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Abstract

Background: The mouse has three arylamine N-acetyltransferase genes, (MOUSE)Nat1, (MOUSE)Nat2 and (MOUSE)
Nat3. These are believed to correspond to (HUMAN)NATT, (HUMAN)NAT2 and NATP in humans. (MOUSE)Nat3
encodes an enzyme with poor activity and human NATP is a pseudogene. (MOUSE)Nat?2 is orthologous to (HUMAN)
NATT and their corresponding proteins are functionally similar, but the relationship between (MOUSE)Nat1 and
(HUMAN)NAT2 is less clear-cut.

Methods: To determine whether the (MOUSE)NATT and (HUMAN)NAT2 enzymes are functionally equivalent, we
expressed and purified (MOUSE)NAT1*1 and analysed its substrate specificity using a panel of arylamines and
hydrazines. To understand how specific residues contribute to substrate selectivity, three site-directed mutants of
(MOUSE)NAT2*1 were prepared: these were (MOUSE)NAT2_F125S, (MOUSE)NAT2_R127G and (MOUSE)NAT2_R127L.
All three exhibited diminished activity towards “(MOUSE)NAT2-specific” arylamines but were more active against
hydrazines than (MOUSE)NAT1*1. The inhibitory and colorimetric properties of a selective naphthoquinone inhibitor
of (HUMAN)NATT and (MOUSE)NAT2 were investigated.

Results: Comparing (MOUSE)NAT1*1 with other mammalian NAT enzymes demonstrated that the substrate profiles
of (MOUSE)NATT and (HUMAN)NAT?2 are less similar than previously believed. Three key residues (F125, R127 and
Y129) in (HUMAN)NAT1*4 and (MOUSE)NAT2*1 were required for enzyme inhibition and the associated colour
change on naphthoquinone binding. In silico modelling of selective ligands into the appropriate NAT active sites
further implicated these residues in substrate and inhibitor specificity in mouse and human NAT isoenzymes.

Conclusions: Three non-catalytic residues within (HUMAN)NAT1*4 (F125, R127 and Y129) contribute both to substrate
recognition and inhibitor binding by participating in distinctive intermolecular interactions and maintaining the steric
conformation of the catalytic pocket. These active site residues contribute to the definition of substrate and inhibitor
selectivity, an understanding of which is essential for facilitating the design of second generation (HUMAN)NAT1-selective
inhibitors for diagnostic, prognostic and therapeutic purposes. In particular, since the expression of (HUMAN)NAT1 is
related to the development and progression of oestrogen-receptor-positive breast cancer, these structure-based tools
will facilitate the ongoing design of candidate compounds for use in (HUMAN)NAT1-positive breast tumours.
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Background

Arylamine N-acetyltransferases (NATs, EC. 2.3.1.5) [1]
are drug metabolising enzymes which catalyse the conju-
gation of an acetyl group from acetyl Coenzyme A
(AcCoA) to arylamines, hydrazines and N-hydroxyaryla-
mines. They participate in the detoxification and meta-
bolic activation of xenobiotics and are found in a wide
variety of prokaryotic and eukaryotic species [2].

The human genome contains two polymorphic NAT
genes, (HUMAN)NAT1 and (HUMAN)NAT?2 [3,4], which
play important pharmacogenetic roles in cancer suscepti-
bility and have the potential to contribute to personalised
medicine [5,6]. The corresponding enzymes possess dis-
tinct substrate profiles: HUMAN(NAT1) preferentially
N-acetylates the arylamines 4-aminobenzoic acid (4ABA),
4-aminobenzoyl glutamate (4ABglu) and 4-aminosalicylate
(4AS), whereas (HUMAN)NAT?2 has higher activity towards
the hydrazines isoniazid (INH) and hydralazine (HDZ) and
the arylamine sulfamethazine (SMZ) [7,8]. The crystal struc-
tures of human NATs [9] resemble the three-domain con-
formation observed in prokaryotic NATs [10]. Like their
prokaryotic counterparts, each has a catalytic triad compris-
ing cysteine (C), histidine (H) and aspartic acid (D) at the
active site; they also contain an additional loop of 17 resi-
dues which many prokaryotic enzymes lack. These observa-
tions helped to lay the foundations for studies addressing
the structural determinants of their catalytic selectivity [11].

