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Healing of cutaneous wounds is a complex and well-coordinated process requiring
cooperation among multiple cells from different lineages and delicately orchestrated
signaling transduction of a diversity of growth factors, cytokines, and extracellular
matrix (ECM) at the wound site. Most skin wound healing in adults is imperfect,
characterized by scar formation which results in significant functional and psychological
sequelae. Thus, the reconstruction of the damaged skin to its original state is of concern to
doctors and scientists. Beyond the traditional treatments such as corticosteroid injection
and radiation therapy, several growth factors or cytokines-based anti-scarring products
are being or have been tested in clinical trials to optimize skin wound healing.
Unfortunately, all have been unsatisfactory to date. Currently, accumulating evidence
suggests that the ECM not only functions as the structural component of the tissue but
also actively modulates signal transduction and regulates cellular behaviors, and thus,
ECM should be considered as an alternative target for wound management
pharmacotherapy. Of particular interest are small leucine-rich proteoglycans (SLRPs), a
group of the ECM, which exist in a wide range of connecting tissues, including the skin.
This manuscript summarizes the most current knowledge of SLRPs regarding their
spatial-temporal expression in the skin, as well as lessons learned from the genetically
modified animal models simulating human skin pathologies. In this review, particular focus
is given on the diverse roles of SLRP in skin wound healing, such as anti-inflammation,
pro-angiogenesis, pro-migration, pro-contraction, and orchestrate transforming growth
factor (TGF)b signal transduction, since cumulative investigations have indicated their
therapeutic potential on reducing scar formation in cutaneous wounds. By conducting this
review, we intend to gain insight into the potential application of SLRPs in cutaneous
wound healing management which may pave the way for the development of a new
generation of pharmaceuticals to benefit the patients suffering from skin wounds and
their sequelae.
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INTRODUCTION

The skin, comprised of the epidermis, dermis, and deeper
subcutaneous tissue, is the largest organ of the body, and
functions as the first line of defense from external assaults
(Proksch et al., 2008). Surgery and trauma in adults often
result in wounds, which can cause the formation of refractory
scars [i.e., hypertrophic scars and keloids, which are specific to
humans (Baker et al., 2009)] with significant functional and
psychological consequences (Bayat et al., 2003) that reduce the
quality of life of individuals (Brown et al., 2008). Compared to
the normal scars that can be much smaller than the original
wound, keloids are defined as pathologic scars that extend
beyond the area of the original wound, while hypertrophic
scars are restricted to the wound borders (Figure 1) (Atiyeh
et al., 2005; Baker et al., 2009; Naylor and Brissett, 2012).
Consequently, annual spending on managing unwanted
scarring exceeds $20 billion in the United States (Block et al.,
2015). Local corticosteroid injection and radiation therapy are
the current standards of care for patients who suffer from scar
formation (Tziotzios et al., 2012); however, neither method
shows consistent efficacy and often results in undesirable,
sometimes severe, side effects (Gauglitz et al., 2011). For
instance, local corticosteroids injection is known to cause
reduced wound strength with increased risks of dehiscence,
pigmentation changes, granulomas, and skin atrophy (Chang
and Ries, 2001; Bayat et al., 2003); while radiation therapy is
associated with growth inhibition, decreased wound strength,
and increased long-term cancer risks (Haubner et al., 2012).

To date, several anti-scarring products targeting growth
factors involved in the cutaneous wound healing process are
being, or have been, tested in clinical trials for wound healing
management. These include Juvista™ [recombinant
transforming growth factor (TGF)b3, traditionally considered
as an “antifibrotic TGFb isoform” ; clinicaltrials.gov:
NCT00742443], interleukin (IL)10 (clinicaltrials.gov:
NCT00984646) (Kieran et al., 2013; Kieran et al., 2014),
Frontiers in Pharmacology | www.frontiersin.org 2
DSC127 (NorLeu3-ang io tens in ; c l in i ca l t r i a l s . gov :
NCT01830348), s iRNA (RXI-109; cl inicaltr ials .gov:
NCT02030275) and antisense oligonucleotides (EXC 001;
clinicaltrials.gov: NCT01038297) that downregulate the
expression of connective tissue growth factor (CTGF).
However, most of these products failed to demonstrate efficacy
in human trials. For instance, Juvista™ failed in phase III clinical
trial in 2011 (McKee, 2011); Derma Sciences reported to stop all
development work with DSC127 in scar reduction in 2015
(Levin, 2015); IL10 showed no efficacy of scar reduction in
humans of African continental ancestral origin (Kieran et al.,
2014); and clinical trials appear to have been halted for EXC001
(Pfizer, 2011) as there have been no public updates since 2012;
Relatively, RXI-109 seems to have some benefits on the visual
appearance of scar tissue in phase II clinical trials, but it requires
multiple post-surgery injections, which bring higher therapeutic
costs and increase the patient’s suffering (Galiano, 2015). As a
consequence, no drugs have been officially approved for the
prevention and reduction of cutaneous scarring.

The extracellular matrix (ECM), composed of numerous
macromolecules, not only functions as the critical structural
components but also plays essential roles in modulating vital
cellular processes, such as adhesion (Jian et al., 2013; Desseaux
and Klok, 2015; Shih et al., 2016), migration (Estrach et al., 2011;
Daley and Yamada, 2013; Jian et al., 2013; Scarpa and Mayor,
2016; Zheng et al., 2017), proliferation (Wight et al., 1992; Leiton
et al., 2015; Cheng et al., 2016), differentiation (Jian et al., 2013;
Hoshiba et al., 2016; Zheng et al., 2017), apoptosis (Ii et al., 2006;
Oskarsson et al., 2015; Zhang et al., 2015), and cell fate
determination (Bi et al., 2007; Zheng et al., 2012; Li et al.,
2016; Zheng et al., 2019). Consequently, the ECM-based
pharmacotherapeutics have been considered for treating
fibrotic diseases (Ye et al., 2007), osteoarthritis (Clegg et al.,
2006), osteoporosis (Stoch and Wagner, 2008), and malignancies
(McKenzie, 2007). The most abundant ECM protein in
connective tissues, collagen, forms the highly organized, three-
dimensional macrostructure of the healthy skin (Ruszczak, 2003;
Davison-Kotler et al., 2019). The initial formation and
maintenance of normal, healthy collagenous matrix alignment
require proteoglycans (PGs) (Chen and Birk, 2013), which are
another broadly distributed component of the ECM in
connective tissues to provide resilience, viscoelasticity, and a
suitable environment for cellular function and development
(Iozzo and Schaefer, 2015). Consisting of a core protein
covalently attached with one or more glycosaminoglycan
(GAG) chains, PGs play a pivotal role in the proper alignment
of fibrous and elastic components in the skin and control the
bioavailability of several growth factors in the ECM surrounding
cells to stimulate the skin turnover and repair (Mary and James,
2015). Based on their structure, location, and properties, PGs can
be divided into 4 classes: intracellular PGs, basement membrane
PGs, cell-surface PGs, and extracellular PGs (Vynios, 2014; Iozzo
and Schaefer, 2015). In this review we are primarily concerned
with the extracellular PGs, which are known to play a role in skin
wound healing. For instance, a large, aggregating and water-
retaining extracellular PG, versican, is widely detected in the skin
FIGURE 1 | A diagram of typical appearances of normal scar, hypertrophic
scar, and keloid. Unlike that the normal scar is often smaller than the original
wound, keloids extend beyond the edge of the original wound, while
hypertrophic scars are restricted to the wound borders. The black dotted line
demarcates the area of the original wound.
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(Carrino et al., 2011). Versican accumulation in the pericellular
matrix leads to the fibroblast-myofibroblast transition in the
dermis by knocking out a versican-degrading protease [ADAM
metallopeptidase with thrombospondin type 1 motif (ADAMTS)
5] (Hattori et al., 2011). This indicates that versican
accumulation may be beneficial for skin wound healing since
the fibroblast-myofibroblast transition is pivotal for wound
contraction. Aggrecan is another extracellular PG that was
initially found in the cartilage and is absent in normal skin but
accumulates in scar tissue (Velasco et al., 2011; Vynios, 2014;
Mary and James, 2015). Aggrecan accumulation may hinder cell
migration to the wound and prevent the transition of fibroblast
progenitor cells to mature fibroblasts (Velasco et al., 2011). These
studies suggest that aggrecan may be a potential target for
reducing scar formation.

