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Abstract: Cynomolgus macaques are common across South East Asian countries including Thailand.
The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) captures
wild-borne cynomolgus macaque for research use. Limited information is available on the enteric
viruses and possible zoonotic infections into or from cynomolgus macaques. We characterized
and compare the fecal virome of two populations; healthy wild-originated captive cynomolgus
macaques (n = 43) reared in NPRCT-CU and healthy wild cynomolgus macaques (n = 35). Over 90%
of recognized viral sequence reads amplified from feces were from bacterial viruses. Viruses from
seven families of mammalian viruses were also detected (Parvoviridae, Anelloviridae, Picornaviridae,
Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae). The genomes of a member of a new
picornavirus genus we named Mafapivirus, a primate chapparvovirus, and a circular Rep-encoding
single-strand (CRESS) DNA virus were also characterized. Higher abundance of CRESS DNA
viruses of unknown tropism and invertebrate-tropic ambidensovirus were detected in wild versus
captive macaques likely reflecting dietary differences. Short term rearing in captivity did not have a
pronounced effect on the diversity of mammalian viruses of wild cynomolgus macaques. This study
is the first report of the fecal virome of cynomolgus macaques, non-human primates frequently used
in biomedical research and vaccination studies.

Keywords: long-tailed macaque; virome; high-throughput sequencing; viral discovery

1. Introduction

The virome is the community of viruses found in a particular ecosystem [1]. Viromes characterized
from animals and human are comprised of both prokaryotic and eukaryotic viruses [2]. Commensal
bacteriophages, which make up the major fraction of the fecal virome, can modulate the microbial
community in the host body and influence host immunity [2–5]. Although typically a smaller fraction
of the enteric virome, mammalian viruses may cause diseases such as diarrhea resulting in malnutrition
and dehydration [6]. Deep sequencing of wild animal fecal viromes also unveiled many eukaryotic
viruses whose pathogenicity, if any, remain mostly unknown [7–10]. In the past, emergences of
human infectious diseases have been initiated by zoonotic viruses originating from bats, rodents,

Viruses 2019, 11, 971; doi:10.3390/v11100971 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0001-7903-6986
https://orcid.org/0000-0003-0897-2632
http://www.mdpi.com/1999-4915/11/10/971?type=check_update&version=1
http://dx.doi.org/10.3390/v11100971
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 971 2 of 19

and non-human primates [6,11,12]. Ebola virus likely from bats [13], human immunodeficiency virus
(HIV) from chimpanzees [14], and the Middle East respiratory syndrome coronavirus (MERS-CoV)
from camels [15–18], have caused very large economic and public health disruptions. Therefore,
it is important to identify the viruses within animals with the potential to spill over into human
and result in pathogenic infections. Such zoonoses may take different routes including fecal-oral
transmission [19]. Outbreaks of zoonotic enteric viruses belonging to the families of Picornaviridae,
Adenoviridae, Caliciviridae, and Reoviridae cause important enteric diseases in humans [20]. Moreover,
alteration of enteric virome in humans also affect bacterial microbiome stability and influence diseases
such as inflammatory bowel disease and ulcerative colitis [21,22]. Studies of intestinal and fecal
bacterial communities have received much attention relative to that of the gut virome [23].

Cynomolgus macaque, a non-human primate species widely distributing across Southeast
Asian countries [24] have long been used for biological research [25] including on influenza
virus [26], Ebola virus [27], and simian/human immunodeficiency virus (SIV/HIV) [28]. The National
Primate Research Center of Thailand–Chulalongkorn University (NPRCT-CU), maintains a colony of
cynomolgus macaques captured from disturbed natural habitats. Although well-established biosecurity
protocols are used to screen infectious viruses such as herpes B virus, simian retrovirus (SRV), simian
immunodeficiency virus (SIV), simian-T-lymphotropic viruses (STLV) and foamy virus that might
cause a sporadic outbreaks, the transmission of other viruses from wild-originating macaques remains
possible [29]. In addition, captivity may also influence gut microbiome and virome. A recent study
illustrated that replacing the gut microbiome of inbred laboratory mice with that of wild mice restored
their immune responses to better mimic those of wild animals [30]. Here, we characterized and
compared the fecal virome of wild and captive macaques and identified novel macaque viruses.

2. Materials and Methods

2.1. Study Cohort

The cynomolgus macaque (Macaca fascicularis) cohort (n = 78) was comprised of two colonies,
wild macaques (Wild, n = 35) captured from natural habitat located in Wat Tham Praporthisat (PPT),
Saraburi (GPS: 14◦ 34’N, 101◦ 08’E) and wild-originated captive macaques (Captive, n = 43) captured
from Khaoson-Samae Dam (KS), Bangkok (GPS:14◦ 34’N, 101◦ 08’E) permitted by the Department of
the National Parks, Wildlife and Plant Conservation; permission no. 0909.302/5369 (25 Mar 2014) and
0909.702/1431 (25 Jan 2016).

The PPT colony was wild caught and specimens were collected onsite, while the KS were captured
and transferred to NPRCT-CU for one year prior to the date of sample collection. These macaques
were reared following standard animal biosafety guidelines. They lived in semi-opened gang cages
and were fed twice a day; in the morning with standard macaque chow (Perfect Companion Group,
Thailand) and in the afternoon with fresh fruits and vegetables. The age of macaques was estimated
based on dental eruption pattern described previously [31]. All macaques were tested for herpes B
virus infection specific antibodies using simian herpes virus ELISA test kit (VRL, Suzhou, China) in
order to rear herpes B virus-positive and negative macaques separately. Male and female macaques of
mature age, with or without herpes simian B virus were included in this study. All macaques were TB
(Tuberculosis) negative and healthy with no apparent signs of illness. Additional characteristics and
background information are described in Supplementary File 1.

