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Abstract

Background: Bacteria of the genus Wolbachia are reproductive parasites widespread among arthropods.
The most common effect arising from the presence of Wolbachia in a population is Cytoplasmic
Incompatibility (Cl), whereby postmating reproductive isolation occurs in crosses between an infected
male and an uninfected female, or when a male is infected with a different strain of Wolbachia to that of
the female (bidirectional CI). Previous theoretical models have demonstrated that bidirectional Cl can
contribute to the genetic divergence of populations in haploid and diploid organisms. However,
haplodiploid organisms were not considered in these models even though they include Nasonia parasitoid
wasps — the best example of the implication of Wolbachia in ongoing speciation. Moreover, previous work

did not investigate inbreeding mating systems, which are frequently observed in arthropod species.

Results: We developed a stochastic two-island model which simulated three genetic scenarios, diploidy,
haploidy, and haplodiploidy, with two Cl phenotypes being considered for the latter: (1) male development
of female progeny; and (2) mortality of fertilized eggs. We also investigated the effect of varying the
proportion of sib mating. In the model each allopatric population was initially fixed for a single allele at a
nuclear locus under positive selection and infected with one strain of Wolbachia. Each simulation
presupposed that the two populations were fixed for a different allele and a different strain of Wolbachia.
The degree of genetic differentiation observed in the locus under selection due to bidirectional Cl was
much lower for the two haplodiploid phenotypes than for either diploids or haploids. Furthermore, we
demonstrated that sib-mating may compensate for the lower efficiency of bidirectional Cl in haplodiploids

by maintaining genetic divergence.

Conclusion: Our model suggests that maintenance of genetic differentiation facilitated by Wolbachia is
more likely to occur in diploids and haploids than in haplodiploids. However, increasing the level of sib-
mating may compensate for the weak effect of bidirectional Cl in haplodiploids. Our work therefore gives
a potential explanation for why the haplodiploid Nasonia species, which are infected with bidirectionally
incompatible Wolbachia strains and undergo sib-mating, have differentiated genetically and maintained this

differentiation without premating isolation.
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Background

Insects are frequently infected with bacterial symbionts.
Many of them such as Wolbachia, Cardinium or Spiroplasma
manipulate the reproduction of their hosts for their own
advantage using different effects such as: feminization of
genetic males, increase of male mortality (male killing),
thelytokous parthenogenesis induction (PI) and, most
commonly, cytoplasmic incompatibility (CI) [1-9]. All of
these reproductive parasites are transferred vertically from
mother to progeny via the cytoplasm of the eggs.

Unidirectional CI may occur when an uninfected female
mates with an infected male [2,10]. The infected male's
sperm is modified by the bacterial infection and, as a
result, cannot fertilize eggs from female unless they are
rescued by the same strain being present in the cytoplasm
of the eggs [11,12]. In diploids, expression of CI results in
no offspring development. In haplodiploids, the two CI
phenotypes female egg mortality (FM) and male development
of female eggs (MD), result in a male biased sex-ratio in the
offspring [13-15]. In the FM phenotype, a reduction in the
number of progeny is observed because only unfertilized
eggs can develop into males (fertilized eggs being devel-
opmentally lethal) [13,14]. In the MD phenotype, the
number of progeny is not affected in incompatible mat-
ings as both fertilized and unfertilized eggs develop into
males due to the complete haploidization of fertilized
eggs [15]. In diploid and haplodiploid genetic systems,
the symbiont increases in frequency in the insect popula-
tion by allowing infected females to produce more daugh-
ters than uninfected females increasing the reproductive
success of infected females [14,16].

In addition to unidirectional CI, bidirectional CI may
occur when the parents are infected by different strains of
bacteria [15]. By generating such bidirectional reproduc-
tive incompatibilities, it has been suggested that CI pro-
motes speciation [2,17-20]. Wolbachia is the most
common of the endosymbionts causing CI, and has
recently been estimated to infect approximately 66% of all
insect species, with prevalence rates within species ranging
between 10-90% [21]. The clearest example of Wolbachia
inducing diversification is described in the three parasitic
wasps of Nasonia species. In this haplodiploid insect,
there is no premating isolation, but postmating isolation
occurs as a result of bidirectional CI [22,23]. It is therefore
suggested that Wolbachia bacteria are the main agent pre-
venting mixing between Nasonia species. However a direct
role of Wolbachia in speciation remains a controversial
topic [24,25]. For example, a study of isofemale lines from
natural populations of Drosophila simulans infected with
different bidirectionally incompatible Wolbachia strains,
showed no association between Wolbachia strain and
genetic divergence at neutral nuclear markers, and no evi-
dence of assortative mating behavior [26]. This case sug-
gests that CI alone cannot induce speciation in Drosophila.

http://www.biomedcentral.com/1471-2148/9/185

In contrast, another study of two Drosophila species
showed that unidirectional CI leads to behavioral recogni-
tion and subsequent avoidance of the Wolbachia infected
species by the uninfected one, hence maintaining premat-
ing isolation between species [27].

