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Repurposing A549 Adenocarcinoma Cells: New Options for
Drug Discovery

According to the World Health Organization 2019 Global Health
Estimates, respiratory diseases are among the leading causes of
mortality worldwide. Chronic obstructive pulmonary disease, lower
respiratory infections, and lung cancer are the third, fourth, and
sixth most common causes of mortality, respectively (1). The cost of
quality health care for respiratory diseases was a significant burden
for many countries, including the United States, even before
coronavirus disease (COVID-19) was declared a global pandemic
(2). Despite these facts, very few new drugs have been introduced
in the past few decades. Multiple factors contribute to the low rate
of drug development in respiratory medicine, including poor
understanding of disease’s pathophysiology and the lack of good
in vivo and in vitro models, which complicates identifying suitable
clinical targets (3). The scientific community has taken steps to
address this, creating strategies to harness the knowledge and
experience of both academia and the pharmaceutical industry (3).
The emergence and rapid improvement of technologies that enable
simultaneous profiling of genetic, epigenetic, protein, and
metabolite programs of thousands of individual cells have led to
significant breakthroughs in understanding respiratory diseases,
increasing the identification of candidate targets for new or
repurposed drugs (4–7). The field has also experienced exponential
growth in the implementation of more complex in vitro techniques
that support the culture and expansion of several cell types, which
can be used for disease modeling.

Alveolar type 2 cells (AT2) have been identified as key players
in a diverse collection of lung diseases, including idiopathic
pulmonary fibrosis and lung adenocarcinoma (8, 9). AT2 cells are
critical for the normal function of the distal lung; they maintain
homeostasis in the alveoli and participate in innate immunity by
synthesizing and secreting surfactant proteins (10, 11). AT2 cells
also serve as facultative progenitor cells that regenerate the lung
alveoli after injury or during normal attrition (12). For years, the
in vitro study of these cells was limited to two-dimensional cultures
that failed to support their proliferation and self-renewal.
Organotypic three-dimensional cultures, organ-on-a-chip, and
precision-cut lung slices are now reliable tools that provide the
environment required to maintain and study AT2 cells and other
epithelial progenitor cells. They can be used in various settings,
from understanding developmental processes to disease modeling
and drug testing (13–17). These new tools offer great promise for
broad applications. However, they are not well suited as high-
throughput screening platforms for therapeutic discovery.

Two-dimensional cell cultures have been largely used in
academic and pharmaceutical settings; these are simple, versatile,
and easily reproducible methods to understand molecular
mechanisms and are easily scalable to drug discovery platforms. In

this issue of the Journal, Kanagaki and colleagues (pp. 504–514)
describe how they circumvented the difficulties of maintaining
primary AT2 cells in two-dimensional culture and the scalability
limitations of three-dimensional cultures by genetically modifying
A549 cells (18).

A549 cells are an epithelial cell line derived from lung
adenocarcinoma (19). They have been used widely as a model for
the study of lung cancer, and they have also been used as a model
of type 2 alveolar epithelium. A549 cells express ABCA3 (ATP-
binding cassette subfamily A member 3) and bear lamellar body-
like structures. ABCA3 is a protein required to regulate surfactant
protein homeostasis and the formation of lamellar bodies (LB),
specialized secretory vesicles that store the surfactant proteins in
AT2 cells (19). However, A549 cells do not express surfactant
proteins. To model the LB function of AT2 cells, Kanagaki and
colleagues generated stable clones of cells harboring LB-like
organelles (LB cells) that express and secrete exogenous surfactant
proteins. To explore how closely the engineered cells recapitulate
the function of primary AT2 cells, they compared the
transcriptomic profiles of LB cells and primary AT2 cells by
scRNA-seq (single-cell RNA sequencing). They show that LB cells
express similar amounts of ABCA3 and surfactant protein B and D
compared with primary AT2 cells; interestingly, the expression
of surfactant protein C, specific to AT2, was lower in LB cells.
However, the expression patterns in LB cells were more similar
to those in primary AT2 cells than in “wild-type” A549 cells
(18). Next, they treated the LB cells with amiodarone. This
antiarrhythmic drug can cause interstitial lung disease and
pulmonary fibrosis by altering lipid homeostasis (20). The authors
developed a high-content screening assay for LB using LB cells and
used it to screen several compounds from the Kyoto University
Chemistry library. This led to the identification of HPbCD as a
candidate therapeutic agent for amiodarone-induced interstitial
pneumonia, validating their results using induced pluripotent stem
cell (iPSC)-derived alveolar organoids (18).

Alterations in lipid homeostasis and changes in surfactant
proteins in AT2 cells have been associated with neonatal and adult
lung disease (21). The difficulty in obtaining primary lung tissue
from patients and healthy donors hinders the establishment of
ex vivo and in vitro models of lung disease. In their study, Kanagaki
and colleagues developed a stable cell line that recapitulates some
of the central and unique functions of primary AT2 cells in a cell
line that retains the high proliferative capacity of the original
A549 cell line, which makes it a useful tool for the identification
of new candidate molecules using high-content screening and
high-throughput screening assays. However, as with all cell-based
assays and, more importantly, with assays using genetically
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engineered cells, critical factors must be considered before their use
in large-scale experiments. For example, transformed cell lines can
exhibit different gene expression and cell cycle profiles compared
with the primary cells. Depending on the particular pathway or
phenotype of interest, this difference could modify the results,
complicating or misleading the data’s interpretation (3).

The development of a new drug from early discovery to the final
product being approved by the U.S. Food and Drug Administration
is a process that can take 12–15 years (22). Creating better
proof-of-concept studies, from controlled and reproducible two-
dimensional culture systems to more complex in vitro disease
models, could facilitate the selection of candidate drugs and
improve the process of drug discovery. The severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) global pandemic created a
sense of urgency in the biomedical community; strong collaborative
efforts made possible the rapid generation of reliable diagnostic
tests and the development of multiple vaccines. By taking
advantage of the lessons learned from this health crisis and
implementing the strategies that show success, we could likely
improve and optimize therapeutic discovery and development. n
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