2.2. Specimen Collection

The fecal swab samples were collected by veterinarians of NPRCT-CU. Samples from wild
macaques were collected on the day of capture, while samples from captive macaques were taken
during annual health check-ups. The macaques were anesthetized to reduce pain and distress during
samples collection. The swabs were preserved in 15 mL conical tube containing 3 mL of viral transport
media (VTM) and transported at 4 ◦C. The VTM was the mixture composed of 1× Hanks balanced
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salt solution (HBSS), 1% (w/v) of bovine serum albumin, 15 µg/mL of amphotericin B, 100 U/mL of
penicillin G, and 50 µg/mL of streptomycin. The samples were processed within 12 h of collection.
The experimental protocol of this study was approved by the Animal Care and Use Committee of the
NPRCT-CU (Protocol Review No. 1775005; 28 Sep 2017).

2.3. Viral Enrichment and Extraction

To reduce possible batch effects, samples were processed in an inter-digitated manner using
one sample from a wild macaque followed by one from a captive animal etc. until all samples were
processed for sequencing. Swabs were stirred in VTM and removed from the collection tube. The fecal
suspension was centrifuged at 8000× g for 5 min at 4 ◦C and the supernatant (500 µL) was filtered
through a 0.45 µm spin column filter (Millipore, Burlington, MA, USA) to remove bacteria and other
large particulates. The flow-through was treated with a mixture of nuclease consisting of 400 µL of fecal
filtrate, 14 U of Turbo DNase (Ambion, Thermo Fisher, Waltham, MA, USA), 3 U of Baseline-ZERO
(Epicentre, Charlotte, USA), 30 U of Benzonase (Novagen, Darmstadt, Germany) and 30 U of RNase
One (Promega, Madison, WI, USA) in 1× Turbo DNase buffer (Ambion, Thermo Fisher, Waltham,
MA, USA). The reaction was incubated at 37 ◦C for 1.5 h and then extracted immediately using the
MagMAXTM Viral RNA Isolation kit (Applied Biosystems, Thermo Fisher, Waltham, MA, USA).

2.4. Reverse Transcription and Random Amplification of Viral Genome

The cDNA synthesis and random amplification were performed according to Li et al., 2015 [32].
Briefly, the 11 µL of extracted viral nucleic acid was annealed with 100 pmol of Sol A random primer:
5′-GTT TCC CAC TGG AGG ATA NNN NNN NNN-3′ (Eurofins Genomics, Louisville, KY, USA) at
72 ◦C for 2 min and 4 ◦C for 2 min. After that, the 20 µL reaction of first-stranded cDNA synthesis
containing 800 U Superscript III reverse transcriptase (Invitrogen, Thermo Fisher, Waltham, MA,
USA), 0.5 mM of each deoxynucleoside triphosphate (dNTPs), 5 mM dithiothreitol, and 1X Invitrogen
RT buffer, and 2 mM RiboLockTM RNase Inhibitor (Invitrogen, Thermo Fisher, Waltham, MA, USA)
was prepared. The reaction was then incubated at 25 ◦C for 5 min, 50 ◦C for 60 min and 70 ◦C for
15 min, 4 ◦C for 5 min, 95 ◦C for 2 min and held at 4 ◦C. Next, the second strand cDNA synthesis was
immediately performed by adding 5U Klenow Fragment DNA polymerase (New England Biolabs,
Ipswich, MA, USA) into reaction and incubated at 37 ◦C for 60 min and 75 ◦C for 20 min. cDNA
product can be stored in −20 ◦C until used. The cDNA was random-amplified by using Sol B primer:
5′-GTT TCC CAC TGG AGG ATA-3′ (complementary of 18 bp at 5′end of sol A primers). The reaction
(25 µL) contained with 2 µM of Sol B primer, 1.85U of AmpliTaq Gold® DNA Polymerase (Applied
Biosystems, Thermo Fisher, Waltham, MA, USA), 0.25 of mM dNTPs, 4 mM of MgCl2, 1× PCR Buffer,
and 5 µL of cDNA template. The thermal profile for amplification was composed of 95 ◦C for 5 min,
5 cycles of 95 ◦C for 30 s, 59 ◦C for 60 s, and 72 ◦C for 90 s, 35 cycles of 95 ◦C for 30 s, 59 ◦C for 30 s,
and 72 ◦C for 90 s (+2 s per cycle) followed by 72 ◦C for 10 min and hold at 4 ◦C. The amplified product
was checked by gel electrophoresis (approximately expected size 300–1000 bp).

2.5. Virome Library Preparation and Sequencing

The random amplified products were quantified by Quant-iT™ DNA HS Assay Kit using Qubit
fluorometer (Invitrogen, Thermo Fisher, Waltham, MA, USA). by using Nextera XT DNA Library
Prep Kit (Illumina, San Diego, CA, USA) with dual barcoding following the manufacturer protocol.
Briefly, 3.5 µL of input DNA was mixed with 2.5 µL of Tagment DNA (TD) buffer and 1.25 µL of
Amplicon Tagment Mix (ATM) and then incubated at 55 ◦C for 7 min and hold at 10 ◦C. The 1.25 µL
of Neutralize Tagment (NT) Buffer was immediately added to stop tagmentation. The reaction was
incubated at room temperature for 5 min and then added with 3.75 µL of Nextera PCR Mastermix
(NPM) and 1.25 µL of each multiplexing index primers was added into reaction. The amplification
was performed using the thermal condition of 72 ◦C for 3 min, 95 ◦C for 30 s, 15 cycles of 95 ◦C for
10 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and 72 ◦C for 5 min. The prepared library was checked by gel
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electrophoresis. The size of products ranged between 400–600 bp. After that, the concentration of
DNA libraries was measured by Quant-iT™ DNA HS Assay Kit. The libraries were pooled at equal
concentration and purified by Pippin Prep automated size selection machine based on 1.5% agarose
gel electrophoresis. The purified library was quantified again by using KAPA library quantification
kits for Illumina platforms (Kapa Biosystems, Wilmington, MA, USA). Then, 2 nM of library was
denatured and loaded with the concentration of 10 pM with 20% PhiX into MiSeq sequencing platform
for 2 × 250 cycles pair-end sequencing.

