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Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image
sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image
simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L
systems. Results show that redistribution of the workload allows an anatomically accurate 2563 voxel spin-echo simulation in less
than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

1. Introduction

The collection of medical image data for research can be
an expensive and time-consuming task. Positron emission
tomography (PET), X-ray computed tomography (CT), and
magnetic resonance imaging (MRI) systems can easily cost
over a million dollars. They may require dedicated staff,
maintenance contracts, and access to expensive supporting
equipment. In addition, collection of data for large clinical
studies may take months. The process is complicated by
equipment schedules, organization of volunteers/subjects,
and involvement of potentially harmful electromagnetic
radiation, radiopharmaceuticals, and contrast agents, as
well as patient privacy rights. These difficulties limit the
availability of clinical data, especially for smaller academic
research programs.

Creating software models of the human anatomy and
imaging systems and modeling the medical physics of the
imaging acquisition process can provide a means to generate
realistic synthetic data sets. In many cases, synthetic data sets
can be used, reducing the time and cost of collecting real
images and making data sets available to institutions without
clinical imaging systems.

Synthetic data sets can be used for training purposes
and as evaluation data for image processing and analysis al-
gorithms. One additional advantage of synthetic data sets,

that can make them an invaluable tool, is that they have a
known ground truth. Ground truth refers to having exact
knowledge of the object being imaged. Ground truth is,
in many cases, nearly impossible to obtain for real images
of living humans. In addition, system models can be used
to improve system design and study imaging parameter
selection and acquisition protocols.

While medical image simulation software has been under
development since the 1980s, until recently the complexity
of the procedures and long computation times have limited
the realism and accuracy of artificially generated images.
Improvements in computational systems have facilitated
simulations that were previously infeasible. Advancements
in processor architecture, increases in speed and amount
of memory, and development of large storage systems have
enabled computers to be used for increasingly complex
problems. The use of distributed systems and technologies
provides unparalleled computational capabilities.

With these technological improvements and an increased
understanding of human anatomy and medical physics,
three-dimensional high-resolution realistic synthetic medi-
cal data sets can be generated. In addition, the large quantity
of images often necessary for studies, hundreds or thousands
of images, can be quickly generated and made available. In
some cases, simulations can even be performed in real time.
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The remainder of this paper is dedicated to the gen-
eration of MR image sets. MR images are generally the
most computationally complex images to generate, with
simulations usually being performed in 2D or low-resolution
3D. What follows is, at least to the authors’ knowledge, an
overview of the first system capable of successfully generating
high-resolution 3D MRI images.

2. Background

2.1. MRI Simulators. Simulators can be classified according
to the procedure used to estimate the radio frequency
response of the phantom (digital anatomy being imaged). In
general, existing simulators fall into one of three categories:
signal equation-based simulators [1, 2], k-space-based simu-
lators [3], and isochromat summation-based simulators [4–
10].

Signal equation-based simulators are the most common.
Synthetic images are created using known tissue properties
(i.e., spin density, spin lattice relaxation time, and spin-spin
relaxation time) and the signal intensity equation for the
pulse sequence being simulated. By substituting the known
tissue properties into the signal equation, the simulated
image can be calculated. For example, (1) is the signal
equation for the standard spin-echo pulse sequence where
ρ is the spin density, T1 is the spin lattice relaxation time,
T2 is the spin-spin relaxation time, and TE and TR are the
pulse sequence parameters representing the echo time and
repetition time, respectively

S = ρ
(

1− e−TR/T1

)
e−TE/T2 . (1)

Since the simulation is a simple mathematical calculation,
simulated images can be created nearly instantaneously.
Simulation is however limited to pulse sequences with
a known signal equation, and generally more complex
phenomena and artifacts cannot easily be simulated using
this method.

A second, rarely used, approach to generate synthetic
data sets leverages the k-space representation of the data.
This simulation begins by approximating k-space by taking
the Fourier transform of the phantom being imaged. This
represents the ideal signal acquired by the scanner. The signal
is then adjusted for each pulse event, for relaxation, and for
the artifacts being simulated. While this technique provides
a relatively computationally efficient way to obtain the MRI
signal, it is difficult to simulate certain effects, such as field
inhomogeneities. In addition, an understanding of how each
event and artifact manifests itself in k-space is necessary
requiring expert knowledge and making simulation of more
complex artifacts difficult.