In an effort to investigate the possibility of CI promoting
speciation, several theoretical models have been devel-
oped which focus on the impact of CI on genetic diver-
gence. For example, theoretical frameworks showed that
CI may strengthen genetic divergence between popula-
tions [28,29] and, moreover, in some situations, bidirec-
tional CI selects for premating isolation and could lead to
speciation [30]. However, previous models on the effect
of CI on genetic differentiation [28-31] did not consider
some important points. (i) The genetic system of hap-
lodiploid parasitoids differs markedly to that of haploids
and diploids, yet the clearest evidence of the Wolbachia
role in early speciation events is cited as being in the hap-
lodiploid Nasonia species complex [22]. (ii) The MD and
FM phenotypes common to haplodiploids may have dif-
ferent effects on genetic differentiation [14,32]. (iii) In
parasitoids, selection acts preferentially on females
because ecological niches are generally defined by the
female choice of host [33], and by the female injecting
into the host many of the factors required for develop-
ment, including venom, ovarian proteins [34] and polyd-
naviruses [35]. (iv) Inbreeding may play a role in
enhancing genetic differentiation among populations;
near complete outbreeding, sib-mating, and parthenogen-
esis can all be observed within haplodiploid parasitoid
species [36-38]. Furthermore, it has been previously dem-
onstrated that sib-mating modifies the invasion dynamics
of the Wolbachia infection [39,40] Finally, (v) Using a sto-
chastic approach allows a finite population to be defined
and enables the incorporation of genetic drift and other
random evolutionary effects. In particular, Wolbachia
spread dynamics are represented differently under a sto-
chastic modeling simulation [41].

In this paper, we used a model similar to that of Telschow
et al. [28] to investigate how CI contributes to maintaining
divergence between two populations which have under-
gone different selection regimes, but after which nuclear
genes and Wolbachia can be exchanged (Figure 1). Our
approach is the first to (i) integrate different levels of
ploidy, (ii) integrate different CI phenotypes, (iii) con-
sider female only selection, (iv) allow sib-mating, and (v)
use a stochastic model.

Methods
The model
As in previous models [28,30], simulations started after
the contact of two populations, each infected with a differ-
ent Wolbachia strain (Figure 1). Each population is moni-
tored at a single nuclear locus under positive selection in
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Model scenario. This figure represents a schematic view of the evolutionary scenario implemented in the model for diploids.

An ancestral population is first separated into two populations. Each population is adapted to its environment at a single
nuclear locus which is under positive selection. After different strains of Wolbachia had invaded the two populations and
reached saturation point, migration was permitted between the populations. Simulations started at this step.

females only, and each population is fixed for a different
allele at this locus. We assumed a finite and constant pop-
ulation size N for each generation g. Each individual, male
or female, has a probability m of migrating to the other
population. Parameter s; is the selective coefficient, which
is applied to a female possessing an allele not locally
adapted to population i on the selected nuclear locus.

The two populations each harbored a different Wolbachia
strain, either A or B, which were bidirectionally incompat-
ible. We considered that infection by Wolbachia had no fit-

ness effect. Each individual of the next generation had a
probability t of receiving Wolbachia from its mother. The
probability of either bacterial strain A or B to express CI
was I, and I respectively.

Following Engelstidter et al. and Branca and Dupas
[39,40], we used a probability of each female mating
with a brother. The proportion of female offspring, Pgp,
was fixed to 1 male for 3 females, (e.g. for gregarious par-
asitoids [42]). Indeed, evolutionary stable sex-ratios are
predicted to be female-biased when there is local mate
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competition [43]. Note however, that we did not see any
significant effects of the primary sex ratio on either main-
tenance of Wolbachia diversity or the allelic frequency
dynamics of the nuclear locus (results not shown).

Our model called CIParasitoid was developed using the
"R" language and software R 2.8.0 [44]. The package
includes helps and can be installed using standard R com-
mands (see Additional files 1, 2, 3 and 4).