2.6. Data Processing and Analysis

Human reads and bacterial reads were identified and removed by comparing the raw reads
with human reference genome hg38 and bacterial genomes release 66 (collected from ftp://ftp.ncbi.
nlm.nih.gov/blast/db/FASTA/, Oct. 20, 2017) using Bowtie2 [33] in local search mode. The filtered
sequences were deduplicated if base positions 5 to 55 were identical. One random copy of duplicates
was kept. The sequences were then quality trimmed and trimmed for adaptor and primer sequences
by using VecScreen [34]. After that, the reads were de novo assembled by EnsembleAssembler [35].
Assembled contigs and all singlet reads were aligned to in-house viral protein database (collected
from ftp://ftp.ncbi.nih.gov/refseq/release/viral/, Oct. 20, 2017) using BLASTx (version 2.2.7) using
E-value cutoff of 0.01 to identify highly divergent viral sequences. The significant hits to viruses were
then aligned to an in-house non-virus-non-redundant (NVNR) universal proteome database using
DIAMOND [36]. Matches with more significant E-values to NVNR than to the viral database were
removed to eliminate false viral hits. The genome coverage of the target viruses was further analyzed
by Geneious R7.0.6 software (Biomatters, Auckland, New Zealand).

2.7. Genome Acquisition of Novel Picornavirus

Two regions of ambiguous picornavirus sequences were re-sequenced by using two primer sets.
The first region located on the 3′ end of the genome was amplified by 4F: 5′-GGA TAC TTT GTT
TAG CTT TGC AAT TCT-3′ and 1,274R: 5′-ACA TGG TTC ATA GCC TGC CA-3′ for the first round
and 65F: 5′-TTG TAG GGC GAC AGG TGT TC-3′ and 955R: 5′-AGC ACA ACT TGA TGA GGG
CA-3′ for the second round of PCR. The second region in the middle of genome was amplified by
2,497F: 5′-TGC GTG GCG ATA TTT GCT TG-3′ and 4,553R: 5′-ACA CGA GAA GCA TGA GCC AT-3′

for the first round and 2,776F: 5′-CCT CAC AAG GAC GTG CTT GT-3’ and 4,005R: 5′-GAG CAG
CAA CAG ACT TCC CA-3′ for second round of PCR. The amplification step composed of 95 ◦C for
5 min, 40 cycles of 95 ◦C for 30 s, 52 ◦C or 54 ◦C (for the first round or second round, respectively) for
30 s, and 72 ◦C for 90 min, and then 72 ◦C for 5 min. Amplicons were run on a 2% agarose gel and
confirmed by Sanger sequencing. In order to sequence the missing 3′ region of novel picornavirus
genome, the SMARTer® RACE 5′/3′ Kit (Takara Bio USA, Inc., Mountain View, CA, USA) was used
for 3′ Rapid Amplification of cDNA End (3′ RACE). Briefly, the cDNA synthesis was performed by
using the 3′-CDs Primer A following the manufacture’s instruction. Then, cDNA was amplified by
PCR using the primer Cyno_pico_3UTR_5,394F: 5′-GCC TGT CAT TCT GGG GAT ACAT TCT GCA
GGA AAT GG-3′ and universal primer mix (UPM) provided in the RACE kit. The PCR thermal profile
was 40 cycles of denaturation at 94 ◦C for 30 s, annealing at 67 ◦C for 30 s, and extension at 72 ◦C for
120 s, with a final extension step at 72 ◦C for 10 min. The PCR product was purified by QIAquick PCR
Purification Kit (Qiagen, Hilden, Germany). Finally, the picornavirus sequencing data were processed
and assembled using Geneious software. The cleavage sites of polyprotein were predicted based on
the sequence alignment of picornaviruses in Supergroup 1 and cleavage sites reported in a previous
study [37]. The structure of the internal ribosome entry site (IRES) was predicted by using the mfold
web server [38] and illustrated by Forna web app [39]. The IRES type was classified based on predicted
structure as described in previous studies [40,41].

ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
ftp://ftp.ncbi.nih.gov/refseq/release/viral/
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2.8. Genome Completion of The Novel Parvovirus

A region with low coverage, located in the middle of the genome, was confirmed by nested
PCR and Sanger sequencing. The primer for first PCR were Cyno_Parvo_1,273F: 5′-TGA AGG
TGC TGG TAG CTT GG-3′ and Cyno_Parvo_2,827R: 5′-AAA CTG CCT CTC CTT CGT GG-3′ while
the second PCR primers were Cyno_Parvo_1,438F: 5′-TGC CAT CCT GTG TTG ACT GA-3′ and
Cyno_Parvo_ 2,590R: 5′-TCA GGG GAA TGT TCG ACA CG-3′. The amplification profile contained
95 ◦C for 5 min, 40 cycles of 95 ◦C for 30 s, 52 ◦C or 54 ◦C (for the first round or second round,
respectively) for 30 s, and 72 ◦C for 90 min, and then 72 ◦C for 5 min. The open reading frame of
the revised genome was then predicted by Open Reading Frame (ORF) Finder web application and
compared with ORFs of known viruses. The splicing patterns of viral RNA were predicted by using
neural network-based applications of the Berkeley Drosophila Genome Project (https://www.fruitfly.org
/seq_tools/splice.html). Finally, the polyadenylation signals were predicted by SoftBerry POLYAH web
application (http://www.softberry.com/berry.phtml).