The third simulator type, and by far the most robust,
arrives at the MRI signal by summing a large number of
isochromats. The phantom is treated as a set of spin packets,
and the evolution of the magnetization of each packet is
governed by the Bloch equations [11]. A group of spins
located in close proximity is represented as an isochromat.
The rotation of the magnetization due to radio-frequency
(RF) pulses, gradients, and relaxation is modeled. The final

k-space signal is generated by summing the signal provided
by each isochromat (isochromat summation), and the image
is obtained by Fourier transforming the k-space data. These
simulators are robust and in theory can simulate any pulse
sequence and most phenomena. Limitations exist only due
to the assumptions made by the Bloch equations and by
computation time. This work attempts to ameliorate the situ-
ation by lessening the limitations imposed by computational
complexity.

2.2. Simulation by Summation of Isochromats. Each isochro-
mat is assigned a location within the phantom and is
represented by a three-dimensional magnetization vector
([Mx(t) My(t) Mz(t)]T), which specifies the isochromat’s
orientation and magnitude at time t. The location of the
isochromat within the magnet bore is used to identify the
magnetic field strength at the isochromat (due to the main
static magnetic field, gradients, and any inhomogeneities
such as from susceptibility). The local magnetic field strength
(B) and the gyromagnetic ratio (γ) of the isochromat are
used to find the frequency at which the isochromat precesses
within the main magnetic field (Larmor frequency, ν) as
follows:

ν = γB. (2)

After a period of time (Δt) has passed, the Larmor frequency
can be used to find the new orientation of the isochromat by
modeling the precession as a rotation about the main field
(usually oriented along the z-axis). This rotation is modeled
as follows:
⎡
⎢⎢⎢⎣

Mx(t + Δt)

My(t +Δt)

Mz(t + Δt)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos(ν · Δt) sin(ν · Δt) 0

− sin(ν · Δt) cos(ν · Δt) 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Mx(t)

My(t)

Mz(t)

⎤
⎥⎥⎥⎦.

(3)

In addition to precession within the main magnetic field,
the magnitude of the isochromat changes due to relaxation
effects. The transverse spin-spin relaxation is a result of
molecular interactions causing a dephasing of the spins and
a loss of signal coherence. The rate of relaxation is governed
by the tissue-specific spin-spin relaxation time constant
(T2) and affects the magnitude of the magnetization vector
orthogonal to the main magnetic field. The effect of this
dephasing on the magnetization vector can be modeled with

⎡
⎢⎢⎢⎣

Mx(t + Δt)

My(t + Δt)

Mz(t +Δt)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

e−Δt/T2 0 0

0 e−Δt/T2 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Mx(t)

My(t)

Mz(t)

⎤
⎥⎥⎥⎦. (4)

Longitudinal spin lattice relaxation occurs as the isochromats
return to equilibrium (realign with the static magnetic
field). Longitudinal relaxation is governed by the spin lattice
relaxation time constant (T1) and affects the magnitude
of the magnetization vector in the direction of the main
magnetic field, as calculated from

Mz(t + Δt) =Mz(t)e−Δt/T1 + M0

(
1− e−Δt/T1

)
. (5)
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Here, the magnitude of the isochromat’s magnetization at
equilibrium within the main magnetic field is given by M0.
This magnitude is proportional to the isochromat’s spin
density.

Applying both relaxation effects simultaneously yields
⎡
⎢⎢⎢⎣

Mx(t + Δt)

My(t + Δt)

Mz(t + Δt)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

e−Δt/T2 0 0

0 e−Δt/T2 0

0 0 e−Δt/T1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Mx(t)

My(t)

Mz(t)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0

0

M0
(
1− e−Δt/T1

)

⎤
⎥⎥⎥⎦.

