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Biofilm formation in Vibrio cholerae empowers the bacteria to lead a dual lifestyle and

enhances its infectivity. While the formation and dispersal of the biofilm involves multiple

components—both proteinaceous and non-proteinaceous, the key to the regulatory

control lies with the ubiquitous secondary signaling molecule, cyclic-di-GMP (c-di-GMP).

A number of different cellular components may interact with c-di-GMP, but the onus of

synthesis of this molecule lies with a class of enzymes known as diguanylate cyclases

(DGCs). DGC activity is generally associated with proteins possessing a GGDEF domain,

ubiquitously present across all bacterial systems. V. cholerae is also endowed with

multiple DGCs and information about some of them have been pouring in over the

past decade. This review summarizes the DGCs confirmed till date in V. cholerae, and

emphasizes the importance of DGCs and their product, c-di-GMP in the virulence and

lifecycle of the bacteria.
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INTRODUCTION

Vibrio cholerae: Dual Lifestyle and Biofilm
Formation of biofilm enables the bacteria to survive and propagate despite the presence of
antibiotics or other external stress. Vibrio cholerae is no exception. This bacterium adopts two
different lifestyles—the motile pathogenic form in the human host, and the sessile form in
waterbodies existing in associated biofilms. The biofilm allows the bacteria to survive nutrient
limitations, fluctuations in oxygen levels, and massive changes in osmolarity (Rodney, 2002;
Tischler and Camilli, 2004; Waters et al., 2008). Additionally, it also allows changes in the bacterial
proteome by inducing favorable genes or suppressing unfavorable genes in order to adapt better.

Biofilm formation in V. cholerae is a three-step cyclic process, involving (a) surface attachment,
(b) colony formation, and (c) dispersal. In the initial step (surface attachment), motile V. cholerae
scan solid surfaces—with a preference for the chitinous exoskeleton of zooplanktons or
phytoplanktons (Tamplin et al., 1990; Rawlings et al., 2007). The bacterium, powered by the single
polar flagellum (with a Na+-drivenmotor and regulated by the Flh proteins) seeks a suitable surface
(Echazarreta and Klose, 2019), and has been suggested to be quite selective in assaying the surface
before selecting it for attachment (Utada et al., 2014). The Mannose-Sensitive Haemagglutinin type
4 surface pili (MSHA-pili) contribute to strong surface attachment during the initial attachment
steps (Watnick et al., 1999; Wong, 2016).

After multiplication and the progression of colony formation, the size of the average member
cell keeps on decreasing to increase the compaction in the biofilm. The size decreased from
2.4µm (Drescher et al., 2016) at the beginning of biofilm to 1.8µm for cellular communities
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having ∼1,000 cells (Wong, 2016). Consequently, interbacterial
distances in the biofilm matrix also show a significant decrease.
The directionality of colony growth also changes incrementally
with increase in colony size—while the initial growth is only one
dimensional, growth happens in all three directions when cell
number crosses 200. It is during this three-dimensional growth
phase, the extracellular matrix composed of polysaccharides,
proteins, and a small amount of nucleic acids (Joachim and Karl,
2002; Wong, 2016) is secreted. Vibrio polysaccharides (VPS) are
essential for keeping the cells together andmaintenance of the 3D
structure. Proteins of the extracellular matrix, viz., RbmA, RbmC
and Bap1 play critical roles in the biofilm as well. The RbmA
protein has been implicated in cellular adhesion, architecture and
biofilm stability process, while the RbmC secreted on the outer
surface of the cells creates flexible scaffolds where the cells can
grow and multiply. The Bap1 protein maintains pellicle strength
and hydrophobicity allowing the biofilm to propagate at the
water-air interface (Römling et al., 2013; Hay and Zhu, 2015).

The last phase of biofilm formation is the dispersal of
the bacterial cells from the biofilm to search and colonize a
new substratum when conditions are favorable. Environmental
conditions such as high/low oxygen level, the concentration of
phosphate, Ca2+, etc, have negative effects (inhibition of vps
gene transcription) on biofilm formation and induce the dispersal
of the V. cholerae biofilm (Colwell and Huq, 1994; Hay and
Zhu, 2015). Atleast two deoxyribonucleases and the Xds protein
have also been reported to play crucial roles in biofilm dispersal
(Römling et al., 2013; Sisti et al., 2013). The degradation of biofilm
and extracellular matrix is induced by various environmental
signals and other proteins, many of which are yet to be elucidated.