2.9. Phylogenetic Analysis

The pairwise alignment of amino acid sequences and pairwise similarity calculation were
performed by using CLUSTALW [42] implemented in Geneious software. The phylogenetic tree of P1,
2C and 3CD regions of picornavirus were constructed by MEGA X software [43] using the maximum
likelihood method with Le_Gascule_2008 model 159 (LG) with gamma-distributed, and invariant
sites (G + I). For parvovirus, the phylogenetic trees of the NP1 and VP1 regions were constructed by
the maximum likelihood method using the LG model with invariant sites (I) and the general reverse
transcriptase + freq. model, respectively. The phylogenetic relationship of circular Rep-encoding
single-strand (CRESS) DNA virus was investigated by maximum likelihood method based on LG
model. The statistical analysis of constructed trees was performed by calculation of bootstrap values
(based on 1000 replicates) and presented on each node.

3. Results

3.1. The Study Population

The study population was comprised of a wild (n = 35) and captive (n = 43) populations.
The summary of macaque characteristics is shown in Table 1. Due to the occurrence of natural herpes
B virus infections, the viromes of herpes B positive and negative macaques could also be compared.
In order to account for possible confounding factors due to age or sex, the characteristics between
populations and between groups were statistically compared. The average age of wild macaques and
those that were herpes B positive was significantly higher than that of captive macaques and those that
were herpes B negative (p < 0.05), respectively.

3.2. Virome Composition

The raw sequence data generated from Illumina was processed using the in-house pipeline
to deduplicate and filter low-quality sequences. The FASTQ sequences are available in the NCBI
Sequence Read Archive (Bioproject: PRJNA548968). The summary of sequence processing is available
in Supplementary File 2. The origins of the assembled contigs and unique reads from viral genomes
were identified using BLASTx against an in house non-redundant viral protein database. Viral hits
with an E value lower than 10−10 were used to determine relative abundance ((viral hits/total viral
hits) ×100) and are shown in Figure 1. Alignments with proteins consisting of multiple short sequence
repeats were considered artifacts and not counted. Reads from three families of phages (Microviridae,
Siphoviridae, and Podoviridae) and one likely prokaryotic family (Picobirnaviridae) accounted for >90% of
viral hits. The most common phage reads belonged to the Microviridae family, a rapidly expanding
viral group [44], that contributed to over 70% of total viral reads. Picobirnaviridae reads were also
abundant in a subset of captive macaques. While initially believed to be eukaryotic viruses recent

https://www.fruitfly.org
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studies indicated they are likely to be prokaryotic viruses [45,46]. Eukaryotic viruses (as defined below)
were detected in both wild and captive cohorts.

Table 1. Basic characteristics of macaque samples in viral metagenomic sequencing.

Characteristics All
Herpes B

Virus-Positive
(+)

Herpes B
Virus-Negative

(−)

p-Values (Herpes B
Positive vs
Negative)

p-Values
(Captive
vs Wild)

Age (years) a captive 3.34 ± 1.65 4.68 ± 1.40 2.27 ± 0.88 <0.001 ***
<0.05 *

wild c 5.48 ± 4.11 6.14 ± 4.27 2.75 ± 1.31 <0.01 **

Sex (%) b
captive M 20 (46.5%) 9 (20.9%) 11 (25.6%)

0.74
0.24F 23 (53.5%) 10 (23.3%) 13 (30.2%)

wild c M 19 (61.29%) 16 (51.61%) 3 (9.68%)
0.53

F 12 (38.71%) 9 (29.03%) 3 (9.68%)

Bodyweight a captive 3.13 ± 1.21 3.95 ± 1.04 2.49 ± 0.91 <0.001 ***
<0.05 *

wild c 4.16 ± 1.90 4.05 ± 1.90 2.78 ± 1.11 <0.05 *

Crown–Rump
Length a

captive 386.6 ± 58.4 428.4 ± 45.8 353.5 ± 44.4 <0.001 ***
<0.05 *

wild c 415.4 ± 55.5 425.5 ± 51.9 371.5 ± 47.8 0.053
a (Mean ± SD), statistical significance tested by t-test: * p < 0.05, ** p < 0.01, *** p < 0.001; b number (%), statistical
significance tested by the Fisher’s exact test; c Six wild macaques were not included in table due to a lack of herpes B
test results.Viruses 2019, 11, x FOR PEER REVIEW 7 of 21 
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3.3. Eukaryotic Viruses

