for research on aging (22), 
using western blot analysis and immunohistochemistry. Overall 
this aimed to provide novel insight into the association of Nurr1 
with the decline of hippocampus‑dependent cognitive function 
during the normal aging process.

Materials and methods

Experimental animals. The present study used male 
Mongolian gerbils (Meriones unguiculatus) at postnatal 
month 3 (PM 3; 40‑50 g) as a young‑group, PM 12 (65‑75 g) as 
an adult‑group and PM 24 (85‑95 g) as an aged‑group (total, 
n=42; n=14/group). This model was selected due to its suit-
ability for research on aging (22). The gerbils were obtained 
from the Experimental Animal Center of Kangwon National 
University (Chuncheon, Republic of Korea). The animals 
were housed under conventional conditions at an ambient 
temperature (23±3˚C) and relative humidity (55±5%) under a 
12‑h light/dark cycle and were allowed free access to food and 
water. The study was conducted to minimize the number of 
gerbils. The procedures for animal handling and care adhered 
to guidelines in compliance with the current international 
laws and policies (Guide for the Care and Use of Laboratory 
Animals, The National Academies Press, 8th ed., 2011) (23). 
All experimental procedures involving animals were approved 
by the Institutional Animal Care and Use Committee of 
Kangwon National University (approval no. KW‑160802‑2).

Western blot analysis. Changes in Nurr1 protein levels during 
the normal aging process were examined in the hippocampi 
of gerbils (n=7/group). Western blot analysis was performed 
according to the method described in our previous studies (24,25). 
In brief, following euthanasia of the animals, hippocampi were 
removed. The hippocampi were homogenized and centrifuged, 
and the supernatants were subjected to western blot analysis. 
The tissues were homogenized in 50 mM phosphate‑buffered 
saline (PBS; pH 7.4) containing 0.1 mM ethylene glycol‑bis(2
‑aminoethylether)‑N,N,N',N'‑tetraacetic acid (pH 8.0), 0.2% 
Nonidet P‑40, 10 mM ethylendiamine tetraacetic acid (pH 8.0), 
15 mM sodium pyrophosphate, 100 mM β‑glycerophosphate, 50 
mM NaF, 150 mM NaCl, 2 mM sodium orthovanadate, 1 mM 
phenylmethylsulfonyl floride and 1 mM dithiothreitol (DTT; 
all from Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany). 
Following centrifugation at 16,000 x g for 20 min at 4˚C, the 
protein level of Nurr1 in the supernatants was determined using 
a micro bicinchoninic acid protein assay kit (Sigma‑Aldrich; 
Merck KGaA), with bovine serum albumin as the standard 
(Pierce; Thermo Fisher Scientific, Inc., Waltham, MA, USA). 
Aliquots containing 20 µg total protein were boiled in loading 
buffer containing 150 mM Tris (pH 6.8), 3 mM DTT, 6% SDS, 
0.3% bromophenol blue and 30% glycerol. The aliquots were 
then loaded onto a 10% polyacrylamide gel. Following electro-
phoresis, the gels were transferred onto nitrocellulose transfer 
membranes. To reduce background staining, the membranes 
were incubated with 5% non‑fat dry milk in PBS containing 

0.1% Tween‑20 for 45 min at room temperature. Following 
three washes with PBS with Tween‑20 (PBST; each for 5 
min), the membranes were incubated with rabbit anti‑Nurr1 
(PA5‑13416; 1:500; Invitrogen; Thermo Fisher Scientific, 
Inc.) overnight at 4˚C. Following another three washes with 
PBST (each for 10 min), the membranes were incubated with 
peroxidase‑conjugated donkey anti‑rabbit immunoglobulin G 
(IgG; sc‑2305; 1:1,000; Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA) for 1 h at room temperature, followed by ECL 
reagents (Pierce; Thermo Fisher Scientific, Inc.). The resulting 
protein bands were scanned, and densitometric analysis for 
quantification of the bands was performed using Image J 1.59 
software (National Institutes of Health, Bethesda, MD, USA), 
which was used to calculate relative optical density (ROD). The 
protein level of Nurr1 was normalized to that of β‑actin (A5316; 
1:5,000; Sigma‑Aldrich; Merck KGaA). A ratio of the ROD was 
calibrated as a percentage, with the young‑group designated as 
100%.