REGULATION OF BIOFILM FORMATION IN
V. CHOLERAE AND PATHOGENESIS

Formation of the biofilm comes at a premium—the amount of
resources diverted and spent toward the formation is substantial,
but the benefits are huge. Being able to thrive in adverse
conditions accords the bacterium a different strategy for survival.
Therefore, the process needs to be highly regulated and that
is how it happens, with the interplay of various factors. In V.
cholerae, transcriptional activators, repressor proteins and sigma
factors RpoS and RpoE have been demonstrably involved in the
process (He et al., 2012).

The structural genes for VPS synthesis have been reported
to be essential for exopolysaccharide biosynthesis and biofilm
formation (Yildiz and Schoolnik, 1999). These genes, located
on vps-1 (vpsA to vpsK) and vps-2 (vpsL to vpsQ) operons, are
positively regulated by VpsR and VpsT, while HapR negatively
regulates the expression of the vps genes, and the positive
regulators VpsR and VpsT themselves (Casper-Lindley and
Yildiz, 2004; Beyhan et al., 2007). Both VpsR and VpsT bind
directly to the vps promoter regions and have recognition sites in
vps-1, vps-2 and vps-L operons which act as regulatory sequences
in the expression of extracellular polysaccharide and matrix
protein synthesis (Fong et al., 2010). A recent report relates
the activation of the vps operons to the concentration of VpsR

as well as c-di-GMP (Hsieh et al., 2020) directly affecting the
σ70 RNAP. Additionally, VpsT can act as a regulatory protein
with recognition sequences for RbmA, whereas RbmC and Bap1
promoters also contain recognition sites for VpsR (Boyd and
O’Toole, 2012; Zhao-Xun, 2015).

Activation of HapR is an important precursor to the process
of biofilm dispersion. The N-terminal HTH domain of HapR
directly binds to the vps-2 operon at vpsL and vpsT (Jonas et al.,
2008; Sudarsan et al., 2008). The activation of HapR is controlled
by small molecules involved in the quorum sensing pathway.
During the biofilm phase, lower concentrations of the quorum
sensing molecules AI-2 and CAI-1 activate the transcription of
quorum sensing regulatory RNAs (sRNA, via phosphorylation
of RpoN and LuxO), which prevent the synthesis of HapR.
With the increase in concentrations of AI-2 and CAI-1, LuxO
is dephosphorylated, and the sRNAs are repressed, leading to
the expression of HapR, eventually resulting in the dispersal of
the biofilm (Tchigvintsev et al., 2010). Other negative regulators
include the cAMP and the cAMP-receptor protein complex
(Liang et al., 2007).

Intricately involved with all these regulatory elements,
including those involved in pathogenesis is the secondary
signaling messenger molecule cyclic-di-GMP (Figure 1; Watnick
and Kolter, 2000; Tischler and Camilli, 2005). Both the biofilm
activators, VpsT and VpsR can bind to c-di-GMP and has
been shown to be responsive to fluctuations in the intracellular
concentrations of c-di-GMP in V. cholerae (Krasteva et al., 2012;
Hay and Zhu, 2015). An increase in the cellular c-di-GMP pool
leads to the dimerization and activation of VpsT to induce biofilm
formation (Shikuma et al., 2012). Similarly, allosteric activation
of VpsR happens when the intracellular concentration of c-di-
GMP rises. The activation of both VpsR and VpsT enhances the
expression of genes essential for the formation of the biofilm.
The third major component which responds to changes in c-di-
GMP concentration is the σ

54-dependent activator FlrA, which
is linked to the expression of flagellar motility. Increased c-di-
GMP levels lead to binding of c-di-GMP to FlrA, and inhibition
of its activity which in turn diminishes flagellar gene expression
(Srivastava et al., 2013). The dynamic extension and retraction
of the MSHA pilus (Jones et al., 2015; Wang et al., 2016) is
regulated by c-di-GMP via interaction with the ATPase MshE
(Floyd et al., 2020). The role of c-di-GMP in the regulation of
large adhesins which control reversible cell attachment during
biofilm formation also highlights the essentiality of the molecule
(Kitts et al., 2019). It is safe to state that c-di-GMP is a crucial and
essential regulatory element for surface attachment and biofilm
formation in V. cholerae.