Seven families of eukaryotic viruses were identified including members of the families Parvoviridae,
Anelloviridae, Picornaviridae, Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae (Figure 2A).
Members of the Parvoviridae and Anelloviridae families yielded the most reads. Anellovirus detection
was more common in captive macaques (n = 11 captive, n = 1 wild) while parvovirus detection
was more common in wild macaques (n = 14 wild, n = 4 captive). Most of the Parvoviridae reads in
wild macaques belonged to the Densovirinae subfamily known only as insect-tropic viruses therefore
representing likely dietary intake. Picornaviruses were found in three captive macaques (6.97%) and
two wild macaques (5.71%). Adenoviruses were found in a single captive (2.33%) and four wild
macaques (11.4%) with low read numbers. Other families detected (papillomavirus, herpesvirus,
and calicivirus) were each found in a single sample. One animal in the captive group was shedding
in its feces both papillomavirus and herpesvirus DNA. Lastly, a calicivirus was found in one wild
macaque with very low read numbers.Viruses 2019, 11, x FOR PEER REVIEW 8 of 21 
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Figure 2. (A) Heatmap showing the relative abundance of viral reads identified by BLASTx into families.
The families of viruses are grouped by host types; phage, eukaryotic viruses and circular Rep-encoding
single-strand (CRESS) DNA virus. (B) Heatmap showing quantification of reads matching viral
genomes from GenBank or contigs generated here (in bold). Mafapivirus: Macaca fascicularis picornavirus
1, Mafachavirus: Macaca fascicularis chapparvovirus, Mafasavirus: Macaca fascicularis stool associated virus.
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The eukaryotic viruses found in these fecal viromes were therefore comprised of enteric viruses,
respiratory viruses, invertebrate viruses, and viruses of unknown tropism. Not included in Figure 1
were reads matching plant-infecting viruses in the Virgaviridae family that were detected in only two
macaques making up 91 and 3.6% of their identifiable viral reads.

Both previously described as well as novel viral genomes were detected. Reads matching different
virus species were de novo assembled into larger, partial or full-length genome contigs. These contigs
were then used to quantify the number of matching reads using the aligner program Bowtie2 (95%
identity over at least 50 bases). When too few reads from a virus were generated to generate a contig
we used the closest matching genomes from GenBank to quantify matching reads. The resulting
proportion of matching reads are shown using a heat-map in Figure 2B. This mammalian virus
distribution analysis showed that the group of captive herpes B virus-positive macaques did not yield
any mammalian virus beside anelloviruses (Figure 2A,B). In contrast, other macaque groups shed
several mammalian viruses together with anelloviruses.

Four species of mastadenoviruses were found in macaque samples. They included three strains of
simian mastadenoviruses (A, B, and H) and of human mastadenovirus G. All of the reads aligned to
the reference protein sequences with >95% amino acid identity. However, the number of hits were low
(ranging from 1 to 69 reads per sample) possibly due to the generally respiratory tropism of this viral
family. Adenovirus were each found in a single animal except simian mastadenovirus H found in
two wild macaques. Another virus related to WUHARV calicivirus 1 was also detected (91.5% amino
acid identity) with low read numbers in a wild macaque. This virus was originally found in feces of a
captive rhesus macaque infected with SIV [8].

The herpesvirus contig (731 nt) found in this study was close to Macaca nemestrina herpesvirus
7 (91.2% amino acid identity) and detected in a single fecal sample of a captive macaque (LMF21).
The same macaque also shed a papillomavirus showing a contig (660 nt) showing best match to
gammapapillomavirus 22 (82.5% amino acid identity). Both of these viruses have been associated with
oral infections [47,48].

Numerous CRESS DNA virus reads were also detected with particularly high abundance in wild
macaques. A complete CRESS-DNA genome was successfully assembled.

3.4. Detection of Three Picornaviruses

There are currently six supergroups of picornaviruses composed of 46 genera (www.picornaviridae.
com). At least three picornaviruses were found in these Thai macaques (Figure 2B). A contig (435 nt)
matching enterovirus SEV-gx (NC029905) was found in a wild macaque with 67.2% amino acid
identity. This virus was first discovered in rhesus macaque in China. Another picornavirus matched
the WUHARV sapelovirus (JX627573) originally reported in rhesus macaque with 96.7% amino acid
identity. Contigs (max length = 733 nt) matching WUHARV sapelovirus were found in one captive
and one wild macaque. The third picornavirus was a highly divergent novel picornavirus detected in
two captive macaques further described below.

New Picornaviridae Genus

We characterized this novel picornavirus genome assembled from a captive macaque. BLASTx
result showed this genome to be most closely related to viruses in supergroup 1, which includes the
genera Mosavirus, Aimelvirus, and Cardiovirus. The coding sequences of the P1, 2C, and 3CD were
compared to other members of supergroup 1. According to ICTV, the member of the same genus
should share >33 % amino acid identity in P1 and >36 % amino acid identity in the non-structural
proteins 2C + 3CD [49]. Here the novel picornavirus had P1 and 2C+3CD amino acid identity of 30.1%
and 31.7% to the closest mosavirus and senecavirus relatives, respectively (Table S1) indicating that
this virus may be classified into a new genus with a proposed genus name of Mafapivirus (Macaca
fascicularis picornavirus; MfPiV) and proposed species name of Mafapivirus 1 (MN312220).

www.picornaviridae.com
www.picornaviridae.com
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The phylogenetic analysis of Mafapivirus 1 based on P1, 2C, and 3CD amino acid sequences was
performed with members of supergroup 1 as shown in Figure 3C–E. The analysis confirmed that this
virus was highly divergent from all recognized genera as well as other, unclassified, picornaviruses.
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Figure 3. (A) Schematic genome organization of novel picornavirus (Macaca fascicularis picornavirus 1
or Mafapivirus 1) identified from captive cynomolgus macaque (LMF17) indicating the cleavage sites
and protein domains. (B) The predicted internal ribosome entry site (IRES) hybridization structure
predicted by mfold software shows that this virus contains Type II IRES recognized by the conserved
structure of Y-shaped J–K domains. Colors of the structure indicate the secondary structure in predicted
IRES; Green: Stems (canonical helices), red: Multiloops (junctions), yellow: Interior loops, blue: hairpin
loops, and orange: 5’ and 3’ unpaired region. The phylogenetic trees of Mafapivirus 1 were plotted for
(C) P1 region, (D) 2C region, and (E) 3CD region. The tree was drawn to scale, with branch lengths
measured in the number of changes per amino acid site. Nodes in the tree represent % of bootstrapping
value (1000 rounds).