Besides versican and aggrecan, small leucine-rich
proteoglycans (SLRPs), constitute another large family of
extracellular PGs (Pietraszek-Gremplewicz et al., 2019) that
play a pivotal role in collagen fibril growth, fibril organization,
and ECM assembly in healthy skin (Merline et al., 2009; Chen
and Birk, 2013). A typical SLRP has a core protein of 40–60 kDa
with 10–12 leucine-rich repeat (LRR) motifs (Iozzo, 1999). Each
LRR motif contains 20–29 amino acids, in which an 11-amino
acid hallmark, LXXLXLXXNXL (X being any amino acid) can be
identified (Iozzo, 1998; McEwan et al., 2006; Bella et al., 2008).
Each LRR motif generally forms a curved conchoid structure in
which LXXLXLXXNXL builds a b-strand, while b-strands from
the LRRs assemble into a b-sheet that constitutes the concave
surfaceof the entire SLRPcoreprotein (Figure2) (Scott et al., 2004).
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The core proteins of SLRPs are thought to carry a two-fold
biological function in the skin: (1) Regulating collagen
fibrillogenesis, fibril organization, and ECM assembly to
control tissue strength and biomechanics (Rada et al., 1993),
which is prerequisite for skin development (Smith and Melrose,
2015); (2) modulating the bioactivities of a myriad of cytokines,
chemokines, ligands, and receptors (Tillgren et al., 2009; Chen
and Birk, 2013; Hultgardh-Nilsson et al., 2015) that orchestrate
the wound healing process (Barrientos et al., 2008). Besides,
members of the SLRP family generally obtain GAG modifications
post-translationally. The multitude of substitution sites on the
SLRP core protein, along with variable glycosylation states, result
in a variety of SLRPs which can further facilitate their
interactions with various cell surface receptors, chemokines,
cytokines, and growth factors (Kram et al. , 2017).
Abnormalities in SLPR expression or structure often alter
matrix integrity and lead to dysfunctional matrix assembly in
the skin, like those found in human pathological situations and
SLRP-deficient animal models (Chen and Birk, 2013). For
example, expression and structural changes of some SLRPs
were noticed during skin development (Carrino et al., 2011),
which was summarized below. Taken together, SLRPs are not
only important for structural establishment of the ECM but also
crucial in a variety of biological and pathological processes, such
as the remodeling of the ECM during cutaneous injury and
repair (Kalamajski and Oldberg, 2010; Karsdal et al., 2013; Tracy
et al., 2016; Karamanou et al., 2018).

This review aims at summarizing all relevant available
information about the spatial-temporal expression pattern of
FIGURE 2 | The crystal structure of the DCN. DCN is the archetypal SLRP [the structure was retrieved from Protein Data Bank (PDB), ID: 1XKU] (Scott et al., 2004).
DCN is a single-domain structure with a righthanded, curved solenoid fold characteristic of LRR proteins. The long b-sheet that forms the inner, concave face is
comprised of 14 b-strands. The penultimate LRR that extends laterally from the main body of the molecule is referred to as the ‘ear’ (yellow) repeat, which is thought
to be a distinctive feature of the SLRP family.
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SLRPs in the skin, their relationship with human skin
pathologies, and current understandings of their roles in skin
wound healing to gain insights into their potentials as wound
healing management pharmaceuticals.
THE SLRPS IN NORMAL AND DISEASED
SKIN

Since decorin (DCN) was identified as the first SLRP (Krusius
and Ruoslahti, 1986), many SLRP family members have been
recognized in the last 30 years. Currently, 18 SLRPs have been
divided into 5 classes based on the homologies at the genomic
and protein level, the feature of the N-terminal cysteine residues
with defined spacing, and chromosomal organization (Fisher
et al., 1989; Henry et al., 2001; McEwan et al., 2006; Schaefer
and Iozzo, 2008). For instance, SLRPs detected in the skin are
predominantly Class I-III, which share a distinctive characteristic
at the C-terminal, called an “ear” repeat (Figure 2). The “ear”
repeat is the penultimate LRR that forms the most extended loop
laterally from the convex face of the entire molecule (McEwan
et al., 2006; Chen and Birk, 2011). The “ear” spreads from the first
conserved C-terminal cysteine residue to the cysteine residue of
the last LRR. Importantly, residues in the “ear” are not highly
conserved among different SLRPs, which indicates a possible
relationship to their specific functions. Consequently, the “ear”
repeat is thought to maintain the configuration of the core
protein and affect its ligand-binding ability (Chen and Birk,
2011; Chen and Birk, 2013). In comparison, Class IV and V
SLRPs lack the “ear” repeat and are categorized as non-canonical
classes of SLRPs (Schaefer and Iozzo, 2008).

Class I SLRPs
Five SLRP members are identified in this class, including DCN
(Danielson et al., 1997), biglycan (BGN) (Corsi et al., 2002),
asporin (ASPN) (Henry et al., 2001), extracellular matrix protein
2 (ECM2) (Nishiu et al., 1998), and extracellular matrix protein
X (ECMX) (Iozzo and Schaefer, 2015). DCN, BGN, and ASPN all
present in the skin with different transcriptional patterns, and
ECM2 mRNA expression can also be detected in the skin
(Maquart et al., 2010).