(6)

Including the precession within the main static field yields
(7) used to iteratively update the isochromat magnetization
vector
⎡
⎢⎢⎢⎣

Mx(t + Δt)

My(t +Δt)

Mz(t + Δt)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

e−Δt/T2 0 0

0 e−Δt/T2 0

0 0 e−Δt/T1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

cos(ν ·Δt) sin(ν · Δt) 0

− sin(ν · Δt) cos(ν · Δt) 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Mx(t)

My(t)

Mz(t)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0

0

M0
(
1− e−Δt/T1

)

⎤
⎥⎥⎥⎦.

(7)

RF pulses are used to excite the isochromats causing a de-
viation of their magnetic moments from equilibrium. An
alternating current is run through a coil placed around
the x-axis. Turning on and off the current at the Larmor
frequency results in a pulsed magnetic field (B1) orthogonal
to the main static magnetic field (B0). If we consider a frame
of reference which rotates about the z-axis at the Lamor
frequency, B1 will be a constant field along the x-axis. In
this rotating frame of reference, the energy from the pulsed
field will be absorbed by the isochromats causing them to
rotate about the direction of the B1 field. This process is
depicted in Figure 1. In the nonrotating (laboratory) frame
of reference, the isochromats will follow a helical path
making increasingly larger circles down towards the xy-
plane.

We will now examine the effects of a rectangular pulse.
The frequency of the pulse is selected, such that it targets
specific isochromats. The local magnetic field strength (Bt)
and the gyromagnetic ratio (γt) of the targeted isochromat
are used to determine the frequency of the pulse (νp)
according to

νp = γtBt. (8)

The amount of rotation is dependent on the pulse duration
and the strength of the B1 field. Isochromats precessing at νp

B0

B1

+

+

− +

−

−
M(t)

M(t + Δt)

Figure 1: Application of a pulsed magnetic field (B1) orthogonal to
the main static magnetic field (B0) results in the net magnetization
of the isochromat rotating about the direction of B1.

will experience a rotation of θt degrees when a pulse with a
magnitude of B1 is applied for a duration of τ, as given by
(9).

θt = γtB1τ. (9)

In reality, the rectangular pulse will contain other frequencies
as well. Isochromats precessing at other frequencies may
still absorb some of the energy causing them to experience
smaller perturbations. The observed rotation will depend
on the deviation of the isochromat’s magnetic field strength
(Bi) from Bt and occur around the direction of the effective
magnetic field B′1.

B′1 deviates from B1 by an angle βi, found using

βi = tan−1
(
Bt − Bi
B1

)
. (10)

The angle of rotation will depend on the pulse duration and
strength of the B′1 magnetic field, as given by

θi = γi
∣∣B′1

∣∣τ = γiτ
√

(Bt − Bi)2 + (B1)2. (11)

This procedure is most easily implemented by applying a
series of three rotations. First, a rotation of βi around the y-
axis aligns B′1 with the x-axis. The excitation by θi degrees can
then be implemented by a rotation about the x-axis. Finally,
a rotation around the y-axis of −βi will recover the proper
orientation. The process is represented mathematically by
⎡
⎢⎢⎢⎣

Mx(t + τ)

My(t + τ)

Mz(t + τ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cosβi 0 − sinβi

0 1 0

sin βi 0 cosβi

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0

0 cosβi sinβi

0 − sin βi cosβi

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

cos−βi 0 − sin−βi
0 1 0

sin−βi 0 cos−βi

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Mx(t)

My(t)

Mz(t)

⎤
⎥⎥⎥⎦.

(12)
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More complex pulses, such as sin(x)/x, can be represented as
a series of short rectangular pulses.

Generally, a restriction is placed that τ is much smaller
than T1 and T2, so that no relaxation or dephasing occurs
as the pulse is being applied. In this case, the final result of
applying the pulse in the rotating frame of reference is equiv-
alent to applying the pulse in the laboratory frame.