Selection modeling

In the two populations, females were fixed for a different
allele on a single selected nuclear locus V. Typically this
situation could represent the specialization of a parasitoid
wasp (such as Nasonia) to different insect hosts. Thus, the
locus V governed the capacity to successfully parasitize a
host. This locus bore two alleles V, specialized on host 1
and V, specialized on host 2. We assumed semi-domi-
nance of the alleles on locus V meaning that heterozygotes
randomly expressed one of the two alleles. Consequently,
in the haplodiploid genetic system, for i#j the probabili-
ties of successful development of the progeny in the host
i were 1, 57’ and 1-s; for the homozygotes V,V,, heterozy-
gotes V;V;and homozygotes V,V; respectively. In the hap-
loid case, these probabilities were 1 and 1-s; for the
genotypes V; and V; respectively. In the algorithm, the
reproductive females were therefore sampled according to
their genotypes on the locus V while each male had the
same probability of being sample, independently of its

genotype.

As a result, we can calculate F', the expected number of
reproductive females of each genotype after the selection
process in haplodiploids and diploids for population i, as
follows:

, F JRE—
E(Fyivi') = si Vivi
Fyivit(1=—)Fvivj+(1=si)Fyjvj
S
, (1=2))Fvivj
E(Fij )= si
Frivit(1=—Fvivi+(1=5i)Fvjvj
, (1-si)Fyjvj

S
Fyivit(1=")Fvivj +1-si)Fvjvj
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And in haploids, as:

, Fyj
E(F,)=— Y1
Vi Fyj +(1_5i)FVj
, (1-si)Fyj
E(Fy") = :

FVi+(1_5i)F\/j

After this selection process, the program recorded all the
reproductive individuals.

Cytoplasmic Incompatibility modeling

An incompatible cross occurred when an infected male
mated with a female which was either uninfected or
infected with a different bacterial strain.

In diploids and haploids, when CI occurred no offspring
were produced. For haplodiploids, the CI effect was
assumed to either result in all MD or all FM phenotypes.
Consequently, for the MD phenotype, CI resulted in the
development of only male progeny; for the FM pheno-
type, female progeny resulting from incompatible crosses
did not developed and the number of progeny therefore
decreased. To account for this, the probability of produc-
ing no offspring was equal to the primary sex ratio, P,
which was used as the probability of producing a female.

Estimating genetic divergence and Wolbachia diversity
maintenance

Previous studies have measured genetic divergence
induced by bidirectional CI on a selected locus by quanti-
fying the reduction in the effective migration rate, or the
production of hybrid offspring [28]. In the haplodiploid
model, this variable is not easily estimated because CI
does not result in the death of offspring but rather in the
production of males. Therefore, this caused complications
in the calculation of the reduction of the effective migra-
tion rate. Consequently, the effect of CI on genetic diver-
gence was estimated by calculating a Fst on the selected
nuclear locus as follows:

P191+P292
(P1+p2)*(91+92)

where p; and g; are the frequencies of allele 1 and 2 respec-
tively in population i.

Fst=1-2

The maintenance of Wolbachia diversity, namely W, was
measured by the probability of maintaining each Wol-
bachia strain in its respective population at a frequency
above an arbitrary threshold of 75%.
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Default parameters of the simulations

By default, the population size was set to N = 50 individ-
uals in each population, allowing for a high drift effect in
the system, with simulations stopping after g = 100 gener-
ations. Nevertheless, higher population sizes and longer
running time were tested. The default values of parameters
weresettom =0.5,t=1,s;=0.5and = 0. In all simula-
tions, we set s; = s,. Four different situations were calcu-
lated for bidirectional CI ranging from no CI to high levels
of CI: (I, =0; Izg=0), (I,=0.5; Iy = 0.75), (I, = 0.75; Iy =
0.75) and (I, = 1; Iy = 0.75). To test the significance of
bidirectional CI on genetic divergence, we used a non-par-
ametric unilateral Mann-Whitney test on Fst values. The
H, tested was "Fst in the bidirectional CI case was equal to
Fst in the case where I, = 0 and Iz = 0". The H, tested was
"Fst in the bidirectional CI case was superior to Fst in the
case where I, = 0 and I; = 0". This latter case was equiva-
lent to a case without Wolbachia (i.e. Wolbachia therefore
behaved as mitochondria). Fst and W were calculated after
1000 repetitions.