Decorin (DCN)
Containing a 36 kDa core protein with single chondroitin sulfate
(CS) or dermatan sulfate (DS) chain (Roughley, 2006), DCN has
been considered as the predominant interstitial PG in human
skin (Carrino et al., 2011; Li et al., 2013). In the skin, DCN has
been detected mostly in the reticular dermis, but absent from the
papillary dermis. Minor DCN expression was also found in the
epidermis (Fleischmajer et al., 1991; Lochner et al., 2007). Since
DCN comprises most of the type I collagen-binding PGs in
human skin (Li et al., 2013), it is thought to play a critical role in
the regulation of fibril structure in the skin.

In fetal rat skin, transcription of DCN increases between
embryonic days 16.5 (E16.5) and E18.5 (term, 21.5 days) which is
correlated to the transition from fetal-type scarless healing to
adult-type scarring period in the skin (Soo et al., 2000;
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Zheng et al., 2016). In human skin, the level of DCN
accelerates with aging (Carrino et al., 2000; Carrino et al.,
2003). For example, a clinical study showed that the
transcriptional level of DCN in skin biopsies from older adult
donors (61–68 years) was twofold greater than that of their
younger counterparts (25–35 years) (Lochner et al., 2007). In
addition to its elevated expression, the molecular weight of DCN
in older human skin was found to be significantly smaller due to
the shortened GAG chains (Li et al., 2013). Similar results have
been replicated in rats (Ito et al., 2001; Nomura et al., 2003).
Importantly, the cutaneous wound healing process of the elderly
is much slower, while all healing phases differ from their younger
counterparts, including delayed inflammatory response, delayed
proliferative response, and much weaker remodeling phase
(Gerstein et al., 1993; Gould et al., 2015). Therefore, the
elevated expression and reduced weight of DCN in the skin of
the aged population may be associated with their functional
alterations, although the underlying mechanism is not fully
elucidated and warrants further investigations. Moreover,
altered expression of DCN has been detected in a number of
human diseases with skin phenotypes, including decreased DCN
in fibroblasts in patients with neonatal Marfan syndrome
(Raghunath et al., 1993), increased DCN in fibroblasts from
patients with localized scleroderma (Izumi et al., 1995), and
increased DCN in fibroblasts from patients with systemic
sclerosis (Westergren-Thorsson et al., 1996). Targeted
disruption of DCN in mice results in abnormal collagen fibril
morphology and skin fragility with markedly reduced tensile
strength (Danielson et al., 1997). Another study showed that
DCN and BGN double-knockout (KO) mice directly resemble
the rare progeroid variant of human Ehlers-Danlos syndrome
(EDS), in which skin fragility and progeroid changes in the skin
(reduced hypodermis) are dramatically displayed (Corsi et al.,
2002). Furthermore, in a progeroid patient carrying two point
mutations in beta-1,4-galactosyltransferase 7 (B4GALT7), only
50% of the DCN exhibit GAG side-chain substitution on their
core protein, which is thought to be a major mechanistic cause
for the skin and wound healing defects observed in this patient
with the progeroid form of EDS (Gotte and Kresse, 2005). These
investigations indicate that DCN is crucial to the normal
function of the skin and maybe a potential candidate for
pharmacological development in the treatment of some
skin diseases.

Biglycan (BGN)
Anotherwell-studiedClass I SLRP isBGN.BGNusually contains a
38 kDa core protein attached with two CS/DS chains; however,
nonglycanated forms of BGN have also been detected in human
intervertebral discs (Johnstone et al., 1993). While both BGN and
DCN belong to Class I SLRPs and are able to bind with type I
collagen fibrils directly, their spatial expression in skin is very
different. For instance, DCN is mainly synthesized by interstitial
fibroblasts,whereasBGNis secretedbybothdermal andepidermal
cells (Li et al., 2013). Besides, BGN is present in the connective
tissue sheath of the hair follicle (Malgouries et al., 2008).

Similar to DCN, decreased BGN expression was also found in
fibroblasts isolated from the skin of systemic sclerosis patients
January 2020 | Volume 10 | Article 1649
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(Westergren-Thorsson et al., 1996). Although BGN deficiency in
mice also induces changes in collagen fibril morphology in the
skin and leads to the mild cutaneous abnormalities with thinning
of the dermis, skin fragility of BGN-deficient mice is not
noticeably altered (Corsi et al., 2002). Corsi et al. claimed that
the skin abnormalities in BGN-deficient mice were more subtle
in comparison with DCN-deficient mice (Corsi et al., 2002),
which in turn resulted in that research was not focused on BGN
and its role in skin and wound healing.

Asporin (ASPN)
Unlike general SLPRs, ASPN contains a 43 kDa core protein, but
lacks a GAG side chain (Lorenzo et al., 2001) and carries a
polymorphic calcium-binding polyaspartate sequence
(Kalamajski et al., 2009). ASPN has been found in dermis,
perichondrium and periosteum, tendon, and eye sclera (Kou
et al., 2007). ASPN-null mice exhibit an increased skin
mechanical toughness due to the altered GAG composition
and structure in the ECM (Maccarana et al., 2017). However,
ASPN has not been studied in depth for its involvement in skin
development and cutaneous wound healing.

Class II SLRPs
To date, this class contains 5 members that can be divided into 3
subgroups based on their protein homology. Subgroup A
consists of fibromodulin (FMOD) (Velez-Delvalle et al., 2008)
and lumican (LUM) (Yeh et al., 2010), subgroup B includes
keratocan (KERA) (Corpuz et al., 1996) and proline and arginine
rich end leucine rich repeat protein (PRELP) (Grover and
Roughley, 2001), and subgroup C is comprised of
osteomodulin (OMD) (Tasheva et al., 2002).

Fibromodulin (FMOD)
FMOD has a 42 kDa core protein with up to 4 N-linked keratan
sulfate (KS) attached, which shares significant sequence
homology with DCN and BGN (Antonsson et al., 1993). In the
skin, FMOD is predominately secreted by dermal fibroblast and
is also expressed by human epidermal keratinocytes in vitro and
detected in the human epidermis in vivo (Velez-Delvalle
et al., 2008).

Unlike other SLRPs, expression of FMOD significantly
decreases during the transition from fetal-type scarless repair
to adult-type repair with scaring in a fetal rat skin model (Soo
et al., 2000; Zheng et al., 2016). Moreover, our recent study
demonstrated that FMOD is essential for fetal-type scarless
cutaneous wound healing by loss- and gain-of-function studies
in mouse and rat models (Soo et al., 2000; Zheng et al., 2016).

