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Abstract
Background: In the analysis of networks we frequently require the statistical significance of some
network statistic, such as measures of similarity for the properties of interacting nodes. The
structure of the network may introduce dependencies among the nodes and it will in general be
necessary to account for these dependencies in the statistical analysis. To this end we require some
form of Null model of the network: generally rewired replicates of the network are generated
which preserve only the degree (number of interactions) of each node. We show that this can fail
to capture important features of network structure, and may result in unrealistic significance levels,
when potentially confounding additional information is available.

Methods: We present a new network resampling Null model which takes into account the degree
sequence as well as available biological annotations. Using gene ontology information as an
illustration we show how this information can be accounted for in the resampling approach, and
the impact such information has on the assessment of statistical significance of correlations and
motif-abundances in the Saccharomyces cerevisiae protein interaction network. An algorithm,
GOcardShuffle, is introduced to allow for the efficient construction of an improved Null model for
network data.

Results: We use the protein interaction network of S. cerevisiae; correlations between the
evolutionary rates and expression levels of interacting proteins and their statistical significance
were assessed for Null models which condition on different aspects of the available data. The novel
GOcardShuffle approach results in a Null model for annotated network data which appears better
to describe the properties of real biological networks.

Conclusion: An improved statistical approach for the statistical analysis of biological network
data, which conditions on the available biological information, leads to qualitatively different results
compared to approaches which ignore such annotations. In particular we demonstrate the effects
of the biological organization of the network can be sufficient to explain the observed similarity of
interacting proteins.

Background
Large-scale protein interaction network (PIN) data have
now been collected in a number of prokaryotic and

eukaryotic species. It has been suggested that these net-
works provide an integrative perspective on cellular proc-
esses and considerable effort has been invested into their
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functional and evolutionary analysis[1-6]. At the moment
molecular network data sets are still plagued by noise [7]
– this is especially true for protein interaction networks –
and incompleteness [8], but nevertheless considerable
progress is being made in the analysis of complex cellular
phenotypes in light of such networks. Below we will intro-
duce an novel method for the construction of confidence
intervals for network quantities. This new approach is able
to fuse different lines of biological information and gen-
erate conditional confidence intervals; these can be
applied as an alternative we can employ it in addition to
demonstrate it in an analysis of the Saccaromyces cerevisiae
PIN.

A number of studies have investigated (i) whether charac-
teristics of interacting proteins are more similar than those
of proteins for which no interaction has been reported
[9,10], and (ii) how the network structure affects proper-
ties – such as the evolutionary rate [6,11-13] – of interact-
ing genes or proteins. Other studies have looked at
structural properties, such as network motifs [14-16].
Because of the dependence introduced by the network it
is, however, not possible to use the conventional confi-
dence measures, e.g. for the correlation coefficient of
some property of pairs of interacting proteins. Rather, a
network-aware Null model has to be used which com-
pares the actual network with some suitably randomized
version of it. In order to incorporate network aspects these
studies have used either (i) straightforward bootstrapping
of nodes in order to create random pairs of nodes (such as
proteins) [9,10], (ii) bootstrapped nodes based on their
degree [6], or (iii) randomly rewired the network while
keeping the degree of each node fixed [14,15,17] (see
Methods section for details). The first approach has been
shown to underestimate the size of the confidence inter-
vals (CI) [6], while the second and third yield statistically
similar results (CIs are also broader than for (i)) for meas-
ures of pair-wise similarity of the properties of interacting
nodes. In order to assess the CIs for motifs, however, an
explicit incorporation of the network is generally
necessary and only the third approach can be used.

All of these three approaches above rely, however, implic-
itly on the assumption that the network is uniform and
not structured in any particular way. Such procedures also
ignore any other information that is increasingly becom-
ing available for many species [18-20], and which may
affect the organization of the network. While bootstrap
(as long as the degree sequence is accounted for either
exactly or statistically) or rewiring approaches are parsi-
monious – and undoubtedly should be preferred for gen-
eral cases where no other information is available – it
opens up the question as to whether such approaches are
still satisfactory when additional, potentially co-variate,
data is available.