As previously mentioned, each isochromat is under the
influence of the local magnetic field (B) present at its
spatial location within the scanner. This field determines the
precessing frequency of the isochromat as well as its behavior
during the application of an RF pulse. The local magnetic
field strength is the sum of the main static magnetic field
(B0), along with any variation due to tissue susceptibility,
any inhomogeneities in the main field that have not been
corrected by proper shimming, and any gradients that are
currently being applied. Gradients are applied linearly across
the x, y, and z-axes of the system. The change in local
magnetic field strength due to the gradients (ΔBG) can be
calculated with (13), where (x, y, z) is the spatial location of
the isochromat, and Gx, Gy , and Gz are the strengths of the
applied gradients along the x, y, and z-axes of the system,
respectively

ΔBG = xGx + yGy + zGz. (13)

Additional local modifications can be made for imperfec-
tions in the gradient. The gradients applied during image
acquisition are defined by the pulse sequence and serve
purposes such as phase and frequency encoding and slice
selection. They can be applied anytime during acquisition
including during precession, during the application of a
pulse, or during signal acquisition.

Signal acquisition is typically achieved by the placement
of two orthogonal coils. Precession of the isochromats
induces an observable current in the coils. This signal is
typically represented in complex notation where the real
component is the signal observed by the first coil, and the
imaginary component is the signal observed by the second
coil.

The observed signal is calculated by summing the
magnetization of all the isochromats along the direction
of observation. For example, if the coils are placed along
the x- and y-axes, the real component can be the sum
of the magnetization along the x-axis, and the imaginary
component can be the sum of the magnetization along the
y-axis.

The observed signal consists of multiple samples col-
lected over a short period of time which will define one line
of k-space. This is accomplished by iteratively acquiring a
sample and performing a precession.

A typical acquisition process will consist of repeatedly
applying a pulse sequence (with varying parameters such as
the phase-encoding gradient strength) and collecting signal
samples to fill a line of k-space. This will be repeated until
samples have been collected for all of k-space. An image
reconstruction algorithm is then applied to transform the k-
space data into an image.

One area in which isochromat simulators vary is
in the way they accurately simulate the spin-echo phe-
nomenon [12]. Echos occur when spins that were previously
dephased come back into alignment. Accurate echo simu-
lation requires the use of a large number of isochromats
per voxel of the reconstructed image, greatly increasing
execution time. Shkarin and Spencer provide a nice overview
of this issue [7]. Alternative methods have been proposed
including using a time variable to track when rephasing
should occur [8], using gradient magnitudes to predict the
amount of dephasing that occurs in the region represented by
an isochromat [6], and calculating intravoxel magnetization
gradients [13].

3. Materials and Methods

3.1. SIMRI. SIMRI is a Bloch equation-based magnetic
resonance image simulator, developed in CREATIS, Lyons,
France [8]. The source code is downloadable [14]. It includes
a few pulse sequences, and the framework allows for the
implementation of ad hoc ones. Given a digital phantom of
an object, the magnetic resonance signal can be generated if
the fractional tissue components of each voxel are known. It
supports static field inhomogeneities due to improper shim-
ming and tissue susceptibility, features efficient modeling of
intravoxel inhomogeneities, and properly models the main
artifacts such as susceptibility, wrap around, chemical shift,
and partial volume effects. The design of SIMRI is shown
in Figure 2. SIMRI is designed to take advantage of small
clusters supporting the message passing interface (MPI)
communications protocol, but modifications are necessary
to take advantage of larger parallel computing solutions.

3.2. Montreal Brain Phantom. Research at McGill University
has resulted in a set of high-resolution voxel-based brain
phantoms [15–17]. These phantoms were created by semiau-
tomatically segmenting real brain data sets. In order to accu-
rately identify all of the tissues of interest, the segmentation
was based on T1, T2, and proton density weighted magnetic
resonance images, magnetic resonance angiography (MRA),
and computed tomography (CT) images. The resulting high-
resolution phantom consists of 11 tissue types: grey matter,
white matter, cerebrospinal fluid, skull, marrow within the
bone, dura, fat, tissue around the fat, muscles, skin/muscles,
and vessels. The phantom is presented as a set of fuzzy
volumes, one volume for each tissue type, where the voxel
intensities represent the amount of that tissue in the given
voxel.