Although FMOD-null mice showed no apparent defects in
the unwounded skin (Chakravarti, 2002), a wider distribution of
collagen fibril diameters accompanied with enlarged interfibrillar
spaces between collagen fibrils was observed (Khorasani et al.,
2011). Meanwhile, thinner collagen fibrils and abnormal fibers
with increased deposition of LUM were also found in the
tendons of FMOD-null mice (Svensson et al., 1999). As
expected, FMOD and LUM double-deficient mice showed
more obvious abnormalities, such as reduced body size,
increased skin hyperextensibility, escalated gait abnormality,
Frontiers in Pharmacology | www.frontiersin.org 5
intensified joint laxity, and accelerated age-dependent
osteoarthritis resembling EDS (Jepsen et al., 2002). These
abnormal phenotypes may indicate a functional overlap
between FMOD and LUM in modulating the ECM and cellular
behavior in a broad range of tissues (Chakravarti, 2002; Jepsen
et al., 2002). It is known that the re-organization of ECM is
necessary during the healing process since pathological scarring
occurs when the ECM is not appropriately reformed. Thus, the
fact that FMOD is essential for regular collagen fibril
organization in connective tissues suggests that FMOD may
play a pivotal role in skin wound healing.

Lumican (LUM)
LUM was first isolated from the chicken cornea (Blochberger
et al., 1992). LUM has a 38 kDa core protein with 4 N-linked sites
within the LRR domain of the core protein that can be
substituted by KS (Scott, 1996). It is expressed in the
subepithelial dermis by dermal fibroblasts (Ying et al., 1997;
Chakravarti et al., 1998). Interestingly, LUM is also secreted by
melanoma cells but not normal melanocytes (Sifaki et al., 2006).

Unlike FMOD whose expression is reduced from early/mid-
gestation when skin wounds heal scarlessly to late-gestation
when skin wounds end up with adult-type scarring, LUM
expression in fetal skin is upregulated during the same
transition period, much like DCN (Zheng et al., 2016). On the
contrary, a significant negative correlation between LUM
transcriptional levels in human skin fibroblasts and donors’ age
was observed in a study involving 1-month- to 83-year-old
participants (Vuillermoz et al., 2005). The steady decline in
LUM expression accompanied by the upregulation of DCN
expression with aging indicates that these changes may be
contributing to the functional impairment of fibroblasts during
aging, such as decreased fibroblast growth and survival (Campisi,
1998; Brown, 2004; Vuillermoz et al., 2005). Interestingly, similar
to DCN-deficient mice, LUM-null mice display skin laxity and
fragility resembling EDS (Chakravarti et al., 1998). It is worth
noting that wounds in FMOD-null mice have delayed dermal
fibroblast migration but accelerated epidermal migration
accompanied by elevated LUM expression (Zheng et al.,
2014b), indicating FMOD and LUM may predominately
function on fibroblast and keratinocytes, respectively. Thus, in
comparison with FMOD whose biopotency is mainly assessed on
dermal functions (Zheng et al., 2014a; Zheng et al., 2014b; Zheng
et al., 2016), the investigation of LUM is more focused on the
cornea in which epidermal migration plays more essential roles
during wound healing (Saika et al., 2000; Seomun and Joo, 2008;
Frikeche et al., 2016).

Keratocan (KERA)
KERA is a 60–70 kDa KS substituted member of the SLRP family
(Mary and James, 2015). It is mainly abundant in the cornea and
detected in much lesser amount in the skin as a non-sulfated
glycoprotein (Corpuz et al., 1996). The variety of the abundance
and GAG structure of KERA found in different tissues suggests
that its function be tissue-dependent. For example, in the cornea,
KERA with long, highly sulfated KS chains has been thought to
be essential for corneal transparency (Kao and Liu, 2002). Thus,
January 2020 | Volume 10 | Article 1649

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Pang et al. SLRPs in Skin Wound Healing
similar to LUM (Yamanaka et al., 2013), KERA is also a potential
target for cornea healing therapies (Kao and Liu, 2002; Carlson
et al., 2003; Liu et al., 2003; Chen et al., 2011). However, its role in
the skin is still ambiguous for delineating.

Proline and Arginine Rich End Leucine Rich Repeat
Protein (PRELP)
PRELP contains a 55-kDa core protein with no GAG and an N-
terminal region which is highly unique, conserved, and rich in
arginine and proline (Bengtsson et al., 2000). It functions as a
molecule by anchoring basal membranes to the underlying
connective tissue (Grover and Roughley, 1998; Grover and
Roughley, 2001). For example, PRELP is expressed in the
basement membrane between the epidermis and the dermis in
the skin (Bengtsson et al., 2002). Overexpression of PRELP inmice
leads toreducedcollagenfiberbundlecontentandsize in thedermis
and decreases the thickness of the hypodermal fat layer in the skin
(Grover et al., 2007), which somewhat resembles the symptoms of
Hutchinson–Gilford progeria (Mounkes et al., 2003). In addition,
PRELP can bind to perlecan (Bengtsson et al., 2002), which is
thought to be essential for epidermal formation by regulating the
survival of keratinocytes (Sher et al., 2006). This indicates that
PRELPmay participate in regulating the function of keratinocytes,
but further studies are needed to elucidate it. However, a clear
application of PRELP for wound healing is still lacking.

Interestingly, in comparison with Class I SLRPs, most Class II
SLRPs seem to have a more executive function on epidermal
keratinocytes. The one exception is FMOD, which has proven to
be critical for maintaining the normal function of dermal
fibroblasts (Zheng et al., 2016), as well as endothelial cells
(Adini et al., 2014; Zheng et al., 2014a), like DCN and BGN.
The response to different cell types may pave the fundamental for
developing combination therapies of SLRPs to target both
dermal and epidermal cells simultaneously to maximize their
complementary biopotency and thus to optimize the skin wound
healing outcome.

Class III SLRPs
To date, osteoglycin (OGN, also known as mimecan) (Tasheva
et al., 2002), epiphycan (EPYC) (Johnson et al., 1997) and opticin
(OPTC) (Reardon et al., 2000) constitute this class, which is
characterized by a relatively low number of LRRs (7 LRRs)
compared to the classic 10-12 LRRs of other classes.

OGN was first identified as a 25 kDa KS SLRP in the cornea,
and a 36 kDa OGN protein without KS chains was also detected
in other connective tissues including aorta, sclera, skin, cartilage,
the vagus nerve, and in lesser amounts in the cerebellum, kidney,
intestines, myocardium, and skeletal muscle (Funderburgh et al.,
1997). As for its role in the skin, OGN-deficient mice display skin
with moderately reduced tensile strength, which is correlated to
the presence of thicker collagen fibrils that possess marked
increases in collagen fibril diameter. OGN also plays a pivotal
role in collagen fibrillogenesis in the skin (Tasheva et al., 2002).
Although transcription of EPYC and OPTC have been detected
in the skin (Reardon et al., 2000; Takanosu et al., 2001; Maquart
et al., 2010), their biological function in the skin is unclear.
Frontiers in Pharmacology | www.frontiersin.org 6
Class IV and Class V SLRPs
Class IV and V SLRPs are considered to be non-canonical classes
of SLRPs. These include chondroadherin (CHAD) (Haglund
et al., 2011), nyctalopin (NYX) (Bech-Hansen et al., 2000),
tsukushi (TSKU) (Ohta et al., 2004), podocan (PODN) (Ross
et al., 2003), and recently identified podocan like 1 (PODNL1)
(Mochida et al., 2011). The function and spatial-temporal
expression patterns of these SLRPs in the skin are rarely
studied. A previous study detected CHAD mRNA in
keratinocytes, and NYX mRNA in keratinocytes and skin
fibroblasts (Maquart et al., 2010). Future studies, not
necessarily limited to the skin, are required to reveal their
biological functions.