Here we provide statistical tools for incorporating such
additional information into the statistical analysis. Using
such information can have considerable effect on the con-
struction of network confidence intervals, and our proce-
dure, GOcardShuffle, constructs randomly rewired
instances of networks that incorporate the degree
sequence exactly, and additional information statistically
(based on a rejection-sampling algorithm). Thus, for
example, if in a given protein interaction dataset, proteins
in the mitochondria interact predominantly with other
mitochondrial proteins but not at all with proteins in the
endoplasmic reticulum, then GOcardShuffle will con-
struct only instances of randomly rewired networks which
reflect the relative importance of intra-category versus
inter-category connections. In addition to GO annota-
tions, any other biological annotation (e.g Enzyme Com-
mission numbers or protein domain information) may act
as confounding variables, e.g. when expression levels
differ between categories.

There is a rich statistical literature on confounding varia-
bles and their role in the statistical interpretation of pri-
mary effects. Scenarios, where the effects of known or
unknown confounding variables result in inconsistencies
unless properly accounted for, are known as examples of
Simpson's paradox in statistics. On a much more subtle
scale there will undoubtedly be confounding variables in
many of the processes studied in systems biology. These,
at least in principle, can be accounted for in a framework
such as GOcardShuffle; if the approach (implemented in
Python and R) is used in addition to random rewiring
then it may be possible to detect such potentially
confounding hidden variables.

Results
Here we illustrate the use of GOcardShuffle by contrasting
statistical confidence intervals obtained under different
Null models for network rewiring.

Correlation of node properties
Figure 1 shows the correlations between the evolutionary
rates of interacting proteins, and between expression lev-
els of interacting proteins (observed values are indicated
by vertical red lines) in the S. cerevisiae PIN. Correlation is
measured using Kendall's τ rank correlation statistic
(other correlation measures can be used and are available
in the software implementation of GOcardShuffle; the
Pearson and Spearman correlation measures result in
qualitatively identical results to those shown here). The
histograms show the distributions resulting from 1000
independently rewired networks using no annotation
(black), one category (red hues), two categories (green
hues) and all three categories (blue) simultaneously.
While the most parsimonious Null model (black) results
in a distribution which is centered around τ = 0, including
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Confidence intervals generated from GOcardShuffleFigure 1
Confidence intervals generated from GOcardShuffle. Confidence intervals for the correlation of evolutionary rates and 
expression levels (mRNA expression levels are used as proxies for protein abundance). Incorporating GO annotations, individ-
ually, in pairs, or all three categories together results in progressive right-shifts of the distribution under the conditional Null 
models. The real data is indicated by the red vertical lines. When all three categories of biological information are included the 
distribution obtained under the Null model covers the observed correlation for both evolutionary rates and expression levels 
of interacting proteins. Function, Process and Compartment are indicated by F, P and C, respectively (the approximation Eqn. 
(12) was used to calculate the weight matrices for multiple annotation categories; for the yeast dataset used here this appears 
to be a reasonable approximation).
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annotation in the rewiring procedure (via GOcardShuffle)
leads to a systematic shift towards positive values of τ.
Interestingly, the shift experienced depends on the GO
category in different ways for the correlation of evolution-
ary rates and that of expression levels; this reflects presum-
ably the effect different categories have on evolutionary
rate and expression level measures respectively: annota-
tions related to "function" appear to have a greater effect
in explaining correlations among the expression values of
interacting proteins, whereas the "process" annotation
has a greater impact on the expected correlations of
expression levels of interacting proteins. The "cellular
component" annotation appears to have the least impor-
tant impact. This is in agreement with the results of Agrafi-
oti et al. who found more significant differences in the
evolutionary rates among proteins with different func-
tions than processes [6].

In both cases, however, we notice that the full annotation
as used in GOcardShuffle results in distributions of corre-
lation values that cover the observed value of the correla-
tion. Thus, once the rewired network instances are
conditioned on GO annotations the observed correlation
appear to be covered by the new, conditioned Null model.
In Figure 1 in Additional File 1 we show that the effects of
conditioning on presently available functional informa-
tion in the context of presently available protein interac-
tion data does result in a shift of the distribution obtained
under the Null model away from zero to finite positive
values. Depending on the dataset and correlation
measure, however, the GOcardShuffle histogram may not
overlap the observed value (see Additional File 1).