Results

Differentiation at the selected nuclear locus due to
bidirectional Cl in the different genetic systems (Table I;
Figure 2; Figure 3)

Firstly, our results showed that W reached zero beyond a
certain migration rate. It means that one Wolbachia strain
has succeeded in saturating both populations (Figure 2).
The previous model of Telschow et al. named this migra-
tion rate the threshold migration rate [28]. Threshold
migration rates were lower in our stochastic model than in
the previous deterministic model (Figure 3). However the
threshold became closer at higher selection coefficients.
Indeed, the threshold value was the same for both models
where si = 1.

http://www.biomedcentral.com/1471-2148/9/185

Secondly, for all genetic systems, we observed that Fst
reached significantly higher values when bidirectional CI
occurred than in situations with selection only (Table 1
and Figure 2). Bidirectional CI is therefore a force that
increased genetic divergence at a selected locus.

Thirdly, by comparing the different genetic systems, we
observed that threshold migration rates for W were lower for
haplodiploids than for diploids and haploids (e.g Figure
2aforl,=1andI;=0.75, between 0.1 and 0.125 for hap-
lodiploids and between 0.150 and 0.175 for haploids and
diploids). In the same manner, lower Fst values were
reached in the two haplodiploid phenotypes than in hap-
loids and diploids. Indeed, in the three sets of incompati-
bility rates, I, and I (Figure 2), Fst values in haplodiploids
were never significantly higher than values in diploid and
haploids (Mann-Whitney p < 0.001). In conclusion, when
both Wolbachia strains were maintained, enhancement of
genetic divergence by bidirectional CI was weaker in hap-
lodiploids than in other genetic systems.

Influence of selection on divergence under bidirectional Cl
(Table 2; Figure 4)

Firstly, in qualitative terms, in all genetic systems, W
increased as the selection coefficient increased (Figure 4).
Also, there was more effect of bidirectional CI on Fst as the
selection coefficient increased.

Secondly, stronger selection was required to reach high
values of W for haplodiploids. Similarly, the effect of bidi-
rectional CI on Fst in haplodiploids occurred for a nar-
rower range of selection coefficient values than for other
genetic systems (Table 2).

Thirdly, in diploids and haploids, forI,=0.75 and Iy =1,
enhancement of Fst by bidirectional CI was observed

Table I: Test of the impact of bidirectional Cl on genetic divergence for different values of m

Migration rate 0.2 0.175 0.15 0.125 0.1 0.075 0.05 0.025 0
Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo
I,=0.75 Haplo Haplo Haplo Haplo Haplo Haplo Haplo Haplo
lg=1 HDMD HDFM HDFM HDFM HDFM HDFM HDFM
HDMD HDMD HDMD HDMD HDMD HDMD
Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo
I,=0.75 Haplo Haplo Haplo Haplo Haplo Haplo Haplo Haplo
Ig=0.75 HDMD HDFM HDFM HDFM HDFM HDFM HDFM
HDMD HDMD HDMD HDMD HDMD HDMD
Diplo Diplo Diplo Diplo Diplo Diplo
I,=0.5 Haplo Haplo Haplo Haplo Haplo
Ig=0.75 HDFM HDFM HDFM HDFM HDFM
HDMD HDMD HDMD HDMD

Each box is filled with the name of the system where bidirectional Cl significantly increased the Fst value on the selected locus (Mann-Whitney test,
p-value = 0.05). Diplo = Diploids, Haplo = Haploids, HDFM = Haplodiploid Female Mortality and HDMD = Haplodiploid Male Development. Fixed

parameters were set to 5;= 0.5, Pz = 0.75, =0,t=1,g= 100, N =50.
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Effect of migration rate m on idirectional Cl and genetic divergence. A representation of the evolution of W and Fst
for different bidirectional Cl situations (no CI (I, = I3 = 0), (I, = 0.5; I3 = 0.75), (I, = 0.75;l3 = 0.75) (I, = 1;l= 0.75)) and migra-
tion rate m. Other parameter values are s;= 0.5, Pz =0.75, =0,t=1, g =100, N = 50. Each graph represents each phenotype

tested (Haplodiploids FM and MD, diploids and haploids). W is represented on the left and Fst on the right. The higher the

value for each variable, the darker the box.

without any selection whereas in haplodiploids, it hap-
pened only for selection coefficients above 0.25 (Table 2).
We also noticed that for I, = 0.5, I;=0.75 and for I, = 0.75,
Iz = 0.75, increases in Fst were higher for the FM pheno-
type than for the MD phenotype. In addition, we found
that for middle incompatibility rates (I, = 0.5, Iy = 0.75)
diploids showed a greater increase in genetic divergence
than haploids (Table 2). At s; = 0.375 diploids showed a
significantly higher Fst with CI than without, whereas in
haploids it was non significant. In fact, Fst was already
high for haploids without CI (Fst € [0.209; 0.225] com-
pared to Fst € [0.105; 0.115] for diploids) and Fst reached
almost the same values in diploids and haploids in the
case of bidirectional CI (e.g. for I, = 1, I; = 0.75, Fst €

[0.749; 0.770] for haploids and Fst € [0.763; 0.784] for
diploids). Due to the lack of heterozygotes in the haploid
system, the purging of disadvantageous alleles was higher
and resulted in higher Fst values, a phenomenon charac-
teristic of our semi-dominant locus selection model.