The expression and distribution of known SLRPs in the skin,
as well as the abnormalities observed in SLRP-deficient mice, are
summarized in Table 1.
THE SLRPS IN SKIN WOUNDS AND
WOUND HEALING

As a protective barrier shielding the human body from the
environment, the skin plays a pivotal role in maintaining
physiological homeostasis of the human body. Any lesion
breaking the skin barrier will make the organism vulnerable to
infections, thermal disorders, and fluid loss (Sorg et al., 2017).
Skin wound healing is a dynamic, complex and tightly regulated
process comprised of hemostasis, inflammation, proliferation,
remodeling, and maturation phases, in which various cell types
and mediators are recruited at the wound site, and complex
interactions exist between different cells and the ECM (Martin,
1997; Diegelmann and Evans, 2004; Gibran et al., 2007; Artlett,
2013). During the process of wound healing, the ECM not only
provides structural support for the tissues, but also serves as a
platform for cells and mediators that regulates inter/intracellular
signaling (Ghatak et al., 2015). As essential components of the
ECMs, many SLRPs participate in a diversity of signaling
pathways to regulate cellular activities during the wound
healing process.

Inflammation
Following an injury, skin cells are exposed to acute inflammatory
signals such as pathogen-associated molecular patterns (PAMPs)
or damage-associated molecular patterns (DAMPs) (Takeuchi
and Akira, 2010; Strbo et al., 2014). These patterns can be
recognized by toll-l ike receptors (TLRs) to initiate
inflammation. Leukocytes are attracted to the site of injury,
accompanied by elevated levels of pro-inflammatory cytokines,
and thus amplify the inflammatory response (Eming et al., 2014;
Vestweber, 2015). Gradually, macrophages will display a
transition from the M1 subset (phagocytic activity and
production of pro-inflammatory cytokines) (Galli et al., 2011;
Sindrilaru and Scharffetter-Kochanek, 2013) to the M2 subset
(reparative activity with the synthesis of anti-inflammatory
mediators and the production of the ECM) (Brancato and
Albina, 2011; Sindrilaru and Scharffetter-Kochanek, 2013).
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This switch corresponds to the transition from the inflammation
stage to the proliferation stage in the wound healing process.

Although there have been studies investigating the effects of
SLRPs on the inflammatory response, most do not specifically
focus on skin wound healing. Several studies have shown that
DCN, BGN, and LUM can interact with TLR2 and/or TLR4
signaling pathways in innate immune responses to combat
microbial pathogens. For instance, in mouse peritoneal
macrophages, DCN induces tissue necrosis factor (TNF) and
programmed cell death 4 (PDCD4) production through TLR2
and TLR4, which enhances the proinflammatory effects of
lipopolysaccharides (LPS), a vital constituent of Gram-negative
bacteria, which can trigger a robust immune response (Merline
et al., 2011). BGN has also been proven to be a proinflammatory
factor in mouse peritoneal macrophages by regulating the same
Frontiers in Pharmacology | www.frontiersin.org 7
signal pathways as DCN (Schaefer et al., 2005). Like DCN and
BGN, LUM enhances host immune responses to LPS via TLR4 in
mouse peritoneal macrophages (Wu et al., 2007). Unsurprisingly,
LUM-null mice are hypo-responsive to LPS-induced septic shock
with reduced pro-inflammatory cytokines production (Wu et al.,
2007). Also, LUM has been shown to regulate inflammation in
the development of colitis in mice (Lohr et al., 2012), and
accelerate LPS-induced renal injury in mice via TLR4-nuclear
factor kB (NFkB) pathway (Lu et al., 2015). Moreover, in LPS-
induced wounds of the cornea, no induction of TNF or IL1b, and
reduced infiltration of neutrophils and macrophages were found
in LUM-null mice (Vij et al., 2005).

In contrast to their pro-inflammatory functions in the
aforementioned infection scenario, SLRPs may act as anti-
inflammatory factors to inhibit excessive inflammation during
wound healing in the skin. For example, FMOD-null mice
exhibit elevated and prolonged inflammatory infiltration in the
skin wound area, accompanied by delayed reepithelialization
(Zheng et al., 2014b). Similarly, LUM-deficient mice display an
increased inflammatory macrophage density with delayed
cutaneous wound healing (Yeh et al., 2010). Furthermore,
TSKU has been detected in fibroblasts, myofibroblasts, and
macrophages during skin wound healing in mice. Likewise,
loss of TSKU causes increased TGFb1 expression and excess
inflammation (Niimori et al., 2014). Collectively, these studies
suggest that SLRPs may play a diverse role in inflammatory
response regulat ion, which may highly depend on
the microenvironment.

Angiogenesis
The process of angiogenesis occurs accompanied by fibroblast
proliferation when endothelial cells migrate to the wound site
and provide the nutritive perfusion for fibroblasts and epithelial
cells during the healing process (Martin, 1997; Demidova-Rice
et al., 2012; Sorg et al., 2017). The involvement of SLRPs has been
identified in the angiogenesis of wound healing, tumorigenesis,
and other inflammatory processes. For instance, DCN exhibits
antiangiogenic activities during cutaneous wound healing, while
higher DCN expression was detected in human benign tumors
vs. malignant vascular tumors (Jarvelainen et al., 2006; Salomaki
et al., 2008). Meanwhile, impaired angiogenesis was found in the
injured cornea of DCN-null mice (Schonherr et al., 2004), and
repressed angiogenesis was also present in some tumors
associated with reduced DCN expression (Nayak et al., 2013;
Chui et al., 2014). These studies suggest that DCN can be either
stimulatory or suppressive for angiogenesis, which may be
related to the physiologic and pathologic conditions of tissues
(Järveläinen et al., 2015).

BGN has been shown to have a proangiogenic effect in
fracture healing (Berendsen et al., 2014; Myren et al., 2016),
colon cancer (Xing et al., 2015), and tumor endothelial cells
(Yamamoto et al., 2012), though its role in angiogenesis during
skin wound healing is not clear.

FMOD was found to promote angiogenesis during cutaneous
wound healing (Zheng et al., 2011; Zheng et al., 2014a).
Particularly, FMOD was found to accelerate human umbilical
vein endothelial cell adhesion and spreading, actin stress fiber
TABLE 1 | The expression and distribution of SLRPs and abnormalities of knock
out and overexpression mice in the skin.