Quite generally, we expect that conditioning such
analyses on additional available data (of which increasing
amounts are becoming available) will result in a shift in
the expected Null distribution if such data does explain
some aspects of the variability in the measures to be cor-
related. That is, we observe the shift in the Null distribu-
tions, precisely because some of the variation in
evolutionary rate and mRNA expression levels are
captured by GO annotations [6,21].

Network motifs
In order to illustrate the use of GOcardShuffle on motif-
analysis [14,15] we counted the numbers of each possible
motif of size four present in the original protein interac-
tion network (as captured by DIP, see Methods section)
and in each of the rewired networks. The statistical signif-
icance of motifs is assessed by their Z scores (see Methods).
For the simple null model, and the GOcardShuffle Null
model using all three annotation categories, these are
shown in Figure 2. Changing the Null model against
which significance is assessed naturally changes the
observed Z-scores of the motifs. Perhaps the most interest-

ing result is that the relative excess of the fully connected
motif in the true network compared to the "random net-
works" decreases as the annotations are taken into
account. Another way of looking at this is that incorporat-
ing the coarse structure of the PIN (as captured to some
extent at least by GO data) cannot account for the local
network patterns across the network.

Discussion
We have shown that it is possible to condition the rewir-
ing process by which confidence intervals on networks are
constructed on biological information such as gene ontol-
ogy data. Integrating such known biological information
into the statistical analysis of protein interaction network
data may result in changes to the Null model if such data
is correlated with network organization. We demon-
strated the effect of conditioning on GO data by analyzing
the correlations among interacting proteins: several stud-
ies had reported that properties of interacting proteins are
significantly more similar than those of non-interacting
proteins. Applying GOcardShuffle to yeast PIN data and

Significance of motifs evaluated using GOcardShuffleFigure 2
Significance of motifs evaluated using GOcardShuffle. 
Significance, evaluated by z-scores, of motifs also changes 
when annotation is included in the statistical analysis. We 
note that now all motifs of four nodes are over-represented 
in the true network, compared to the ensemble of condition-
ally randomized networks; interestingly the over-representa-
tion of the completely connected graph with 4 nodes 
(measured by its z-score) is halved once annotation has been 
taken into account.
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conditioning on different combinations of GO categories
suggests that this may at least partially be because the pro-
tein interaction networks of real biological organisms are
inhomogeneous and show a level of local and functional
organization, which has been ignored in previous statisti-
cal analyses. In light of the conditional Null models, how-
ever, the similarity of evolutionary rates and expression
levels of interacting proteins in the Yeast PIN dataset used
here, is just as would be expected for a network with the
same biological characteristics (as captured by present
biological annotations). Since these protein characteris-
tics differ between different categories [6] – even if some-
times only slightly – and since within-category
interactions are more frequent than between category
interactions, similarity of properties of interacting
proteins are readily understood.

Presently GO annotations have to be treated with some
care and caution. There is the danger of circular arguments
if in-silico annotations (which often rely on protein-pro-
tein interactions) are used. As we outline in the Methods
section uncertainties and different levels of support for
different annotations are straightforwardly incorporated
into the GOcardShuffle algorithm.

The source code of the Python and R routines of the
implementation of GOcardShuffle are available from the
authors' website [22].

Conclusion
Our novel network resampling approach allows the con-
struction of confidence intervals under a statistical Null
model of network organization which conditions on
available biological information. If used in addition to
conventional rewiring procedures then this approach can
be used to detect potentially confounding hidden varia-
bles or relationships in systems biology data.

GOcardShuffle allows the refinement of the statistical
Null model for network structure based on available bio-
logical data: the rewired network instances may now
capture probabilistically the modular aspects of these
molecular networks (if the annotations imply such a
structure). This appears to be the case for GO annotations
of yeast proteins, and as we have shown, such stratifica-
tion of the network – where within-category interactions
are more frequent than between-category interactions –
may lead to correlations among properties of interacting
proteins. Once this has been accounted for, there is no
strong additional evidence for interacting proteins to be
more similar than would be expected by chance. The
present approach is readily extended to include other
information on functional and structural properties of the
network. Quite generally, GOcardShuffle, can be applied
in the statistical analysis of coloured graph problems.