The effect of bidirectional CI on differentiation can be
summarized as: MD < FM << haploids < diploids.

Combined effect of sib-mating and bidirectional Cl on
genetic differentiation (Figure 5)

Firstly, for all values of , Fst and W remained higher in the
presence of bidirectional CI except for extreme sib-mating
situations where they converged. Thus bidirectional CI
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Comparison of the threshold migration rate in stochastic vs deterministic models. In the work by Telschow et al.
[28], the threshold migration rate was defined as the migration rate beyond which Wolbachia diversity is no longer maintained.
In our haploid model, a threshold migration range was represented as the migration rate valueswhere W drops from 0.95 to
0.05. The true threshold migration rate was assumed to be included in that range of migration rate values. Other parameter
values were fixed at the same values as Telschow et al., 2002 [28]: [, = 0.8, ;= 0.8, t = 0.99, sr = 0.5.

enhanced genetic differentiation in all genetic systems
from low to moderate levels of sib-mating.

Secondly, we observed that interaction between sib-mat-
ing and bidirectional CI for W values depended on the
genetic system being tested (Figure 5). In haplodiploids,

sib-mating increased W for middle bidirectional CI rate
(I, = 0.5; Iz = 0.75) but had no effect for higher bidirec-
tional Cl rates. In diploids and haploids W always showed
a minimum at intermediate values of sib-mating. Indeed,
it decreased with low levels of sib-mating and increased
with high levels of sib-mating. The minimum value of W

Table 2: Test of the impact of bidirectional Cl on genetic divergence for different value of s;

Selection strength 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 |
Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo
[,=0.75 Haplo Haplo Haplo Haplo Haplo Haplo Haplo Haplo Haplo
lg=1 HDFM HDFM HDFM HDFM HDFM HDFM HDFM
HDMD HDMD HDMD HDMD HDMD HDMD
Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo Diplo
[,=0.75 Haplo Haplo Haplo Haplo Haplo Haplo Haplo Haplo Haplo
Ig=0.75 HDFM HDFM HDFM HDFM HDFM HDFM HDFM
HDMD HDMD HDMD HDMD HDMD HDMD
Diplo Diplo Diplo Diplo Diplo Diplo
1,=05 Haplo Haplo Haplo Haplo Haplo
Ig=0.75 HDFM HDFM HDFM HDFM HDFM
HDMD HDMD HDMD HDMD

Each box is filled with the name of the system where bidirectional ClI significantly increased the Fst value on the selected locus (Mann-Whitney test,
p-value = 0.05).

Diplo = Diploids, Haplo = Haploids, HDFM = Haplodiploid Female Mortality and HDMD = Haplodiploid Male Development. Fixed parameters
were settom = 0.1, P =0.75, =0,t=1,g= 100, N =50.

Page 7 of 13

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:185

w

Selection coefficient s,

http://www.biomedcentral.com/1471-2148/9/185

Fst

Selection coefficient s,

0.00 025 0.50 075 100 000 025 0.50 0.75 1.00
' ' ' ' ' : : : - - W/ Fst
1=0;1=0 | 3 1.0
1,=0.5; 1,=0.75 - g
h=i
1,=0.75; 1.=0.75 | S 0.9
w
1,=1;1,=0.75 | il
= 0.8
1,=0;1=0 >
=1
1,=05;1,=0.75 - g 0.7
g
1,=0.75; 1,=0.75 S.
A b & 0.6
1,=1;1,=0.75 - S
1,=0;1,=0 - - 02
I
1,=0.5; 1,=0.75
A B .‘é_’ | 0.4
1,=0.75; 1,=0.75 5
(7]
1,=1;1,=0.75 - - 0.3
1,=0;1,=0 |
5 - 0.2
1,=05;1,=0.75 | g
o
1,=0.75; 1,=0.75 | o3 Lo
1,=1;1,=075 |
0.00 0.25 0.50 0.75 100 0.0 0.25 0.50 0.75 1.00
Figure 4