The peptide domains in polyprotein were identified based on comparison to the NCBI Pfam
database. The Rhv-like capsid domain, helicase, peptidase, and RNA-dependent RNA polymerase
(RdRp) domains were found. Most polyprotein proteolytic cleavage sites were predicted based on
similarity of previously reported picornavirus cleavage sites except for that between 3A and 3B
proteins which could not be identified. The conserved NPG↓P motif that mediates co-translational
termination-re-initiation of RNA translation was found between 2A and 2B peptides. The schematic
diagram of the genome organization is shown in Figure 3A. This virus lacks leader (L) protein at
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5′ region of polyprotein. The layout of peptide organization in polyprotein 2079 aa in length was
5′-(VP4-VP2-VP3-VP1/2A-2B-2C/3A-3B-3C-3D)-3′. The IRES structure of novel picornavirus belonged
to Type II IRES. The signature conformation marked as I domain and Y-shaped J-K domain, the sites of
eIF4G and eIF4A binding, are shown in Figure 3B.

3.5. Parvovirus

Parvoviruses are small, non-enveloped, linear, single-stranded DNA viruses found in a wide
range of hosts. Their genomes are 4 to 6 kb in length and generally comprise two ORF encoding
non-structural protein (NS) and viral structural protein (VP). Parvoviruses can be divided into two
subfamilies; Densovirinae and Parvovirinae. Viruses in Densovirinae infecting invertebrate hosts are more
diverse than Parvovirinae. We found densoviruses only in feces of wild macaques (see Figures 2B and
4). Sequences matching densoviruses were related to Diaphorina citri densovirus and Hymenopteran
ambidensovirus with >60% amino acid identity.
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Four distinct parvoviruses member of the vertebrate-infecting Parvovirinae subfamily were
detected. The complete coding sequences of one parvovirus was successfully assembled. We named it
as mafachavirus 1A belonging to new species Mafachavirus 1A (Macaca fascicularis chapparvovirus 1A;
MfChPV-1A) classified as a chapparvovirus. This virus was found in two wild macaques. In addition,
we found another strain of this same virus with 91.3% nucleotide similarity in two captive macaques
that was named mafachavirus 1B (MfChPV-1B). Different populations of Thai macaques therefore shed
different chapparvovirus strains.

We also found 18 reads related to copiparvovirus and protoparvovirus in these macaques.
The assembled contig (518 nt) of copiparvovirus matched porcine parvovirus 5 with 49.4% amino acid
identity but we were unable to extend the contigs to full-length coding sequence. The protoparvovirus
contigs (max length = 846 nt) in this study were closely related to simian protoparvovirus 2 (92.0%
amino acid identity) and were detected in both wild and captive macaques.

The First Simian Chapparvovirus Genome with Complete ORFs

The mafachavirus 1A genome sequence was assembled from reads matching parvoviruses in a
wild macaque (WMF03). A low-coverage region of partial genome was confirmed by nested PCR and
Sanger sequencing. The 3′ end of genome was sequenced using 3′RACE. The sequence of the two
major ORFs; NS1 and VP1 were generated. The genome of novel chapparvovirus is shown (Figure 5A).
The NS1 gene encodes a 677 amino acids protein and the VP1 gene—a 480 amino acids long capsid
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protein. Two major ORFs were separated by a short 2 nucleotides region as typical of chapparvoviruses.
The conserved P15 accessory protein (134 amino acids) was also recognized. Polyadenylation signals
were identified near the 3′ end of expected NS1 and VP1 transcripts. In addition, the conserved
ATP walker binding loop motif was found in NS1. Based on a recent study of chapparvovirus [50],
we identified three alternative splicings of viral RNA. Both NS1 and VP1 transcripts are expected
to be spliced onto a 5′UTR region RNA. In addition, we also found an additional small predicted
NS2 transcript located within NS1 ORF but lacking a start codon indicating that splicing is required
for translation. A putative upstream NS2 exon near 5′ end of genome matched with the recently
reported NS2 sequences of mouse kidney parvovirus (YP009553676) [51] and simian parvo-like virus 1
(APC23171). These are key characteristics indicating that mafachaviruses 1A and 1B are members of
type I exogenous amniote chapparvoviruses [50,51].Viruses 2019, 11, x FOR PEER REVIEW 12 of 21 
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Figure 5. (A) The diagram shows the genomic structure and predicted splicing pattern of the
novel chapparvovirus (Macaca fascicularis chapparvovirus 1; mafachavirus 1A) identified from wild
cynomolgus macaque (WMF03). The assembled genome contains two major open reading frames
(ORFs); non-structural protein 1 (NS1) and viral capsid protein 1 (VP1) and the sequence of NS2.
The functional motif and Poly A signal are also illustrated. The phylogenetic trees of Mafachavirus 1A
and 1B were constructed based on (B) the NS1 region and (C) the VP1 region. The trees include the
reference sequences from other chapparvovirus members. Nodes indicate % of bootstrapping value
(1000 rounds). The tree was scaled by the number of changes per amino acid site.