Methods
Data
In the illustrative examples (Figures 1, 2, 3) protein inter-
action data was taken from the Database of Interacting
Proteins [23,24]; other databases contain similar informa-
tion [25,26] (and the effect of GOcardShuffle is the same
for these datasets). GO annotations in a flat-file format
can be obtained from the Saccaromyces Genome Database
[18]; similar lists of GO annotations, rather than the hier-
archical structures can be generated by a number of pro-
grams and tools such as FatiGO [27,28]. Evolutionary
information was taken from the study of Agrafioti et al.
[6]. The mRNA expression data of Cho et al. [29] was
taken as a proxy for protein abundance.

Constructing confidence intervals for networks
Given a reported network dataset (which will at present
generally be plagued by false-positive and false-negative
results [7,30], as well as incompleteness [31]) we wish to
be able to evaluate the statistical significance of some net-
work statistic. To this end we need to construct networks
which share some characteristics of the observed network;
as we have shown above, the choice of the information we
choose to use to generate such rewired networks can have
a pronounced effect on the results of the statistical
analysis.

Previous approaches: unconditional procedures
Depending on whether the similarity of properties of
interacting proteins or the abundance of network motifs
were considered, previous approaches assessed statistical
significance either through a bootstrap or randomization
procedure, or by rewiring the network. In the former
authors either picked M pairs of interacting proteins by
randomly sampling 2M proteins with replacement from
the N proteins in the dataset [9], shuffled the list of inter-
action partners [10], or picked proteins proportional to
their degree [6]. The latter two approaches conserve the

Updating of network configurationFigure 3
Updating of network configuration. The configuration 
change (a, b) → (a', b') is accepted according to Eqn. (6).

Chosen edges in
current network

Proposed mutation

p
a b b'a'
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degree sequence exactly and probabilistically,
respectively; for the first approach, on the other hand, it is
straightforward to show, that this corresponds to making
the assumption that the Null model is a classical or Erdös-
Rényi random graph (and is therefore inappropriate for
the analysis of real networks). The sample statistic (such
as a correlation coefficient) is then calculated for each rep-
licate to generate the distribution under the Null model.

Rewiring of the network involves breaking up all interac-
tions and leaving a number of "stubs" at each node corre-
sponding to its degree. Randomly chosen pairs of stubs are
then connected until all M interactions have been created
and the summary statistic (correlation coefficient or
number of motifs) is calculated. Repeating this process a
sufficient number of times again results in the expected dis-
tribution under the Null model. Furthermore a Markov
Chain Monte Carlo approach can be constructed which,
e.g. conditions the network on the number of observed tri-
angles [14]. Such an approach is in practice, however, com-
putationally expensive and does not appear to have been
used widely [15]. In the meantime, however, elegant ana-
lytic approaches have been developed which allow the sta-
tistical assessment of network motif exceptionality [32].

Conditional rewiring: GOcardShuffle
To include biological knowledge and potential co-vari-
ates, such as GO annotations, in the resampling process
the method given in the algorithm below is used. Let N
and M be the number of nodes and edges in the network,
respectively; let γ be the set of annotations (e.g. different
protein functions), and let γ(i) be the annotation of node
i. For x, y ∈ γ we define νxy to be the number of edges that
connect a node with annotation x to a node with annota-
tion y. Then the probability of picking a random stub on
a node with annotation x that has an edge attached that
leads to a node with annotation y (we say that the edge is
of type (x, y)) is given by

and

This definition means that the probabilities are properly
normalized, i.e. ∑ωxy = 1, where the sum runs over all pairs
of indices 1 ≤ x, y ≤ |γk|. If #x denotes the number of x, then
normalization follows from the relationship

because the first sum on the RHS of Eqn. (3) runs over all
ordered pairs of distinct annotations x and y. We approxi-

mate the likelihood of a given network  = ( , )

(where  and  denote the sets of nodes and edges,
respectively) as the product of the probability of edges
conditional on the annotations of the nodes incident on
the edge. The probability of an edge, e(i, j) between two

nodes with annotations γ(i) and γ(j) is given by ωe :=

ωγ(i)γ(j) whence we approximate Pr( ) ≈ Pr( ) and we

have thus for our likelihood of the network

Given a configuration,  = ( , ) we propose a novel

configuration ' = ( , ') (the set of nodes does not

change hence ' = ) by choosing two edges, e, f ∈ ,
at random. We consider the ordered tuple of their annota-
tions (u, v) and (x, y), respectively and propose new edges
by swapping the edges between the nodes (see Figure 3)
to obtain edges e' and f' which will be of type (x, v) and (u,
y), respectively. The likelihood ratio is thus

as all other edges in  and ' remain unaffected by the
proposed change.