Human NATs are characterised by differing tissue dis-
tributions and patterns of gene expression during devel-
opment [12-14]. In particular, while (HUMAN)NAT2
appears to be a well-established drug metabolising en-
zyme and is mainly expressed in the liver [15], the se-
lective N-acetylation of the folate catabolites 4ABglu and
4ABA by (HUMAN)NAT1 suggests that this isoform
may have an endogenous role in folate homeostasis [16,17].
Furthermore, recent studies indicate that (HUMAN)NAT1
has a novel catalytic function as a folate-dependent
AcCoA hydrolase [18].

Rodents also have multiple NAT isoforms which have
been investigated as animal models for the correspond-
ing human enzymes. Mice, for example, have three NAT
genes, (MOUSE)Nat1, (MOUSE)Nat2 and (MOUSE)Nat3.
All of these are polymorphic; the (MOUSE)Nat3 gene ex-
hibits the greatest extent of polymorphism and may effect-
ively be considered a pseudogene like (HUMAN)NAT3
[19], although it does have enzymatic activity [20,21].

Historically, (MOUSE)NAT2 has been considered to
correspond to (HUMAN)NAT1 because their primary
sequences are 82% homologous and they exhibit similar-
ities in terms of expression profile, tissue distribution
and substrate preference [8,22-24]. Furthermore, inhib-
ition studies have identified a (HUMAN)NAT1/(MOUSE)
NAT?2 selective inhibitor, naphthoquinone 1 (N-(3-(3,5-
dimethylphenylamino)-1,4-dioxo-1,4-dihydronaphthalen-
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2-yl)benzenesulphonamide; Additional file 1: Figure S1),
which undergoes a distinctive colour change from red to
blue upon binding to either of these two enzymes but not
to other mammalian NAT isoenzymes [24,25]. Virtual
modelling studies [25,26] indicate that the interaction
between naphthoquinone 1 and (HUMAN)NATI1 or
(MOUSE)NAT?2 depends on selective ionic interactions
between the conjugate base of compound 1 and the guani-
dinium moiety of an active site residue, arginine 127
(R127). This is part of a group of active site residues which
had previously been identified as being involved, together
with phenylalanine 125 (F125) and tyrosine 129 (Y129), in
substrate specificity [27,28]. These residues differ between
(HUMAN)NAT1*4 and (HUMAN)NAT2*4 and between
(MOUSE)NAT1*1 and (MOUSE)NAT?2*1, while the cata-
lytic triad of C, H and D is identical.

The (MOUSE)NAT1 enzyme is commonly assumed to
be functionally equivalent to (HUMAN)NAT2 because
both can metabolise isoniazid (INH) and sulfamethazine
(SMZ) [29-31]. In order to determine whether these en-
zymes are true functional equivalents, we used a previously
reported (MOUSE)Nat1*I clone [32] to express and purify
the (MOUSE)NAT1*1 enzyme and compared its substrate
profile with those of other rodent and human NAT enzymes
using a broad panel of aromatic amines and hydrazines. In
addition, we used three site-directed mutants ((MOUSE)
NAT2_F125S, (MOUSE)NAT2_R127G and (MOUSE)
NAT2_R127L) to investigate the effects of key active site
residues on the substrate specificity of (MOUSE)NAT?2. In
the present study we focused on residues 125 and 127; the
role of the Y129 residue found in (HUMAN)NAT1 and
(MOUSE)NAT?2, at least with respect to inhibitor binding,
has previously been investigated using (MESAU)NAT2,
which has identical active site residues except for a leucine
(L) at location 129 [33]. The results of this earlier study
[26] suggest that Y129 is functionally important, at least in
inhibitor recognition, and illustrate the value of (MESAU)
NAT2 as a protein model for comparative studies with
(HUMAN)NAT1 and (MOUSE)NAT?2.

Finally, we modelled the binding of representative ary-
lamine substrates within the active sites of reference and
mutant mammalian NATSs in order to elucidate key in-
teractions within the NAT/substrate complex. The iden-
tification of (HUMAN)NAT1 as a potential therapeutic
target in cancer means that understanding the molecular
details of this series of enzymes in humans and potential
animal models is important for their potential exploit-
ation in both diagnostics [24] and therapy [34].