Effect of the selection coefficient s; on bidirectional Cl and genetic divergence. A representation of the evolution of
W and Fst for different bidirectional Cl situations (no ClI (I, = Iz =0), (I,= 0.5; I; = 0.75), (I, = 0.75; [; = 0.75) (I, = |; [ = 0.75))
and selection coefficients s;. Other parameter values are fixed at m = 0.1, P, =0.75, =0,t=1,g =100, N = 50. Each graph
represents each phenotype tested (Haplodiploids FM and MD, diploids and haploids). W is represented on the left and Fst on

the right. The higher the value for each variable, the darker the box.

was observed for = 0.25 for middle bidirectional CI rates
(I4=0.5; Iz = 0.75) and for = 0.875 for higher bidirec-
tional CI rates.

In haplodiploids (Figure 5), sib-mating increased Fst
while in diploids and haploids, this phenomenon was
only observed from middle bidirectional CI (I, = 0.5; Iz =
0.75) to no bidirectional CI.

Effect of transmission efficiency

We also tested the effect of a reduction in transmission
efficiency t on the different genetic systems. We first
observed that W decreased for higher values of ¢ in hap-
lodiploids compared to the other genetic systems. In the

haplodiploid genetic system, maintenance of Wolbachia
diversity was observed only for values of ¢ equal to or
above 0.95. For the other genetic systems, maintenance
was as low as 0.90. Therefore, the diversity of Wolbachia
strains can only be maintained in host populations in
which transmission efficiency is almost complete, espe-
cially in haplodiploid systems.

Sensitivity of stochastic model to generation length and
population size

First, we tested the effect of various population sizes on
the results (N = 50, 200, 500, 1000). Values of the varia-
bles Fst and W were found to be stable for population size
above N = 50. We saw a decrease in the standard error of
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Figure 5

Effect of the sib-mating rate y on bidirectional Cl and genetic divergence. A representation of the evolution of W

and Fst for different bidirectional Cl situations (no CI (I, = I3=0), (I, = 0.5; I = 0.75), (I, = 0.75;3= 0.75) (I, = |; Iz = 0.75)) and
for different values of sib-mating rate . Other parameter values are fixed at m = 0.1, 5;= 0.5, Pg = 0.75,t = |, g = 100, N = 50.
Each graph represents each phenotype tested (Haplodiploids FM and MD, diploids and haploids). W is represented on the left

and Fst on the right. The higher the value for each variable, the darker the box.

the variables estimation as population size increased
because of reduction of genetic drift effect. Variables W
and Fst were found to be slightly lower for population size
N =50 but not significantly so.

Second, we increased generation length to see long-term
dynamics of the variables W and Fst. We found that if W
was close to 1 or equal to 0, it was stable after 100 gener-
ations for long time (>2000 generations). For intermedi-
ate values recorded at g = 100, W tended to drop to O after
a thousand generations. We noted that the observed
number of generations before reaching 0 were lower for
the MD phenotype than for FM phenotype. We observed

also that if we increased population size, we augmented
the number of generations necessary for W to reach zero.
For Fst, we observed the same dynamic as W, following
the decreasing influence of bidirectional CI when W
decreased.

Discussion

Convergence of deterministic and stochastic models

In accordance with previously published models of hap-
loids [28], we first observed that below a threshold migra-
tion rate, Wolbachia strains were maintained. However our
values for the threshold migration rate were lower than
the ones observed in the deterministic model of Telschow
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et al. [28] because our approach relies on a stochastic
modeling, with a high impact of genetic drift. Therefore it
is possible for a Wolbachia strain to be lost due to genetic
drift if it reaches a low frequency. This was not possible in
previous models. We also observed that the threshold
migration rates for both the stochastic and previous deter-
ministic approach became closer at higher selection rates.
This was due to drift effects on stochastic models that
became negligible in comparison to selection at very high
values of s;.

We also saw that the W variable took a value of 0 or near
1 if the program was run a long duration. This meant that
either the Wolbachia strain diversity was maintained in
almost all repetitions or that one strain invaded both
insect populations. It reflects a dynamic where there are
two stable equilibria (1) one Wolbachia strain in the two
populations or (2) two strains present but each strain is
restricted to a different population. In this respect, our
results are similar to those of other determinist
approaches, which have investigated the dynamics of
strains harbored by different populations [28,31].