We start from a random rewiring of the network which
only conserves the degree of each node. The rewiring algo-
rithm is based on Markov Chain Monte Carlo (MCMC)
approach using Metropolis sampling [33,34], and begins
with a randomly rewired network with the desired degree
sequence (see Additional File 1). A pair of edges e = (i, j),
f = (r, s) is chosen randomly and the incident nodes are
found to have annotations γ(i), γ(j) and γ(r), γ(s), respec-
tively, in the κ different categories. Then the probability of
the original and the rewired networks differ only by the
weights of the involved edges. The probability of accept-
ing the new configuration, e' = (i, s), f' = (j, r) is thus given
by the Metropolis criterion
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The configuration remains unchanged with probability 1
- p, whence a new configuration change will be proposed.

It is easy to see that the ensemble of networks which con-

dition on the observed edge weights, ω, form the station-
ary distribution of the Markov chain thus constructed. To

show this we let r(  → ') be the transition mecha-
nism of the chain,

where q(  → ') is the probability of going from net-

work  to '. Here this step will always involve swap-
ping of two edges. These, however, are chosen uniformly
at random and therefore

With this it is trivial to show that the detailed balance [35]
is fulfilled, i.e.

Thus GOcardShuffle – because of the general properties of
MCMC [34,35] – will result in a Markov chain which has
as its stationary distribution the ensemble of networks

(defined by Pr(ω| )) which condition on the degree
sequence (by virtue of fixing the degree of each node) and

on the weight matrix ω (by construction of the chain).

As in all MCMC approaches it is important to run the algo-
rithm for a sufficiently long period to remove dependence
on the initial configuration and to reach the stationary dis-
tribution of the Markov Process (the burn-in period). After
that the chain produces highly correlated configurations
so configurations are sampled only after a sufficiently large
number of steps in the chain (this is referred to as the thin-
ning-out interval) [35,36]. Choice of the length for burn-in
and thinning-out intervals require experimentation and/
or fine-tuning. In GOcardShuffle the default parameter for
the burn-in period is 100 × M steps, while the thinning-
out interval has a length of 10 × M steps.

Generalizations
In the discussion we have thus far assumed that each pro-
tein has only one annotation. Two additional factors are
straightforwardly included in GOcardShuffle:

Multiple annotations: For many proteins we have more
than one annotation. This can be due to a protein being
found in more than one cellular component; being
involved in more than one biological process; or having
more than one molecular function; or any combination of
the above.

Multiple annotation categories: Above we have chosen
to group proteins together if they have identical annota-
tions. Thus νx is the number of proteins with the same
annotation x; this means that they all have the same anno-
tation regarding function, process and component. If each
category has 30 annotations then we need to consider
27,000 unique annotations and approximately 3.6 × 108

different combinations x, y ∈ γ, most of which will be
zero.

Multiple annotation can be easily incorporated into
GOcardShuffle. If a protein has annotations x1 and x2,
then its probability of interacting with a protein with
annotation y is given by

This assumes that annotations x1 and x2 are equally impor-

tant in describing the biological characteristics of protein
x. If, for example, x1 is more relevant then we would have

to replace Eqn. (10) by

. In most cases, how-
ever, present information will not be sufficient to intro-
duce reliable weightings of multiple annotations for each
protein.