The mafachavirus NS1 protein is most closely related to partial NS1 sequence of simian parvo-like
virus 2 with 91% amino acid identity (Figure S4.). However, simian parvo-like virus 2 partial genome
submitted to GenBank (KT961661) lacked VP1 sequences [52]. Therefore, this is the first reported
simian chapparvovirus genome with complete ORFs. The VP1 of mafachavirus sequenced here was
distantly related to that of porcine parvovirus 7 with 54% amino acid identity. The ICTV guideline
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suggested that parvoviruses within a species should have >85% amino acid NS1 identity while different
species within the same genus should have >30% identity amino acid identity of NS1. Following these
guidelines, we purpose the species name of this virus as Mafachavirus 1 (MN312221) since pairwise NS1
similarities showed maximum amino acid identity of 46.6% when compared with porcine parvovirus
7 (Table S2.). The phylogenetic relationship of this novel chapparvovirus was also investigated
using VP1 and NS1 proteins. The VP1 phylogenetic trees showed that porcine parvovirus 7 is the
closest relative of mafachavirus 1A and 1B (Figure 5B). For the NS1 tree, the novel virus clustered
with that of the complete NS1 of simian parvo-like virus 3 from Macaca mulatta in the US [52]. This
indicated that the chapparvovirus we named mafachavirus in long-tailed macaque is closely related
to chapparvovirus partial genomes originally reported from US captive rhesus macaques (simian
parvo-like virus 1/KT961662, simian parvo-like virus 2/KT961661, parvo-like virus 3/KT961660) [52].

3.6. CRESS-DNA Virus

Circular Rep-encoding single-strand (CRESS) DNA virus make up a large and diverse group
of small DNA viruses. Their general genomic structure consists of two genes encoding the
replication-associated protein (Rep) and the nucleocapsid (Cap). The genome size varies among groups
generally ranging from 1.7 kb to 3 kb. Here CRESS DNA virus-related proteins were more abundant
and shedding prevalent in wild versus the captive macaque (Figures 2A and 4).

Novel Stool-Associated CRESS DNA Virus

We characterized a complete genome of a CRESS DNA virus from wild macaque WMF03
(Figure 6A). The genome size was 2651 nucleotides containing the two main Rep and Cap ORFs
arranged in opposite direction. The expected Cap protein was 346 amino acids while the Rep protein
was 338 amino acids. The expected rolling circle replication motifs I, II, and III and superfamily
3 helicase Walker A, B, and C motifs within Rep protein were identified (sequences of motifs shown in
Table S3.). The closest Rep relatives were Dromedary stool-associated CRESS virus (62.8% aa identity)
and bovine feces-associated CRESS virus (55.6% aa identity).
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Figure 6. (A) The schematic diagram shows the genome organization of Macaca fascicularis stool-associated
virus (species Mafasavirus) detected from wild macaque (WMF18). Two main ORFs; capsid (Cap) and
replication-associated protein (Rep) were recognized. The purple arrowheads indicate the conserved
motifs of Rep gene. The motif sequences are shown in supplementary data. The stem-loop origin
of replication contains a canonical nonanucleotide sequence (AGTATTAC). (B) Phylogenetic Rep
tree. The reference sequences in the tree include representative of different CRESS virus families and
unclassified genomes. The tree was drawn to scale, with branch lengths measured in the number of
changes per amino acid sites. Nodes indicate % of bootstrapping value (1000 replicates).
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The phylogenetic relationship of this genome was investigated by comparison of Rep protein
among representatives of CRESS virus genera shown in Figure 6B. Rep sequence clustered with
two unclassified CRESS viruses named Dromedary stool-associated CRESS virus (62.8 % amino acid
identity) and Bovine feces-associated CRESS virus (55.6 % amino acid identity). The next closest
Rep sequences were from hudisaviruses sequenced from feces of humans and other mammals [53].
We named the novel CRESS virus species “Mafasavirus” (Macaca fascicularis stool-associated virus; MfSaV;
MN165385).

4. Discussion

Phages can contribute to the modulation of bacterial populations in the gut and regulation
of intestinal physiology [2,54]. The characterization of fecal swab viromes from 78 cynomolgus
macaques showed that bacterial virus reads contributed the largest fraction of recognizable viral
reads. Fecal virome composition may also be influenced by diet [55–57]. Changes in virome could
affect the gut bacterial populations and contribute to digestive tract diseases such as inflammatory
bowel disease [21,58]. Here the most prevalent phage reads belonged to members of the Microviridae
family, believed to infect mostly Bacteroidetes [59]. The Microviridae has experienced a large increase
in its recognized diversity and specific member do not appear to be associated with particular
mammals [44,60,61].

We focused here on the eukaryotic virome and compared wild and captive animals with or without
concurrent herpes B specific antibodies. It was found that the herpes B virus sero-positivity was
more prevalent in older macaques since it is typically transmitted through copulation or fighting [62].
Overall seven families of eukaryotic viruses were identified. We detected anelloviruses at the highest
frequency in the captive monkeys testing sero-negative for herpes B virus (34.8%) which is also the
youngest group of animals. Anellovirus was detected in only three herpes B sero-positive captive
(15.8%) and a single herpes B positive wild animal (2.85%). Increased anellovirus viral loads have been
associated with reduced levels of host immunocompetence. [63–66] Other mammalian viruses from
five families (Parvoviridae, Picornaviridae, Adenoviridae, Papillomaviridae, and Herpesviridae) detected
in captive herpes B sero-negative were not detected in older captive herpes B sero-positive animals.
The significantly younger age of the herpes negative versus positive captive animals may also account
for their higher rates of enteric viral infections [67].