Biofilm formation would therefore, be ideally associated with
the loss of motility and switch toward the sessile, non-pathogenic
lifestyle. However, the formation of biofilm is not just an essential
ability which enhances the infectivity of V. cholerae (Zamorano-
Sánchez et al., 2019), but also has been found to be crucial to
the process of intestinal colonization. Interestingly, Xu et al.
(2003) found that the expression of biofilm genes (vpsA and
rbmA) was higher in rabbit ileal loop models. However, other
biofilm-promoting genes like the rbmC and bap1 did not seem
to have any role to play in intestinal infection models (Fong
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FIGURE 1 | Regulatory pathways and components of the biofilm formation mechanism involving c-di-GMP in V. cholerae.

et al., 2006), suggesting that the biofilms formed during intestinal
colonization do not proceed beyond the RbmA-dependent
primary cell aggregates (Silva and Benitez, 2016). Once in the
intestine, the bacterium is exposed to multiple reverses like the
effect of taurocholate salts in bile (Hay and Zhu, 2015) which is
believed to degrade the VPS of the biofilm. Further repression
of vps expression happens when the mucus layer is encountered,
and the subsequent dispersal of the biofilm (Liu et al., 2007)
results in the faster movement of the released bacterium in
mucus. It has been postulated that the components of mucin
might repress vps expression by actually regulating intracellular
c-di-GMP concentrations (Liu et al., 2015) during V. cholerae
infection. However, there has been no further elucidation of the
interactions betweenmucin and c-di-GMP to explain the possible
switch in the intestine.

c-di-GMP AND DIGUANYLATE CYCLASES
IN V. CHOLERAE

Cellular c-di-GMP levels are regulated by the synthesis of
activities of c-di-GMP by diguanylate cyclases (DGCs), and

degraded by phosphodiesterases (Römling et al., 2013; Bandekar
et al., 2017). Apart from Mycobacterium smegmatis (only two
DGCs) (Kumar and Chatterjee, 2008), there is an abundance
of DGCs in different bacterial systems (Römling et al., 2013;
Chouhan et al., 2016). The multitude of functionalities regulated
by DGCs and phosphodiesterases is very wide and even
after years of investigation, the roles that they execute in
these processes are not fully understood. The consensus is
that the competitive action of the DGCs (and even the
phosphodiesterases) results in the complex interactions between
various pathways, but how or why these happen is yet to be
elucidated. Even the response of DGCs to various extracellular
signals and quorum sensing involves an intricate, network-
modulated pathway, which might need years to unravel.

In V. cholerae, sensing environmental cues in the surrounding
water or in the small intestine have been closely associated
with fluctuations in the intracellular c-di-GMP pool. Generally,
an increase in the levels of cellular c-di-GMP is associated
with the suppression of the virulence genes in V. cholerae
(Tischler and Camilli, 2005; Tamayo et al., 2007). Currently,
it is accepted that the bacterium invades the gastrointestinal
(GI) cavity with augmented levels of c-di-GMP, which are acted
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FIGURE 2 | VC0395_0300(161−321) (yellow, 6EIB) aligned with SadC (blue, 4WXW, Pseudomonas aeruginosa) and DGCs from Thermotoga maritima (green, 4URG)

and Bdellovibrio bacteriovorus (pink, 6HBZ) Highlight: Alignment of GGDEF domains. Right: Active site of VC0395_0300 in cyan. Arrow shows direction of entry of

GTP.

upon by the mucin components and eventually, the action of
the phosphodiesterases bring down the c-di-GMP concentration
(Koestler and Waters, 2014). During the late infection phase,
though, there have been reports of a spurt in c-di-GMP
concentration with expression of DGCs (Tamayo et al., 2007).
The fluorescent visualization of the distribution of vibrios in
the small intestine (Millet et al., 2014) has also brought to light
the differential localizations in distinct niches along the small
intestine, limited by the abundance of mucin. Together, these
cues point to the following scenario—V. cholerae invades the
GI tract with high levels of cellular c-di-GMP, which is brought
down subsequently during the infective stage of the lifecycle.
Once the bacteria is in the distal parts of the small intestine, where
mucus is less abundant, c-di-GMP levels are raised again, as if in
preparation for the life upon exit from the human host.

Diguanylate Cyclases of V. cholerae
Diguanylate cyclases, responsible for c-di-GMP synthesis in
bacteria, have been associated with a conserved GGD(/E)EF
motif across different families (Ryjenkov et al., 2005). In
line with the multiplicity of these proteins in bacteria, V.
cholerae has been known to have 31 different proteins with a
conserved GGD(/E)EF domain and 10 with a GGD(/E)EF and
EAL (phosphodiesterase) domain in tandem distributed across
its two chromosomes (https://www.ncbi.nlm.nih.gov/Complete_
Genomes/c-di-GMP.html) (Conner et al., 2017). However, not
all of these are associated with motility and/or biofilm formation,
and some have not been demonstrated to have DGC activity.
Generally DGCs have an active site (A site) where the synthesis
of c-di-GMP takes place and a site for allosteric control (RXXD)
which regulates the synthesis. We would elaborate on the
few DGCs from V. cholerae which have been elucidated over
the years.