Therefore we continue along the more parsimonious
route of attaching equal weight to all multiple annota-
tions and write more generally, for proteins with annota-
tions given by x = (x1, x2,...,xα) and y = (y1, y2,...,yβ),
respectively, we have

With Eqn. (11) the normalization of the edge probabili-
ties ωx,y is trivially maintained. Multiple annotations are
therefore straightforwardly and parsimoniously dealt
with. Once annotations become very reliable and detailed
it will, however, be possible to introduce weightings on
different annotations. Alternatively to Eqn. (11) we may
determine that a combination of annotations x = (x1,
x2,...,xα) defines a new annotation. This could be advanta-
geous if proteins that have more than one function, i.e.
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annotation x' tend to interact predominantly with pro-
teins that have a different annotation x" (or set of annota-
tions x"). Clearly in such an event the simple ansatz given
by Eqn. (11) may give rise to interactions among proteins
that would never interact in real life. Combining annota-
tions into a new single annotation is possible by preproc-
essing the annotation input-data prior to using
GOcardShuffle. Given the present state of the data (both
PIN and annotations) we believe that using the approach
given by Eqn. (11) puts less emphasis on potentially erro-
neous data; in the future, however, it will be possible to go
beyond this approach by considering dependencies
among sets of annotations.

Dealing with the potentially very large number of differ-
ent annotations requires more careful consideration. In
addition to the computational challenges of dealing with
very large matrices, ω = (ωxy), taking annotations as "true"
could be problematic as it may severely limit the size of
the network ensemble that is defined through the station-
ary distribution of the Markov Chain defined by
GOcardShuffle as most entries in ω will be zero. An addi-
tional problem is that GO annotation is only approximate
and when protein-interaction data has been used to anno-
tate proteins in silico errors in either the interaction data or
GO annotations may be propagated. A pragmatic if
approximate solution is to divide the annotations into the
three different categories: molecular function; biological
process; and cellular component. We thus define 3 differ-
ent matrices, one for each category

ωk for k = 1, 2, 3 or k = F, P, C

n the R-implementation of GOcardShuffle the user has
the choice of using individual matrices, ωk, a compound
matrix, ω (as discussed above), or an approximation to ω
given by

(or any combination of pairs of annotations,  = ωi

&#x2297; ωj for i, ≠ j ∈ 1, 2, 3). In Eqn. (12), &#x2297;
denotes the standard tensor product [37] of the weight
matrices. This has also numerical and computational
advantages as we only have to store three (or two) small
matrices (typically we use approximately 30 annotations
per category) rather than one very large matrix. Eqn. (12)
will for real networks only be approximate if the different
GO categories are themselves correlated (which we know
to be the case for yeast and other organisms for which
extensive GO annotation data has been assembled) and it
will be necessary to test whether this approximation is rea-
sonable (in the data presented here we found acceptably

small differences between the true and approximate
weights). Nevertheless, even if only the approximation is
used, any systematic differences between classical rewiring
approaches and the network instances created by
GOcardShuffle will highlight confounding factors which
ought to be included in the construction of network con-
fidence measures.

The GOcardShuffle algorithm can be summarized as fol-
lows

GOcardShuffle

Generate set of stubs from true network

while free stubs do

Choose two stubs uniformly from those remaining
and create an edge between them

end while

for i = 0 to λ do

Choose two edges a and b in current network at ran-
dom, uniformly

Calculate p using Eqn. (6).

Generate random value 0 <r < 1

if r <p or p > 1 then

Cross over a and b in network

end if

end for

The chain is sampled at intervals of λ1 steps, after a burn-
in period of λ0 steps. For GOcardShuffle the default values
are

λ0 = 100 × M and λ1 = 10 × M,

(M is again the number of edges in the network). If L con-
ditionally rewired network instances are required then λ =
100 × M + 10 × M × L.

Motifs
In this paper only network motifs containing 4 nodes
were considered. In an undirected network there are only
six possible non-isomorphic configurations of edges
between 4 nodes, these are shown at the bottom of figure

ω ω ω ω= ⊗ ⊗1 2 3 (12)

ω
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2. Motif spectra where calculated according to Milo et al.
(see [14,15]). The statistical significance of a motif is
assessed using the Z-score, which is defined as

where n is the number of times the motif is found in the
true network, &#x3008;n&#x3009; is the average number
of times the same motif is found in the rewired networks,
and σn is the standard deviation of motif counts in the
rewired network. reduce the amount combinations that
need to be considered, only nodes within a path of length
1 from the current node are considered for the choice of
the second node, and nodes within a path of length 1
from the first or second node for the third node.

Implementation
The methods described above were implemented in
Python, as well as for the R statistical environment [38]
(computationally intensive routines were implemented in
C); R was also used for all statistical analyses. The source
code for the GOcardShuffle algorithm is available from
our website [22].