Shedding of herpes B usually occurs when macaques are immunosuppressed or stressed during
mating season [68]. Another herpesvirus (Macaca nemestrina herpesvirus 7 or MneHV7) was shed
by one animal. MneHV7 is roselovirus in the group of betaherpesvirus infecting salivary gland of
macaques [47] and is the viral homolog of human herpesvirus 7 (HHV7) which can be detected in the
human oral cavity [47]. The same animal was also infected by a gammapapillomavirus related to oral
tissue-infecting gammapapillomavirus 22 or human papillomavirus 172 [48] suggesting MneHV7 and
gammapapillomavirus co-infection, possibly in its oral cavity, followed by fecal shedding.

As previously reported for other non-human primate species [69,70] several adenoviruses were
also detected including adenovirus G in one macaque. The species-crossing capacity of adenoviruses
has been demonstrated [70–74]. Adenovirus G has also been reported in Macaca assamensis from
Thailand [70]. Whether the adenovirus G virus detected here has the potential to infect human remains
to be determined but represent the virus closest in sequence to one known to infect humans.

We identified several eukaryotic viral sequences closely related to those of previously reported
rhesus macaque viruses. For example, we found viruses related to WUHARV calicivirus, WUHARV
sapelovirus, and WUHARV parvovirus originally discovered in rhesus macaques infected with simian
immunodeficiency virus housed in New England Primate Research Center (NEPRC) [8]. Another
virus identified in a wild cynomolgus macaque is a close relative of enterovirus SEV-gx reported from
rhesus macaque in China (NC029905). Even though several macaque viruses were identified there was
no support for their pathogenicity as all were collected from apparently healthy animals.
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We also characterized the first genome including all ORFs of a simian chapparvovirus including
NS1, NS2, VP1, and p15 (in Mafachavirus 1 species) This genome is a close relative of previously
reported parvoviruses named simian parvo-like viruses which did not include VP1 sequence from the
feces of rhesus macaques from the California National Primate Research Center [52]. These closely
related chapparvoviruses (91% identity in partial NS1 and therefore likely in same viral species) were
therefore shed by two different macaque species (M. mulatta and M. fascicularis). Different strains
of mafachaviruses were also identified in wild and captive Thai macaques suggesting circulation
throughput the Thai macaque population. Mafachavirus is the sister taxa to porcine parvovirus 7
detected in swine populations from several countries including China and Korea [75–78]. Reads
from another parvovirus were also detected that were distantly related to porcine parvovirus 5 and
6 in the copiparvovirus genus reported in pig lung [76,79] that may represent a novel macaque
copiparvoviruses. A full genome will be required to confirm this possibility.

The novel picornavirus characterized from a captive cynomolgus macaque was highly divergent
and a member of a proposed new genus provisionally named Mafapivirus. This virus was detected
in only two wild herpes B negative monkeys. Because no specific disease signs were reported
in these two macaques this virus there is currently no evidence for its pathogenicity at least in
immuno-competent animals.

We also found a different distribution of likely dietary viruses between wild and captive macaques
particularly CRESS DNA viruses and densoviruses. The CRESS viruses detected in feces are highly
divergent from those that have been recently classified. CRESS DNA virus has been identified from feces
of human and numerous mammals including rhesus macaque and birds and in most environmental
virome studies. [52,53,80,81] The only CRESS-DNA viruses which have been shown to replicate in
mammals are members of the Circoviridae family infecting pigs, dogs, and other mammals [82–84].
The non-Circoviridae CRESS-DNA genomes found here are therefore of unknown tropism. The common
detection of such genomes in fecal samples indicates that these viruses may be ingested rather than
replicate in mammalian cells or may even replicate in gut parasites such as protozoa and nematodes [85].
The higher levels of CRESS-DNA read in wild versus captive macaques may reflect difference in their
diet or prevalence of co-infecting parasites. The more common detection of densovirus DNA in feces of
wild macaques may also reflect a greater consumption of insects by wild versus captive macaques. It is
known that when fruits are unavailable for the generally frugivorous cynomolgus monkeys their diet
will expand to include insects, leaves, seeds, mushrooms, invertebrates, and bird eggs [86]. Because
samples were collected in the fruitless dry season, the densoviruses in wild macaque feces may be
infecting consumed insects or insect contaminating other foods. The levels of densovirus DNA in feces
may therefore reflect macaque habitats and diet.

The characterization of fecal viromes in Thai cynomolgus macaques therefore identified several
vertebrate viruses putatively infecting macaques including parvoviruses, anelloviruses, picornaviruses,
adenoviruses, papillomaviruses, herpesviruses, and a calicivirus. Three genomes of novel viruses
were characterized. Despite the viromes of wild cynomolgus macaques showing higher abundance
of CRESS DNA viruses and densoviruses than those of captive animals the distribution of clearly
mammalian viruses did not differ between these populations. Retention of a diverse mixture of enteric
viruses after short term captivity therefore indicate that wild cynomolgus macaques reared in captivity
for one year show no reduction in the complexity of their mammalian fecal virome. Virome analyses of
feces from rhesus macaques (Macaca mulatta) born in captivity in US primate centers [52,87,88] also
show the presence of numerous enteric viruses mimicking the situation in their wild counterparts [89].

Bites from wild and captive macaques are known to transmit both rabies and herpes B viruses
to humans [90,91]. Rapid treatment with rabies vaccine and anti-herpes drug such as acyclovir are
therefore recommended [92–94]. Whether any of the enteric viruses described here pose any risks to
humans is currently unknown but detection of these viruses in symptomatic humans in recent contact
with cynomolgus macaques will be required to substantiate such theoretical risk.
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