Methods

Chemicals and reagents

All chemicals were purchased from Sigma-Aldrich un-
less otherwise stated. Molecular biology reagents were
obtained from Promega.
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Expression of pure recombinant NATs

Expression and purification of (MOUSE)NAT1*1

The open reading frame of (MOUSE)Natl*1 [32] was
subcloned into the Ndel and EcoRI sites of pET28b(+)
(Novagen) and transformed into Escherichia coli BL21
(DE3)CodonPlus-RIL (Stratagene). BL21 cells carrying
the expression plasmid were grown in auto-induction
medium at 27°C in the presence of kanamycin (30 ug.
mL™) and chloramphenicol (34 pg.mL™) and harvested
after 24 hrs by centrifugation (5,000 g, 4°C, 20 min). The
cell pellet was resuspended in lysis buffer (300 mM
NaCl, 20 mM Tris—HCI (pH 8.0), 1 x EDTA-free Com-
plete Protease Inhibitor (Roche)) and stored at -80°C.
Cells were thawed, lysed by sonication and the soluble
protein fraction was separated from cell debris by centri-
fugation (12,000g, 4°C, 20 min). The soluble fraction
was incubated with pre-equilibrated Ni-NTA resin
(Qiagen) for 5 min, loaded on a chromatography column
and washed with buffer solutions containing increasing
imidazole concentrations at 4°C (two washes each of
0 mM, 10 mM, 20 mM, 50 mM and 100 mM imidazole).
Fractions containing (MOUSE)NAT1*1 were identified
by sodium dodecyl sulphate-polyacrylamide gel electro-
phoresis and NAT activity assays using 5-aminosalicylate
(5AS) [35]. The hexa-His tag was removed by thrombin
cleavage (5 U thrombin/mg of protein, 16 h incubation,
4°C) and the cleaved protein was dialysed against
20 mM Tris—HCI (pH 8.0), 1 mM DTT, 1 mM EDTA
buffer. Glycerol was added to 5%. Samples were con-
centrated by centrifugal ultrafiltration (Amicon), snap
frozen in liquid nitrogen and stored at -80°C (1 mg.
mL™' in 20 mM Tris-HCI (pH 7.0), 5 mM DTT, 5%
glycerol).

Site-directed mutagenesis, expression and purification of
(MOUSE)NAT2_F125S

QuikChange II (Stratagene) was used to mutate codon
125 (TTT; F125) of (MOUSE)Nat2*1 [22] to TCT, which
encodes serine (F125S) (Additional file 2: Figure S2).
The resulting mutant was expressed in Rosetta(DE3)
pLysS as described previously [22,25]. (MOUSE)NAT2_
F125S was purified by Ni-NTA affinity chromatog-
raphy and thrombin cleavage, as described. Fractions
containing mutant (MOUSE)NAT2_F125S protein were
identified by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis and NAT activity assays using 4ABA [35].

Preparation of pure recombinant mammalian NATs

The preparation of pure recombinant (MOUSE)NAT?2*1,
(MOUSE)NAT2_R127G, (MOUSE)NAT2_R127L, (MESAU)
NAT2*1, (HUMAN)NAT1*4 and (HUMAN)NAT2*4 was
performed as described previously [8,22,25].
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Substrate and inhibitor selectivity and spectrometry of
(MOUSE)NAT1*1 and three (MOUSE)NAT2 mutants
Substrate specific N-acetylation profiles were determined
according to published methods with minor modifica-
tions [8,36]. Recombinant proteins were used immedi-
ately after purification. The quantity of each protein
used in assay mixes (100 pL) was: (MOUSE)NAT1*1,
0.633 pg; (MOUSE)NAT2%1, 1.4 pg; (MOUSE)NAT2_
F125S, 1 pg (MOUSE)NAT2_R127G, 0.8 pg and
(MOUSE)NAT2_R127L, 5.5 pg. The substrates used
were 4ABglu, 4ABA, 4AS, 5AS, 4-chloroaniline (4CA),
4-bromoaniline (4BA), 4-iodoaniline (4IA), 4-methoxya-
niline (ANS), 4-aminoveratrole (4AV), 4-hexyloxyaniline
(HOA), 4-phenoxyaniline (POA), SMZ, INH and HDZ. In
each case the final concentration in the reaction mix was
500 pM. All measurements were performed in triplicate
and are expressed as mean * standard deviation. For each
enzyme tested, average measures of specific activity were
calculated relative to the substrate exhibiting the highest
specific activity (100%) for that enzyme.