Authors' contributions
TT and MPHS jointly designed the study, developed the
approach and wrote the manuscript. The algorithms were
implemented and applied to the Yeast protein interaction
data by TT. All authors read and approved the final man-
uscript.

Additional material

Acknowledgements
TT would like to thank the Wellcome Trust for providing a PhD student-
ship. C. Wiuf, W. Kelly, I. Holmquist, M. de Iorio, S. Dobbins, and, espe-
cially, S. Richardson are thanked for helpful discussions. MPHS gratefully 
acknowledges financial support from the Wellcome Trust and EMBO 
through a Young Investigator Fellowship.

References
1. Tucker C, Gera J, Uetz P: Towards an understanding of complex

protein networks.  Trends Cell Biol 2001, 11:102-106.
2. Gavin M, Bosche M, Krause R, Grandi P, Marzioch M, Schultz J, Rick

J, Michon A, Cruciat C, Remor M, Hofert C, Schelder M, Brajenovic
M, Ruffner H, Merino A, Hudak M, Dickson D, Rudi T, Ganu V, Bauch
A, Bastuck S, Huhse B, Leutwein C, Heurtier M, Copley R, Edelmann
A, Querfurth E, V R, Drewes G, Raida M, Bouwmeester T, Bork P,

Seraphin B, Kuster B, Neubauer G, G SF: Functional organization
of the yeast proteome by systematic analysis of protein com-
plexes.  Nature 2002, 415:141-147.

3. Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M:
Genomic analysis of regulatory network dynamics reveals
large topological change.  Nature 2004, 431:308-312.

4. Yu H, Greenbaum D, Lu HX, Zhu X, Gerstein M: Genomic analysis
of essentiality within protein networks.  Trends Genet 2004,
20(6):227-31.

5. Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM: Pro-
tein interaction networks from yeast to human.  Curr Opin
Struct Biol 2004, 14(3):292-9.

6. Agrafioti I, Swire J, Abbott I, Huntley D, Butcher S, Stumpf M: Com-
parative analysis of the Saccaromyces cerevisiae and
Caenorhabditis elegans protein interaction networks.  BMC
Evolutionary Biology 2005, 5:23.

7. Bader JS, Chaudhuri A, Rothberg JM, Chant J: Gaining confidence
in high-throughput protein interaction networks.  Nat Biotech-
nol 2004, 22:78-85.

8. Stumpf M, Wiuf C, May R: Subnets of scale-free networks are
not scale-free: the sampling properties of networks.  Proc Natl
Acad Sci USA 2005, 102:4221-4224.

9. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW: Evolu-
tionary rate in the protein interaction network.  Science 2002,
296(5568):750-2.

10. Lemos B, Meiklejohn C, Hartl D: Regulatory evolution across the
protein interaction network.  Nat Genet 2004, 36(10):1059-60.

11. Wagner A: The yeast protein interaction network evolves
rapidly and contains few redundant duplicate genes.  Mol Biol
Evol 2001, 18(7):1283-1292.

12. Jordan IK, Wolf YI, Koonin EV: No simple dependence between
protein evolution rate and the number of protein-protein
interactions: only the most prolific interactors tend to
evolve slowly.  BMC Evol Biol 2003, 3:1.

13. Hahn MW, Conant GC, Wagner A: Molecular evolution in large
genetic networks: does connectivity equal constraint?  J Mol
Evol 2004, 58(2):203-11.

14. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U:
Network motifs: Simple building blocks of complex net-
works.  Science 2002, 298(5594):824-827.

15. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I,
Sheffer M, Alon U: Superfamilies of evolved and designed net-
works.  Science 2004, 303(5663):1538-1542.

16. Berg J, Lässig M: Local graph alignment and motif search in bio-
logical networks.  Proc Natl Acad Sci USA 2004,
101(41):14689-14694.

17. Kashtan N, Itzkovitz S, Milo R, Alon U: Topological generaliza-
tions of network motifs.  Phys Rev E Stat Nonlin Soft Matter Phys
2004, 70(3 Pt 1):031909. 

18.  [http://www.yeastgenome.org].
19.  [http://www.wormbase.org].
20.  [http://www.flybase.org].
21. Drummond D, Raval A, Wilke C: A single determinant domi-

nates the rate of yeast protein evolution.  Mol Biol Evol 2006,
23:327-337.