Immunohistochemistry. The gerbils (n=7/group) were anes-
thetized with pentobarbital sodium (40 mg/kg, intraperitoneal 
injection; JW Pharmaceutical Corporation, Seoul, Republic of 
Korea) and perfused transcardially with 0.1 M PBS (pH 7.4) 
followed by 4% paraformaldehyde in 0.1 M PBS (pH 7.4). 
The brains were removed and postfixed with the same fixative 
for 7 h at room temperature. The brain tissue including the 
hippocampi was sectioned at 30‑µm thickness with a cryostat.

To examine age‑related changes in Nurr1 immunoreactivity 
in young, adult and aged hippocampi, immunohistochemical 
staining was performed according to the method described 
in our previous studies (24,25). Immunohistochemical 
staining for Nurr1 was performed using the rabbit anti‑Nurr1 
antibody (1:100) as the primary antibody overnight at 4˚C. 
Following three washes with PBS (each for 10 min), the brain 
tissues were incubated with biotinylated goat anti‑rabbit IgG 
(BA‑1000; 1:200; Vector Laboratories, Burlingame, CA, USA) 
for 2 h at room temperature, and then streptavidin peroxidase 
complex (SA‑5004; 1:200; Vector Laboratories) for 45 min at 
room temperature. To establish the specificity of the immunos-
taining, a negative control test without primary antibody was 
performed, which resulted in the absence of immunoreactivity 
in all structures.

A total of six sections at 120‑µm intervals per animal were 
selected to quantitatively analyze Nurr1 immunoreactivity. 
Digital images of Nurr1 immunoreactive structures of the 
hippocampal regions were observed and captured with an 
Axio Imager 2 light microscope (Carl Zeiss AG, Oberkochen, 
Germany) equipped with a digital camera (Axiocam; Carl 
Zeiss). According to the method of previous studies (24,26), 
semi‑quantification of the immunostaining intensity of Nurr1 
was evaluated and analyzed using Image J 1.59. The mean 
intensity of Nurr1 immunoreactivity in the immunoreactive 
structures was measured using a 0‑255 gray scale system 
(white to dark signal corresponding to 255 to 0). Based on 
this approach, the background density was subtracted, and the 
level of immunoreactivity was scaled as ‑, ±, +, ++ or +++, 
representing no staining (gray scale value, ≥200), weakly posi-
tive (gray scale value, 150‑199), moderate (gray scale value, 
100‑149), strong (gray scale value, 50‑99) or very strong (gray 
scale value, ≤49), respectively.



BIOMEDICAL REPORTS  8:  517-522,  2018 519

Cresyl violet (CV) staining. CV staining was performed to 
investigate cellular distribution and morphology. In brief, 
according to the method of our previous study (27), the sections 
of the hippocampal regions were mounted on gelatin‑coated 
microscopy slides. Cresyl violet acetate (Sigma‑Aldrich; 
Merck KGaA) was dissolved at 1.0% (w/v) in distilled water, 
and glacial acetic acid (0.25% v/v) was added to this solu-
tion. The sections were stained with CV and dehydrated by 
immersing in serial ethanol baths. Finally, the stained sections 
were mounted with Canada balsam (Kanto Chemical, Co., 
Inc., Tokyo, Japan). A total of six sections at 120‑µm intervals 
per animal were selected to identify the distribution of Nurr1 
immunoreactivity in the hippocampus. Digital images of CV 
stained structures were observed and captured with the Axio 
Imager 2 microscope and digital camera.

Statistical analysis. Data are expressed as the mean ± standard 
error of the mean. Differences in the mean ROD among the 
groups were statistically analyzed using one‑way analysis of 
variance followed by post hoc Bonferroni's multiple compar-
ison tests using GraphPad InStat (version 3.05; GraphPad 
Software, Inc., La Jolla, CA, USA). Statistical significance was 
considered at P<0.05.