SLRP Expression and
distribution in the

skin

Mice model Abnormalities in the
skin

Decorin Most expression in
the dermis and
minor expression in
the epidermis

Targeted
disruption of
decorin in exon2

Skin fragility with
markedly reduced
tensile strength

Biglycan Expression in the
dermis, the
epidermis and the
sheath of hair follicle

Targeted
disruption of
biglycan in
exon2

Mild skin abnormalities
with thinning of the
dermis but without
distinct skin fragility

Decorin and
Biglycan

Not applicable Decorin and
biglycan double-
knockout mice

Skin fragility and
progeroid changes in
the skin (reduced
hypodermis)

Asporin Expression in the
dermis

Targeted
disruption of
asporin in exons
2–3

Increased skin
mechanical toughness

Fibromodulin Expression in the
dermal fibroblast
and human
epidermal
keratinocytes in
vitro and the
epidermis in vivo

Targeted
disruption of
fibromodulin in
exon2

No overt defects in skin,
but larger collagen fibrils
and less orderly packed
collagen fibrils with
increased interfibrillar
space

Lumican Expression in the
dermis

Targeted
disruption of
lumican in
exon2

Skin laxity and fragility

Fibromodulin
and Lumican

Not applicable Fibromodulin
and lumican
double-
knockout mice

Additional gross skin
phenotypes including
skin hyperextensibility

PRELP Expression in the
basement
membrane between
the epidermis and
the dermis

Overexpression
of PRELP
transgenic mice

Decreased collagen fiber
bundle content and size
in the dermis, and the
thinner hypodermal fat
layer

Osteoglycin Expression in the
skin

Targeted
disruption of
osteoglycin in
exon2

Reduction in the tensile
strength of the skin,
thicker collagen fibrils
and a significant
increase in collagen fibril
diameter in the skin
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formation, and eventually tube-like structure network
establishment in vitro (Jian et al., 2013). Furthermore, it has
been confirmed that FMOD stimulates angiogenesis in various in
vivo systems, such as neovascularization, wound healing and
Matrigel™ plug assays. FMOD was also found to enhance
vascular sprouting during normal retinal development (Adini
et al., 2014). FMOD also promotes tumor angiogenesis of small
cell lung cancer by upregulating angiogenic factor expression
(Ao et al., 2017). Overall, these studies constitute evidence that
FMOD displays angiogenic biopotency in numerous
biological processes.

On the other hand, LUM was found to inhibit angiogenesis
by interfering with integrin a2b1 activity and repressing matrix
metalloproteinase (MMP)14 expression in vivo (Niewiarowska
et al., 2011). LUM has also been identified as an inhibitor for
tumor angiogenesis (Albig et al., 2007; Brezillon et al.,
2009; Williams et al., 2011). Interestingly, angiogenesis was
not altered in LUM-deficient mice in aortic ring assays,
Matrigel™ plugs, or healing wound biopsies (Sharma et al.,
2013). Thus, LUM is thought to exhibit an antiangiogenic
effect in restricted circumstances, possibly only in some specific
tumor microenvironments.

In summary, these studies paint the picture of SLRPs playing
a wide range of roles in the angiogenesis of various biological
processes. Specifically, FMOD is the only SLRP confirmed to
enhance angiogenesis during skin wound healing, suggesting that
it may have therapeutic potential in cutaneous healing of poorly
vascularized wounds, such as in the scenarios of diabetic wounds.

Fibroblast Activities
Dermal fibroblasts are the predominant cellular component in
the wound healing process. During the proliferation stage,
fibroblasts migrate into the wound site, and gradually grow to
produce a new provisional ECM through the production of
collagen and fibronectin (Midwood et al., 2004). Wound
contraction will occur when fibroblasts differentiate into
myofibroblasts after reepithelialization. This process decreases
the size of the wound and is followed by the removal of unneeded
cells through apoptosis (Hinz, 2006). SLRPs are known to impact
several of the critical functions of fibroblasts during wound
healing, including migration, proliferation, differentiation, and
collagen synthesis. As a result, abnormal expression of SLRPs can
disrupt the wound healing process and possibly result in
pathological scarring, as seen in keloids and hypertrophic scars.

TGFb signaling has been thought to play a central role in both
skin wound healing and scar formation (Faler et al., 2006; Penn
et al., 2012; Pakyari et al., 2013), and DCN is known to bind to all
three mammal TGFb isoforms and represses their activity by
sequestering the isoforms to the ECM and thus inhibiting their
signal transduction (Figure 3A) (Droguett et al., 2006; Penn
et al., 2012). DCN was also found to interact with CTGF-a
downstream mediator of TGFb1 signaling (Figure 3B) (Daniels
et al., 2003; Shi-Wen et al., 2008; Vial et al., 2011). Moreover,
DCN is able to activate epidermal growth factor receptor
(EGFR)‐mediated receptor auto-phosphorylation and
downstream signaling pathways, such as the mitogen-activated
Frontiers in Pharmacology | www.frontiersin.org 8
protein kinase (MARK)1/3 pathway, to mobilize intracellular
calcium, and activate other EGFR‐dependent pathways in tumor
cells to suppress cell growth (Moscatello et al., 1998; Patel et al.,
1998). DCN displays similar cell growth suppression ability in
dermal fibroblasts (Laine et al., 2000; Tran et al., 2004).
Furthermore, a recent study revealed that DCN repressed
corneal stromal fibroblasts migration via inducing EGFR
degradation (Figure 3C) (Mohan et al., 2019), which has not
been well investigated in the context of skin wounds, although
low levels of DCN and increased activation of the MARK1/3
signaling have been observed in keloid tissues (Meenakshi et al.,
2009). In addition to regulating growth factor signaling
transduction, DCN serves as a stabilizer of the ECM tissue
structure through binding of type I collagen and thus
downregulates cellular proliferation and migration, as well as
protein synthesis in a number of biological and pathologic
processes (Iozzo, 1999; Tran et al., 2004). Keloid fibroblasts
have less DCN expression than normal fibroblasts
(Mukhopadhyay et al., 2010) while forcing DCN expression by
adenovirus in keloid fibroblasts remarkably reduced their
collagen synthesis and upregulated the transcriptional level of
MMP1 and MMP3 (Lee et al., 2015). The expression of DCN in
the fibroblasts isolated from the deep dermis was also lower than
those derived from the superficial dermis (Honardoust et al.,
2012b). This phenomenon indicates a possible relationship
between lower DCN expression and hypertrophic scarring as
deep dermal injuries often lead to hypertrophic scarring while
superficial cutaneous wounds usually heal with minimal scarring
(Wang et al., 2008; Marshall et al., 2018). In comparison to
unwounded skin, post-burn hypertrophic scar tissue also has a
lower level of DCN (Scott et al., 1995; Sayani et al., 2000). While
DCN-deficient mice exhibit significantly postponed cutaneous
wound healing (Jarvelainen et al., 2006). The lower DCN levels in
keloids and hypertrophic scars may contribute to the unordered
collagen arrangement and excess ECM production. Meanwhile,
recombinant human DCN inhibits fibroblast proliferation and
downregulates TGFb1 production, and collagen synthesis in
hypertrophic scar fibroblasts (Zhang et al., 2007). Moreover,
DCN can inhibit the contraction of collagen gel encapsulation in
normal or hypertrophic scar fibroblasts, which gives further
indication that it may pose therapeutic potential in
hypertrophic scarring (Zhang et al., 2009). Recent studies show
that activation of Tuberoinfundibular peptide of 39 residues
(TIP39)—Parathyroid Hormone 2 Receptor (PTH2R) signaling
or blocking of microRNA 181b can induce DCN expression and
promote wound repair (Figure 3D) (Kwan et al., 2015; Sato et al.,
2017). Additionally, a collagen-binding peptidoglycan derived
from DCN has been shown to inhibit MMP-mediated collagen
degradation in vitro and reduce scar formation in mice (Stuart
et al., 2011). Collectively, these results indicate that DCN may be
a potential therapeutic agent for keloids and hypertrophic scars.