Finally, the only previous model that has considered sib-
mating found that Wolbachia is harder to spread in popu-
lations submitted to sib-mating [39]. It even cannot per-
sist beyond a threshold level of sib-mating because CI
expression becomes too rare. An analogous result in our
model would have been the invasion of one strain of Wol-
bachia in to both insect populations i.e. W = 0. But in fact
in our model, selection allows Wolbachia to be main-
tained at very high values because when the sib-mating
rate is high, Wolbachia and the nuclear locus under selec-
tion segregate together. However, at near complete sib-
mating, it was possible for Wolbachia strains to be main-
tained only if transmission efficiency was total or near-
total.

Specific responses of haplodiploid populations under
bidirectional CI

Our model highlights that bidirectional CI in the hap-
lodiploid genetic system is less likely to maintain Wol-
bachia diversity as well as enhance genetic differentiation
between differentially infected populations. The possibil-
ity of the production of arrhenotokous male following
migration in the first generation may explain the lower
threshold migration rate within haplodiploid systems.
Differentiation in all systems is maintained because first
migrant females are more likely to cross with an individ-
ual harboring a different Wolbachia strain and, hence,
more likely to suffer more from CI than a resident female.
In haplodiploid genetic systems however, CI produces as
many males (FM) or even more males (MD) than in com-
patible crosses. These males harbor Wolbachia from the
immigrant population. Therefore, the relative frequency
of males harboring immigrant Wolbachia is higher in the

http://www.biomedcentral.com/1471-2148/9/185

following generation in haplodiploids than in haploids
and diploids. As a result, in the second generation,
recently migrated lineages have more available males hav-
ing the same Wolbachia and, therefore, suffer less from CI
effect than those of the first generation. These factors facil-
itate invasion of the immigrant bacteria strain and Wol-
bachia diversity is consequently harder to maintain for
haplodiploids.

In parallel, we note that there is a high sensitivity to trans-
mission rate variation in the haplodiploid systems.
Within the literature, there are records of transmission
rates that exceed 95% (for example 96-97% in Culex pipi-
ens [45] or 98.6% in Drosophila simulans [46]). Our work
has shown that such variations at high rates have a weak
impact on Wolbachia dynamics in haploid and diploid
genetic systems, but a high impact in haplodiploid genetic
systems.

As shown in previous models, when Wolbachia diversity is
maintained, Fst increases because bidirectional CI results
in migrant offspring death and, hence, in a reduction of
the effective migration rate [28,30]. We observed that the
effect on genetic divergence was weaker in haplodiploids
than in other systems, even when both Wolbachia strains
were maintained. As for Wolbachia, this observation
appears to arise from the production of males in incom-
patible crosses in haplodiploids, allowing more introgres-
sion of the immigrant allele to occur.

Sib-mating compensates for differences between
haplodiploids and other systems

Very high values of sib-mating always favor divergence
and maintenance of Wolbachia infection diversity by
maintaining the association between Wolbachia and
nuclear genes. But at lower values of sib-mating, in hap-
loid and diploid systems, we observed a reduced W in the
presence of sib-mating. This reduction of W due to sib-
mating did not occur in haplodiploid systems. However,
in haplodiploid systems, sib-mating inhibits the intro-
gression associated with haploid male production. In all
systems, when individuals mate with sibs, incompatible
crosses occur less frequently and, hence, reduce the
impact of bidirectional CI on genetic divergence. But in
the case of haplodiploids, as discussed previously, a
reduction of W in the absence of sib-mating, relies on the
production of males from incompatible crosses. These
males, in effect, reduce the fitness of local females (i.e.
local Wolbachia) by causing CI, and, hence favoring the
introgression of exotic Wolbachia strain. In this situation,
sib-mating prevents introgression by affording sibling
males a higher reproductive success in comparison to
non-sibling males. Thus overall, the effect of sib-mating
on W is less pronounced in haplodiploids than in hap-
loids or diploids.
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The implications of bidirectional Cl on speciation by
reinforcement