3.3. Blue Gene. Blue Gene is a massively parallel computer
developed by IBM in collaboration with several partners
including the Lawrence Livermore National Laboratory. For
this work, two Blue Gene/L systems available in New York
were used. New York Blue is the system hosted at Brookhaven
National Laboratory consisting of 18,432 dual 700 MHz
PowerPC 440 nodes with 1024 MB of memory. Rensselaer’s
Computational Center for Nanotechnology hosts another
system consisting of 16,384 dual 700 MHz PowerPC 440
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Figure 2: Overview of the process that SIMRI uses to create synthetic MR images.

nodes divided equally between 512 MB and 1024 MB config-
urations.

Blue Gene/L utilizes system-on-a-chip technology, inte-
grating all functionality of a node, except for main memory,
into a single integrated circuit. The use of lower clock speed
processors in addition to this high level of integration allows
a highly scalable architecture at low cost and low power
consumption [18].

Compute nodes consist of two double floating point core
processors, supporting an enhanced instruction set including
single instruction and multiple data (SIMD) operations.
They come in 512 MB and 1 GB SDRAM configurations. Two
operation modes are provided: communication coprocessor
mode in which one CPU is used for computation and the
other for communication and virtual node mode in which
both CPU are leveraged for computation. In virtual node
mode, the memory is divided between the two cores. Nodes
are connected into a 3D torus, with the smallest unit being
4× 4× 2 [18].

Dedicated I/O nodes with Gigabit Ethernet provide an
interface between the compute nodes and external systems
including the file systems. I/O node to compute node ratios
of 1 : 8 to 1 : 256 is supported [18].

Applications built on the Blue Gene/L system utilize mes-
sage passing interface (MPI) for communication between
nodes. Compute nodes run a customized light-weight Linux
kernel. There are significant differences between a Blue
Gene/L compute node execution environment and a stan-
dard personal workstation execution environment [19].

The most notable difference is that Blue Gene/L nodes do
not support virtual paging. This means that unlike the 2 or
3 GB of virtual memory typically available to any processes
running on a 32-bit system, regardless of physical memory
amounts, a Blue Gene/L node is limited by the actual physical
memory. The application, kernel, and MPI communication
buffers must total less than the 256 MB, 512 MB, or 1024 MB
of physical memory available to the node. This requires
applications to have a very low memory footprint per node,
carefully manage communication buffers, and be clean of
any memory leaks that can quickly consume the available
memory [19].

3.4. Code Modifications. Several modifications needed to
be made in order for SIMRI to run successfully on the
Blue Gene/L systems. The modified version of SIMRI can

be requested by contacting the corresponding author. The
most significant modifications included redistribution of the
workload and optimization of the memory.

Since each isochromat progresses independently, paral-
lelization is straightforward. Essentially a set of isochromats
can be assigned to each computation node. The progression
of the isochromats can then be independently modeled and
the resulting acquired signals summed together at the end. In
SIMRI, this was done by assigning one slice (i.e., plane) of the
phantom object to each node. The number of divisions (and
participating compute nodes) is limited by the dimension
of the image. This division of labor is appropriate for small
clusters, but not for massively parallel systems like the Blue
Gene/L. In order to leverage the additional compute nodes,
a finer division of labor is needed. Modifications were made,
so assignment of tasks no longer needs to occur around slice
boundaries and that arbitrary groups of isochromats can be
assigned to each node.

The simulation has been modified to proceed as follows.
(1) When launching the application, a number of manager
nodes are specified. (2) The remaining nodes are considered
workers. Each worker is assigned to one of the manager nodes
in a manner, such that each manager has the same number of
workers. (3) The isochromats to be modeled are divided up
evenly between the manager nodes. (4) Each manager node
further divides up the isochromats amongst its workers. (5)
The worker nodes perform the simulation and return back to
their manager the MR signal from the isochromats they were
responsible for modeling. (6) The manager nodes combine
the signals from each of its workers. (7) The accumulated
signal from each manager is then combined to create the final
MR signal. (8) This MR signal can then be reconstructed
to produce the simulated image. This tree-like distribution
network allows efficient use of the large number of nodes in
the Blue Gene/L systems.