As a structurally homologous protein of DCN, BGN can also
bind to TGFb isoforms to attenuate its signal transduction
(Hildebrand et al., 1994; Droguett et al., 2006; Penn et al.,
2012). Expression of BGN was not altered in excisional skin
wounds and hypercontracted/hyperpigmented scarring pig
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models (Olson et al., 2000; Gallant et al., 2004). However, the
upregulation of BGN was observed in adult rat wound healing
models (Soo et al., 2000). Elevated BGN expression was also
observed in hypertrophic scars compared with that in normal
Frontiers in Pharmacology | www.frontiersin.org 9
scars (Armour et al., 2007; Honardoust et al., 2011). Deep dermal
fibroblasts also have a higher BGN level than that of the
superficial dermal fibroblasts (Honardoust et al., 2011;
Honardoust et al., 2012a). Unfortunately, whether higher BGN
FIGURE 3 | A schematic diagram of the functions of DCN in skin wound healing. (A) DCN is known to bind to mammal TGFb isoforms to sequester their signal
transduction. (B) DCN can also bind to CTGF, which is a downstream mediator of TGFb1 signaling, to reduce hypertrophic scarring. (C) In addition, DCN can
repress fibroblasts migration by inducing EGFR degradation. (D) On the other hand, activation of TIP39-PTH2R signaling or blocking of microRNA 181b can induce
DCN production, and thus benefit skin wound repair.
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expression in deep dermal fibroblasts is relevant to the
profibrotic or inflammatory response in deep dermal
cutaneous injuries remains elusive. Although BGN has been
shown to regulate proinflammatory cytokine expression and
inflammatory response by TLR2 and TLR4 in the kidney, lung,
and circulation (Babelova et al., 2009). Moreover, BGN
transcription was up-regulated in keloid tissues (Hunzelmann
et al., 1996). Interestingly, basic fibroblast growth factor (bFGF)
can up-regulate BGN while suppressing DCN expression in
keloid fibroblasts (Tan et al., 1993). Taken together, these
results imply that BGN may be related to keloid and
hypertrophic scarring. Further investigations are needed to
confirm the involvement of BGN in cutaneous wound healing
and elucidate the specific roles of BGN and DCN during the
scar formation.

FMOD was down-regulated during adult rat wound healing
with scar formation (Soo et al., 2000). Importantly, loss of
FMOD can eliminate the ability of early-gestation fetal rodents
to heal without scarring. Meanwhile, the administration of
FMOD alone was capable of restoring scarless healing in late-
gestation rat fetal wounds, which would naturally heal with scar
(Zheng et al., 2016). In addition to restoring scarless wound
healing in late-gestation fetal wounds, forcing FMOD elevation
by adenovirus can also promote skin wound healing in adult
rabbit full-thickness incisions (Stoff et al., 2007). Additionally,
FMOD-deficient mice exhibit delayed wound closure and
increased scar formation (Zheng et al., 2011; Zheng et al., 2014b).

Many review articles have already focused on the essential
role of TGFb signaling in wound healing (Faler et al., 2006; Penn
et al., 2012; Pakyari et al., 2013; Lichtman et al., 2016). However,
among SLRPs, only FMOD has been studied in detail about its
interaction with TGFb signaling to orchestrate the function of
fibroblasts to enhance skin wound healing (Zheng et al., 2017).
For example, the delayed cutaneous wound closure in FMOD-
deficient mice may be attributed to the elevated local TGFb3
levels (Zheng et al., 2011), since TGFb3 selectively postpones
dermal fibroblast proliferation and migration into the wound
area (Bandyopadhyay et al., 2006; Han et al., 2012). Moreover,
adult FMOD-null mouse wounds have higher expression of
TGFb receptors in comparison with their wild-type
counterparts during the proliferative stage, but reduced
expression of TGFb ligands and receptors during the
remodeling stage (Zheng et al., 2014b). Similar to DCN,
FMOD is downregulated in postburn hypertrophic scars
(Honardoust et al., 2011). Reduced fibromodulin in the deep
dermis of the skin is thought to contribute to the development of
hypertrophic scars after injuries (Honardoust et al., 2012a;
Honardoust et al., 2012b). Interestingly, FMOD transcription
was not altered following wound creation in an adult Yorkshire
pig model, but exhibited a biphasic pattern of mRNA expression
(initial increased at day 14, followed by decreased levels at days
28–42 and then a second peak by days 56–70) in an adult red
Duroc pig model (Olson et al., 2000; Gallant et al., 2004). These
observations are aligned with the previous hypothesis that the
healing profile of the red Duroc pig wound model (which
simulates hypertrophic healing in humans) (Harunari et al.,
Frontiers in Pharmacology | www.frontiersin.org 10
2006; Xie et al., 2007; Zhu et al., 2007) is inherently different
from that of the Yorkshire pig wound model (which simulates
normal scarring) (De Hemptinne et al., 2008; Seaton et al., 2015).
Mechanically, like DCN and BGN, FMOD shows similar
properties in its ability to bind to mammal TGFb isoforms;
however, it is a more effective competitor for TGFb binding than
DCN or BGN (Hildebrand et al., 1994). Traditionally, FMOD
was considered an extracellular TGFb reservoir (Figure 4A). Our
recent studies have deeply explored the mechanisms by which
FMOD orchestrates TGFb1 signaling and subsequently reduces
scar formation in adult skin wounds (Zheng et al., 2017): “(1) like
fetal wounds (Larson et al., 2010), FMOD treatment to adult
wounds causes reduced and more transient TGFb1 expression;
(2) like fetal wounds (Walraven et al., 2015), FMOD treatment
induces high level of SMAD2 and SMAD3 phosphorylation, and
low levels of several fibrosis-associated targets; (3) like fetal
fibroblasts (Sandulache et al., 2007), FMOD treatment results
in a more migratory and contractile phenotype; (4) like fetal
fibroblasts (Colwell et al., 2006), FMOD treatment exhibits
higher TGFb1-stimulated CTGF expression levels for increased
myofibroblast differentiation and contraction; and (5) much like
fetal wounds (Cass et al., 1997), FMOD treatment results in more
rapid myofibroblast clearance from the wound” (Figure 4B).
Taken together, FMOD administration in adult wound models
elicits a similar phenotype to fetal wounds at the molecular,
cellular, and gross morphological levels (Zheng et al., 2017).
Moreover, recent studies demonstrate that FMOD can directly
reprogram human dermal fibroblasts into a multipotent stage,
indicating its ability to regulate the intracellular signaling cascade
and determine the cell fate (Zheng et al., 2012; Li et al., 2016;
Zheng et al., 2019). Furthermore, from a translational aspect,
recent studies have confirmed the biopotency of FMOD in
reducing scar formation, accelerating wound tensile strength
reestablishment, and improving dermal collagen architecture
organization as well as gross wound appearance in multiple
small and large preclinical animal models, and even within an
excessive-mechanical-loading model (Zheng et al., 2017; Jiang
et al., 2018), highlighting the enormous potentials of FMOD as a
regenerative medicine for wound and scar therapies.
Encouragingly, we have developed an FMOD-derived peptide
(SLI-F06) which is being tested in a clinical trial for optimizing
cutaneous wound healing (clinicaltrials.gov: NCT03880058).