Results

Age‑related changes in Nurr1 protein level. Results from 
western blot analysis indicated an age‑related change of Nurr1 
protein level in the gerbil hippocampus (Fig. 1). The protein 
expression of Nurr1 in the adult hippocampus was significantly 
decreased compared with that in the young hippocampus 
(P<0.05). In addition, the expression of Nurr1 in the aged 
hippocampus was significantly decreased compared with that 
in the adult and young hippocampi (P<0.05). Notably, the 
protein level of Nurr1 in the aged hippocampus was reduced 
by 73.6% compared with that in the young hippocampus.

Age‑related change in Nurr1 immunoreactivity. Age‑related 
changes in Nurr1 immunoreactivity (Table I and Fig. 2) were 
identified in the hippocampus proper (CA1‑3 regions). In 
the young group, very strong Nurr1 immunoreactivity was 
primarily observed in pyramidal neurons of the stratum 
pyramidale (SP; Fig. 2A and D). In the adult group, Nurr1 
immunoreactivity in pyramidal neurons was decreased 
compared with that in the young group (Table I and Fig. 2B 
and E). Furthermore, a marked reduction of Nurr1 immunore-
activity in the SP was identified in the aged group, compared 
with that in the adult group (Table I and Fig. 2C and F).

In the dentate gyrus (DG), Nurr1 immunoreactivity was 
primarily observed in granule cells of the granule cell layer 
(GCL; Fig.  2G, H and  I). Similar to the change of Nurr1 
immunoreactivity in the hippocampus proper, Nurr1 immuno-
reactivity in the DG gradually and markedly decreased during 
normal aging (Table I and Fig. 2G, H and I). Therefore, Nurr1 
immunoreactivity decreased in the hippocampal regions in an 
age‑dependent manner.

CV positive cells. In the young, adult and aged groups, CV 
positive cells were well distributed, mainly in the SP of the 
hippocampal CA1‑3 regions, and the granular cell layer (GCL) 

and polymorphic layer (PL) of the DG in the hippocampus 
(Fig. 3A‑I). The distribution of Nurr1 immunoreactivity was 
concentrated to pyramidal neurons of the SP in the hippo-
campus proper and to granule cells of the GCL in the DG 
when comparing with the results of CV staining (Fig. 3).

Discussion

In the present study, Nurr1 immunoreactivity was primarily 
observed in pyramidal neurons and granule cells, which are 
well established as principal neurons of the hippocampus (28), 
in young, adult and aged gerbil hippocampi. The results of 
Nurr1 immunoreactivity in the hippocampi were generally 
consistent with those of a previous study in C57BL/6 mice, 
which demonstrated that clear and specific Nurr1 immunore-
activity occurred in the hippocampus (29).

Chu et al (19) reported that Nurr1 protein was significantly 
reduced in the substantia nigra of elderly human subjects. 
Furthermore, they identified a significant age‑dependent 
decline in the number of Nurr1‑immunoreactive neurons 

Figure 1. Western blot analysis of Nurr1 protein expression in hippocampi 
derived from young, adult and aged gerbils. The RODs of immunoblot bands 
are shown as percentage values. Data are presented as the means ± standard 
error of the mean. *P<0.05 vs. young group; #P<0.05 vs. adult group. Nurr1, 
nuclear receptor related‑1 protein; ROD, relative optical density.

Table I. Mean intensity of Nurr1 immunoreactivity in principal 
cells of the gerbil hippocampus during normal aging. 

	 Postnatal month
	 ---------------------------------------------------------------
	 Young	 Adult	 Aged

Pyramidal neurons of	 +++	 ++	 +
hippocampus proper
Granule cells of	 +++	 ++	 +
dentate gyrus

The level of Nurr1 immunoreactivity was defined by five grades: 
Negative (-), weakly positive (±), moderate (+), strong (++) and very 
strong (+++). Nurr1, nuclear receptor related-1 protein. 
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in the substantia nigra of middle‑aged and aged individuals 
compared with in young subjects (19). In aged rats, Nurr1 gene 
expression has been reported to be significantly decreased by 
33% in dopaminergic neurons of the substantia nigra (20); as 
such, it was suggested that age‑dependent decrease of Nurr1 in 
dopaminergic neurons may be associated with impairment of 

nigrostriatal signaling and compromised motor function with 
age (20). In addition, it has been reported that heterozygous 
Nurr1 knockout mice exhibit accelerated age‑dependent reduc-
tion in the number of dopaminergic neurons and impaired 
dopamine signaling compared with wild‑type littermate 
controls (30).