22.  [http://www.imperial.ac.uk/theoreticalgenomics/data-software].
23.  [http://dip.doe-mbi.ucla.edu].
24. Xenarios I, Rice D, Salwinski L, Baron M, Marcotte E, Eisenberg D:

Dip: the database of interacting proteins.  Nucl Acid Res 2000,
28:289-291.

25. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik R, Salwinski L,
Ceol A, Moore S, Orchard S, Sarkans U, von Mering C, Roechert B,
Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D,
Nikolski M, Husi H, Brun C, Shanker K, Grant S, Sander C, Bork P,
Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P,
Cesareni G, Xenarios L, Eisenberg D, Steipe B, Hogue C, Apweiler R:
The HUPOPSI's Molecular Interaction format – a commu-
nity standard for the representation of protein interaction
data.  NATURE BIOTECHNOLOGY 2004, 22(2):177-183.

26. Reguly T, Breitkreutz A, Boucher L, Breitkreutz B, Hon G, Myers C,
Parsons A, Friesen H, Oughtred AR, amd Tong, Stark C, Ho Y, Bot-
stein D, Andrews B, Boone C, Troyanskya O, Ideker T, Dolinski K,
Batada N, Tyers M: Comprehensive curation and analysis of
global interaction networks in Saccharomyces cerevisiae.  J
Biol 2006, 5:11.

Additional file 1
Supplementary Material. Discussion of statistical properties of 
GOCardShuffle.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-467-S1.pdf]

Z
n n

n
= −〈 〉

σ
(13)
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-467-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11306254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11306254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15767579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15767579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15378060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15378060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15042341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15042341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15524551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15524551
http://www.yeastgenome.org
http://www.wormbase.org
http://www.flybase.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16237209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16237209
http://www.imperial.ac.uk/theoreticalgenomics/data-software
http://dip.doe-mbi.ucla.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14755292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14755292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14755292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16762047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16762047


BMC Bioinformatics 2007, 8:467 http://www.biomedcentral.com/1471-2105/8/467
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

27. FatiGO a web tool for finding significant associations of
Ontology terms with groups of genes.  Bioinformatics 2004,
20:578-580.

28.  [http://www.fatigo.org].
29. Cho R, Campbell M, Winzeler E, Steinmetz L, Conway A, Wodicka L,

Wolfsberg T, Gabrielian A, Landsman D, Lockhart D, Davies R: A
genome-wide transcriptional analysis of the mitotic cell
cycle.  Mol Cell 1998, 2:65-73.

30. Functional and topological characterization of protein inter-
action networks.  Proteomics 2004, 4(4):928-42.

31. de Silva E, Thorne T, Ingram P, Agrafioti I, Swire J, Wiuf C, Stumpf M:
The effects of incomplete protein interaction data on struc-
tural and evolutionary inferences.  BMC Biology 2006, 4:39.

32. Picard F, Daudin JJ, Schbath S, Robin S: Assessing the exceptional-
ity of network motifs.  2006 [http://genome.jouy.inra.fr/ssb/pre
print/]. [Research Report]

33. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E: Equa-
tion of State Calculations by Fast Computing Machines.  J
Chem Phys 1953, 21:1087-1092.

34. Ripley BD: Stochastic Simulation Wiley; 1987. 
35. Robert C, Casella G: Monte Carlo Statistical Methods 2nd edition.

Springer; 2004. 
36. Newman M, Barkema G: Monte Carlo Methods in Statistical Physics

Clarendon Press; 1999. 
37. Arfken G, Weber H: Mathematical Methods for Physicists 6th edition.

Academic Press; 2005. 
38.  [http://www.r-project.org].

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990455
http://www.fatigo.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17081312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17081312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17081312
http://genome.jouy.inra.fr/ssb/preprint/
http://genome.jouy.inra.fr/ssb/preprint/
http://www.r-project.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Results
	Correlation of node properties
	Network motifs

	Discussion
	Conclusion
	Methods
	Data
	Constructing confidence intervals for networks
	Previous approaches: unconditional procedures
	Conditional rewiring: GOcardShuffle
	Generalizations

	Motifs
	Implementation

	Authors' contributions
	Additional material
	Acknowledgements
	References