LUM is the only known SLRP expressed by the epithelia
during wound healing (Frikeche et al., 2016; Karamanou et al.,
2018). During cornea wound healing, LUM is known to regulate
collagen fibrillogenesis, keratinocyte phenotypes, corneal
transparency modulation, angiogenesis, and extravasation of
inflammatory cells (Park and Tseng, 2000; Vij et al., 2005;
Hayashi et al., 2010; Chen et al., 2011; Karamanou et al.,
2018). However, the role of LUM in skin wound healing has
not been adequately assessed. Liu et al. reported that
recombinant LUM protein promoted skin wound healing in
adult mice by facilitating dermal fibroblast activation and
contraction without promoting keratinocyte proliferation and
migration (Liu et al., 2013). The increased fibroblast
contractibility induced by LUM is regulated by integrin
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subunit alpha (ITGA)-2 (Liu et al., 2013). Meanwhile, Zhao et al.
reported that adenovirus-mediated LUM-overexpression
suppressed excessive fibroblast proliferation and ECM
production in vitro via inhibiting collagen - ITGA2 - protein
tyrosine kinase (PTK)2 signaling through binding to the collagen
receptor ITGA2 (Figure 5), which in turn to reduce scar
formation by significantly inhibiting ECM deposition in vivo
(Zhao et al., 2016). More interestingly, in comparison with
normal skin-derived fibroblasts, hypertrophic scar-derived
fibroblasts displayed reduced LUM expression (Zhao et al.,
2016), while keloid-derived fibroblasts exhibited elevated LUM
expression (Naitoh et al., 2005). Although LUM may be a
potential pharmaceutical candidate for skin wound healing, its
mechanism of action is far from clear.

ASPN is upregulated in keloid margin biopsy specimens
compared with that from adjacent healthy skin, indicating it
may serve as a potential biomarker for keloid disease (Shih et al.,
2010). Likewise, comparative mass spectrometry-based
proteomic analysis of keloids and healthy skin has shown that
ASPN expression was significantly increased in keloid scars. This
suggests that ASPN may be potentially used as a specific target
for therapeutic intervention (Ong et al., 2010). In addition,
upregulated OGN expression was also found in keloids by
cDNA microarray analysis (Naitoh et al., 2005). However,
except for DCN, BGN, FMOD, and LUM, investigations into
other SLRPs for their potential benefits in skin wound healing are
still very much in their infancy.
FIGURE 4 | Schematic depiction of the functions of FMOD in skin wound healing. (A) FMOD is able to bind to all three mammal TGFb isoforms as an extracellular
TGFb reservoir. (B) Importantly, FMOD can selectively enhance SMAD3-mediated TGFb1-responsive pro-migration and pro-contraction signaling, while reducing AP-
1-mediated TGFb1 auto-induction and fibrotic ECM accumulation during adult cutaneous wound healing.
Frontiers in Pharmacology | www.frontiersin.org 11
FIGURE 5 | A schematic description of the functions of LUM in skin wound
healing. LUM can suppress excessive fibroblast proliferation and ECM
production via inhibiting ITGA-PTK2 signaling through binding to ITGA2.
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CONCLUSION AND PERSPECTIVES

SLRPs are important components of the ECM that play crucial
roles in collagen fibril growth, fibril organization, and ECM
assembly. They are also capable of modulating the function of a
significant number of growth factors and cytokines and have
even been thought to prevent fibrosis and organ dysfunction
(Mecham, 2011; Schaefer, 2011; Klingberg et al., 2013). Thanks
to worldwide collaboration over the last 30 years, much has been
discovered in regard to the pivotal roles that SLRPs play in the
different phases of the skin wound healing process, as well as the
therapeutic potentials of SLRPs for reducing scar formation.
However, the precise details concerning how each individual
SLRP functions in the different phases of the healing process are
still unclear. It is crucial to gain a specific understanding of the
nature of the SLRP functional components, particularly in regard
to their interactions with cell surface receptors, growth factors,
and the ligands associated with molecular patterns of the skin
wound healing process.

In conclusion, although there are still many obstacles that
need to be surmounted before SLRPs can be applied in clinics for
cutaneous wound healing management, a variety of SLRPs, such
as DCN, BGN, FMOD, and LUM, exhibit great potential for
future use in skin wound healing. For example, given the pro-
angiogenic, pro-migratory, and pro-contraction potential of
FMOD (Zheng et al., 2014a; Zheng et al., 2014b; Zheng et al.,
2017), besides reducing scar formation, it may be used to
accelerate the healing of wound with retarded closure such as
seen in the diabetic patients (Falanga, 2005; Ekmektzoglou and
Frontiers in Pharmacology | www.frontiersin.org 12
Zografos, 2006). Considering LUM enhances the epithelial cell
migration (Seomun and Joo, 2008), it could also be a candidate to
address the major problem of delayed wound healing. In
addition to the skin, LUM and KERA may also be beneficial
for corneal wound healing (Saika et al., 2000; Carlson et al.,
2005), such as in the scene of corneal wounds caused by
refractive surgeries (Ljubimov and Saghizadeh, 2015).
Nevertheless, the delivery system and administration regimen
of these SLRPs are insurmountable issues to be optimized in the
pursuit of the most promising outcomes.
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