The present model shows that sib-mating, which is fre-
quently observed in gregarious haplodiploid parasitoids,
can complement less efficient bidirectional CI. In this
study, we have ascertained that sib-mating is capable of
enhancing the weak effect of bidirectional CI in haplodip-
loid systems. Moreover, in a previous work on unidirec-
tional CI in haplodiploids, sib-mating was shown to
reduce the loss of population growth rate via CI during
Wolbachia invasion [40]. This contribution of sib-mating
in the Wolbachia-induced differentiation will have an
effect on the next step of speciation according to the rein-
forcement theory. Reinforcement speciation theory pre-
dicts that postmating isolation mechanisms, if
maintained through generations, will be replaced by less
costly premating isolation mechanisms [47]. In the case of
postmating isolation induced by bidirectional CI, a previ-
ous model has shown that premating isolation mecha-
nisms are likely to be selected for [30]. Nevertheless,
evolution of premating isolation (further steps of rein-
forcement) may be counteracted by sib-mating because
sib-mating may limit the cost of Wolbachia postmating
mechanisms. We therefore expect selection for premating
isolation mechanisms to be weaker in haplodiploids
encountering frequent sib-mating. Interestingly, in hap-
lodiploid spider mites, it has been demonstrated that Wol-
bachia induces sib-mating in infected individuals [48].
The present model suggests that such induced sib-mating
may be an efficient alternative strategy to CI for maintain-
ing Wolbachia in a population. In addition, with MD and
FM, the other effect of Wolbachia in haplodiploids is the-
lytokous parthenogenesis induction (PI). It can be viewed
as the extreme inbreeding strategy and an efficient strategy
for Wolbachia to maintain strain diversity jointly with
local adaptation of its host in parapatric populations. In
conclusion, we emphasize that ability for Wolbachia to
maintain postmating isolation and select for premating
isolation mechanisms is dependent on the mating system
of the host species. Inbreeding mating systems should be
further investigated in future work on Wolbachia.

Reconsidering the Nasonia case

The clearest example of speciation likely to have been
induced by Wolbachia is "the Nasonia case". The three spe-
cies of the Nasonia complex, are bidirectionally incompat-
ible, due to either MD or FM [23] and are genetically
differentiated [49]. The hypothesis is that bidirectional CI
is the major agent responsible for their primary isolation
[22,23]. Reinforcement has not occurred totally yet since
no premating isolation had arisen. The closest related spe-
cies, Nasonia giraulti and N. longicornis occur in allopatry,
which may explain the absence of premating isolation.
However, these two species can occur in sympatry with the
more distantly related species N. vitripennis but no pre-
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mating isolation mechanisms have evolved. We can spec-
ulate in light of our results as to what the predominant
role of bidirectional CI versus the important contribution
of sib-mating in Nasonia speciation is by considering that:

- in haplodiploids, Wolbachia induced bidirectional CI
alone is less efficient to contribute to genetic divergence.

-Nasonia species are gregarious and exhibit sib-mating
behavior, and even within host mating, when females
emerged already mated from the host puparium [50].

Our hypothesis is that bidirectional CI and sib-mating
have in combination contributed to genetic divergence of
Nasonia species and that this has occurred in a framework
in which frequent sib-mating has prevented evolution of
premating isolation mechanisms.

Implications for biological control strategies using
parasitoid agents

CI inducing Wolbachia have already been used as a biolog-
ical control strategy to control insect pest growth rate by
introducing an infected conspecific [51,52]. Biological
control programs that utilize endemic wasp species can
conceivably make use of the knowledge that Wolbachia
could play a role in local adaptation. Introduced biologi-
cal control agents often interact with local populations
that are specialized on a different host, or can be com-
posed of different genotypes reflecting virulence on differ-
ent hosts [53,54]. Given that sib-mating coupled with
bidirectional CI contribute to maintaining host speciali-
zation, it may be envisaged to introduce agents with dif-
ferent host niche and infected with different Wolbachia
strains. If bacteria strains are bidirectionally incompatible,
then reproductive isolation will occur. On the one hand,
too many incompatible crosses can render bidirectional
ClI deleterious due to the reduction in population growth
associated with it. On the other hand, a sib-mating proc-
ess can compensate for these same detrimental effects.
Local adaptation is, therefore, reinforced over generations
so that mixing with locally avirulent populations is
avoided. Existing biological control strategies may offer
the opportunity to field-test the scenarios developed in
this model.

Conclusion

Our results show that the implications of Wolbachia in
genetic differentiation depend on crucial interaction
between biological traits such as the genetic system and
sib-mating rate. Complex analysis of these factors reveals
a general trend that permits two principal conclusions to
be drawn. Firstly, in haplodiploid systems bidirectional CI
possesses a limited ability to maintain Wolbachia diversity
and, by extrapolation, a limited ability to maintain
genetic divergence of locally adapted genes. Secondly, sib-
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mating behavior is particularly efficient in haplodiploid
systems to counteract a reduced impact of bidirectional CI
on genetic divergence. However, it may slow down the
speciation process by reducing the postmating isolation
cost of Wolbachia and, thereby, the selection for premating
isolation. Therefore, speciation induced by bidirectional
CI alone is expected to occur less frequently and for a nar-
rower range of parameters in haplodiploids compared to
diploids.
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