Figure 3. CV staining in hippocampal regions of young, adult and aged gerbils. Neuronal morphology and distribution was observed by CV staining in the 
(A‑C) CA1 and (D‑F) CA3 regions and (G‑I) DG. In all groups, pyramidal neurons were identified in the SP in the CA1 and 3 regions, and granule cells were 
identified in the GCL in the DG. Magnification, x20; scale bar, 100 µm. CV, cresyl violet; DG, dentate gyrus; SP, stratum pyramidale; SO, stratum oriens; SR, 
stratum radiatum; ML, molecular layer; GCL, granule cell layer; PL, polymorphic layer. 

Figure 2. Nurr1 immunohistochemistry in hippocampal regions of young, adult and aged gerbils. Nurr1 expression was detected in the (A‑C) CA1 and 
(D‑F) CA3 regions and (G‑I) DG. In the young group, strong Nurr1 immunoreactivity was detected in pyramidal neurons of the SP in the CA1 and 3 regions 
(arrows) and in granule cells of the GCL in the DG (arrowheads). Nurr1 immunoreactivity in the SP and GCL gradually decreased in the adult and aged groups. 
Magnification, x20; scale bar, 100 µm. Nurr1, nuclear receptor related‑1 protein; DG, dentate gyrus; SO, stratum oriens; SP, stratum pyramidale; SR, stratum 
radiatum; ML, molecular layer; GCL, granule cell layer; PL, polymorphic layer.
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In the current study, the protein level of Nurr1 in the hippo-
campus was significantly decreased during the normal aging 
process. In addition, Nurr1 immunoreactivity, predominantly 
identified in the principal neurons (pyramidal and granule 
cells) of the hippocampus, was also decreased during the 
normal aging process. To the best of our knowledge, this is 
the first study to demonstrate age‑dependent decrease of Nurr1 
protein expression in the hippocampus. However, it is diffi-
cult to conclude the implications of this marked reduction in 
hippocampal Nurr1 due to aging. Nurr1 has been considered 
to be among the key target genes controlled by acetylation 
during long‑term memory formation (31), and has also been 
implicated to serve critical roles in the formation of long‑term 
memory, as Nurr1 expression is increased during memory 
acquisition and consolidation (31‑34). In addition, knockdown 
of Nurr1 or blocking Nurr1 activity in the hippocampus may 
lead to impairment of long‑lasting cognitive function (35). 
Principal neurons are serially or multi‑directionally connected 
within trisynaptic hippocampal circuits for information 
processing  (36). Pyramidal cells are involved in encoding 
spatial, contextual and emotional information to form cogni-
tive memory (37), and granule cells form major structures 
involved in pattern separation (the ability to discriminate 
among similar events) (38). Therefore, it has been suggested 
that Nurr1, expressed in principal cells, serves critical roles in 
hippocampal‑dependent cognitive processes (35). In addition, 
it has been identified that cognitive impairment begins around 
PM 12 and major cognitive decline occurs around PM 24 in 
mice (39‑41). This is somewhat consistent with the present 
results demonstrating that Nurr1 protein level and immu-
noreactivity in the hippocampus gradually decreased with 
age. Therefore, it may be postulated that a decrease of Nurr1 
protein expression in the hippocampus with increasing age 
may be associated with age‑dependent cognitive impairment. 
However, limitations of the study include the lack of data on 
age‑related changes in Nurr1 mRNA expression, which should 
be obtained in future studies.

In conclusion, the present results indicate that Nurr1 protein 
expression age‑dependently decreases in the hippocampus. 
Overall, the findings suggest that age‑dependent decrease in 
Nurr1 expression may be associated with a decline of cognitive 
function in the hippocampus.
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