Initial test runs required approximately 2.7 GB of mem-
ory per node for a 2563 voxel simulation. This is well in
excess of the 1 GB maximum of the Blue Gene/L nodes.
Several steps were taken which allowed this requirement to
be met. The memory usage pattern was modified to retain
memory only as long as necessary and to reuse previously
allocated blocks. The MPI messaging schedule was modified
to reduce the size of messages. This is important as the buffers
internally allocated by MPI can consume considerable
memory if not careful. Finally, the code executed on each
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Figure 3: Selected slices from the 2563 voxel simulated image of the Montreal brain phantom.

node was made more specialized for the task the node would
be performing. The increased specialization of each node
results in memory being allocated conditionally based on the
node’s role. As a result of these modifications, the memory
use is sufficiently below the 1 GB that is shared between the
application and the kernel on the BlueGene/L systems.

4. Results

Sample results from a 2563 voxel simulation are shown
in Figure 3. This 2563 voxel spin-echo simulation took
approximately 4.3 hours executing on 8192 nodes of the

BlueGene/L system. A full 3D acquisition can easily and
quickly be simulated.

Benchmark runs were performed using the Montreal
brain phantom and a spin-echo protocol. A 1283 voxel
simulation was performed using 512, 1024, 2048, 4096, and
8192 nodes. Table 1 shows the run times for each simulation
and the scalability (run time versus number of nodes) is
plotted in Figure 4. As expected, the run time is found to be
inversely proportional to the number of nodes used.

This provides a nearly linear speedup (see Figure 5). The
efficiency (speedup divided by number of nodes), plotted in
Figure 6, is approximately unity tapering off only slightly as
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Figure 4: Scalability of the modified SIMRI running on the Blue
Gene/L system. The scalability is nearly linear (1/0.965).
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Figure 5: Speedup of the modified SIMRI running on the Blue
Gene/L system. The plotted line represents a perfect linear speedup.

Table 1: Runtimes for a 1283 simulation using different numbers of
nodes.

Number of nodes 512 1024 2048 4096 8192

Runtime (min.) 63.2 31.4 16.1 8.3 4.4

the number of nodes approaches the number of isochromats
and the communication/computation ratio increases.

A set of simulations were run on a single workstation in
order to emphasize the benefit of a distributed approach. A
workstation equipped with an Intel Xeon X5260 (3.33 GHz)
processor was used to run two-dimensional and three-
dimensional spin-echo simulations of a phantom consisting
of a single spherical object. The resulting run times are
shown in Table 2. Using a single workstation in it is possible
to perform two-dimensional and small three-dimensional
simulations. Higher-resolution simulations may however
require a prohibitive amount of time, and it is may not be
feasible to create a large set of simulated data.

5. Conclusions

Modern distributed systems provide unparalleled compu-
tational capabilities allowing full resolution data sets to be
generated in reasonable amounts of time. The growing avail-
ability of these systems, and the public funding for them, has
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Figure 6: Efficiency of the modified SIMRI running on the Blue
Gene/L system. The efficiency is near unity decreasing as the
number of nodes approaches the number of isochromats and the
communication/computation ratio increases.

Table 2: Execution times for running SIMRI on a single worksta-
tion equipped with an Intel Xeon X5260 (3.33 GHz) processor.

Simulation size 1282 2562 5122 10242 323 643 1283

Runtime (min.) 0.8 13.2 222.1 3418.9 3.3 219.5 13,385

resulted in them being readily available to a large number of
academic researchers.

SIMRI has proved to be a robust modeling package that
can easily be modified to target a variety of distributed
computing environments. As shown here, it can be used to
model the image acquisition process allowing the generation
of realistic high-resolution images. In addition, large quan-
tities of simulated images can be generated enabling their
use in research studies (for example, see [20]). Collections
of realistic simulated data sets can be used for validation
of image processing algorithms, perception studies, and
training.

Historically computational complexity has limited the
accuracy of medical image simulations. As technology con-
tinues to evolve, the realism of the simulated data will be
limited by the accuracy of the image acquisition process
model and the accuracy of the anatomical model being
imaged.
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