CdgD
When the GGDEF domain was still named as a domain of
unknown function (DUF), Yildiz et al. (2004) had identified five
genes encoding proteins with GGDEF and GGDEF plus EAL
domains which were differentially expressed between the smooth
and rugose variants of V. cholerae. The proteins encoded by these
genes were named Cdg A-E and assayed for their expression. Of
these, the CdgD and CdgC deletion mutants showed significant
alteration in the biofilm formation of the strains harboring
them. While CdgD had a GGDEF domain along with a sensory
PAS domain, CdE showed the presence of both GGDEF and
EAL domains (Lim et al., 2006). While deletion of cdgD caused
an increase in motility, cdgC mutants were associated with a
2.3-fold decrease in motility. CdgD was later characterized as
a diguanylate cyclase and CdgC was responsible for negative
regulation of VPS biosynthesis (Lim et al., 2007).

CdgH
Subsequently, (Beyhan et al., 2007) reported the activity of
another protein with a predicted GGDEF domain, which they
named CdgH. Overexpression of cdgH resulted in a high amount
of c-di-GMP accumulation in the cell, which established CdgH as
a diguanylate cyclase. Additionally, CdgH positively regulated the
rugosity of the cell. The structure of CdgH is one of the two solved
V. choleraeDGC structures, and displayed the presence of two N-
terminal tandem periplasmic substrate-binding (PBPb) domains
for signal recognition (Xu et al., 2017). Additionally, the same
group had characterized several other predicted GGDEF domain
proteins, which were not however DGCs.

VCA0965
A further DGC in V. cholerae was reported by the Waters lab
in 2014 (Hunter et al., 2014). Interestingly, this protein did
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not have the conserved GGDEF motif, but had a degenerate
AGDEF site. Significantly, expression of VCA0965 in V. cholerae
was shown to cause a three-fold reduction in flagellar-based
motility. This was noteworthy as many of the other predicted
GGDEF proteins with conserved sequence did not show DGC
activity, whereas VCA0965, despite its degenerate active site,
could synthesize c-di-GMP.

VC0395_0300
A DGC with a GGEEF domain was reported by our group
in 2017 (Bandekar et al., 2017; Chouhan and Biswas, 2018).
While VC0395_0300 was shown to synthesize c-di-GMP actively
and had an essential role to play in the biofilm formation of
V. cholerae, mutations at the central positions of the GGEEF
sequence were detrimental to the functional activity of the
protein (Chouhan et al., 2016). The structure of the protein
though showed similar architecture (Figure 2) associated with
diguanylate cyclases from other bacterial systems (Chouhan et al.,
2020). Another deviation in this DGC was that it lacked the site
for allosteric inhibition found in the other DGCs of V. cholerae,
suggesting a different mode of inhibitory control in this DGC.

CONCLUDING REMARKS

The secondary messenger c-di-GMP plays the most crucial
role in the regulation of biofilm formation and motility of V.
cholerae. The levels of intracellular c-di-GMP are modulated
by a host of factors including the diguanylate cyclases from
which these are synthesized, the phosphodiesterases which lead
to their degradation, and other receptor molecules including
several virulence genes. The abundance of GGDEF domains
in bacterial species, coupled with the uncertainty around their

function as diguanylate cyclases renders further complexity to
the mechanism of action of this class of enzymes. To add to
the conundrum, the ability of degenerate GGDEF domains to
synthesize c-di-GMP and the variance of allosteric inhibitory
mechanisms in the DGCs are also systems of interest. It has been
hypothesized that themultiple DGCs don’t fire in unison—one or
a few of them might be expressed at a time, possibly in response
to an environmental cue. The association of the DGCs with an
extra sensory domain in most cases points to the interaction of
the DGC with the extracellular environment. Elucidation of the
modes of action of the other DGCs and their regulation vis-à-vis
the sensory domain will lead to solving the enigma of multiplicity
of the DGCs.

The hitherto unexplored role of c-di-GMP against the host
immune system is also an area of intrigue which has been
poorly explored. In mammals, c-di-GMP was found to activate
the innate immune system by binding to STING (stimulator
of interferon genes) (Burdette et al., 2011). However, how the
host immune response affects the levels of intercellular c-di-GMP
also needs to be explored and should open up newer areas of
understanding of this signaling messenger. The observation of
hyperinfectivity (a short-lived but elevated infectious state where
the virulence gene expression is high) in biofilm-grown cells ofV.
cholerae in comparison to planktonic cells (Gallego-Hernandez
et al., 2020), makes it extremely important to understand the
mechanism of biofilm-formation in the bacteria.
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