In order to highlight differences in substrate prefer-
ence among murine NAT proteins, the substrate profiles
of (MOUSE)NAT2*1, (MOUSE)NAT1*1, (MOUSE)NAT2_
F125S, (MOUSE)NAT2 R127G and (MOUSE)NAT2_
R127L were compared by ANOVA (confidence limit
95%) using the Shapiro-Wilk test to verify normal distri-
bution and Cochran’s test to check the equality of vari-
ances. Statistical significance was evaluated using Student’s
t-test with a Bonferroni adjustment if required.

Inhibition of NAT activity was determined as the ratio
of specific activity in the presence and absence of the in-
hibitor naphthoquinone 1 using the preferred substrate
for the enzyme under investigation. The final concentra-
tion of dimethyl sulphoxide (DMSO) in reaction mixes
was 5% (v/v). ICso values were estimated using a dose—
response-based regression model in Kyplot® software.
Curves were fitted by least squares analysis with confi-
dence limits of 95%. Visible spectra (A =800 to 326 nm)
of naphthoquinone 1 in the presence of pure recombin-
ant NATs were recorded with a U-2001 spectrophotom-
eter (Hitachi) using 50 puL UVettes® (Eppendorf).

Structural modelling and docking simulations

Structural models of wild type (MOUSE)NAT2*1, (MOUSE)
NAT2 mutants and (MESAU)NAT2*1 were generated
based on the structure of (HUMAN)NAT1*4 [PDB:2PQT]
[9] using SwissModel software (http://swissmodel.expasy.
org/) in automated mode [37-39]. Each substrate was
drawn in 3D using ChemBio3D Ultra 12.0 and its ground
state conformation predicted before it was docked into
the catalytic pocket of the appropriate NAT structure
(HUMAN)NAT1*4: 2PQT, (HUMAN)NAT2*4: 2PER [9])
or NAT model (MOUSE)NAT2*1, (MOUSE)NAT2 mutants
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and (MESAU)NAT2*1). Protein and substrate structures
were defined as pdbqt files and protein-structure interac-
tions were analysed using Autodock Vina [40]. After add-
ing polar hydrogen atoms to the NAT target and defining
the rotatable bonds of the ligand, a docking site was de-
fined within the active site pocket and possible solutions
were ranked according to affinity energy (lowest to high-
est; kcal.mol ™). The docking results were visualised in 3D
using PyMOL [41].

Results

Substrate selectivity of (MOUSE)NAT1*1 and
(MOUSE)NAT2*1

We expressed (MOUSE)NAT1*1 in E. coli Rosetta (DE3)
pLysS and used the resulting recombinant protein to de-
termine the activity of (MOUSE)NAT1*1 towards a
panel of chemicals commonly used as NAT substrates
(Additional file 3: Table S1). The highest specific activ-
ities were with the hydrazines INH and HDZ and the
arylamine SMZ (Figure 1). A parallel screening experi-
ment with (MOUSE)NAT?2*1 yielded results correspond-
ing to those published previously [22]. The differences
between (MOUSE)NAT1*1 and (MOUSE)NAT2*1 for
most substrates were statistically significant. (MOUSE)
NAT1*1 did, however, have low but measurable activity
towards certain arylamine substrates which are usually
considered to be (MOUSE)NAT2-specific (4ABA and
4AS but not 4ABglu) and towards halogenated aryla-
mines and alkyloxy- and aryloxy-substituted arylamines.

Site-directed mutagenesis of (MOUSE)NAT2

Three (MOUSE)NAT?2 mutants (MOUSE)NAT2_F125S,
(MOUSE)NAT2_R127G and (MOUSE)NAT2_R127L) were
used to explore the effects of mutating a single residue

Page 4 of 13

within the active site on the substrate specificity of
(MOUSE)NAT?2. Two of these, (MOUSE)NAT2_R127G
and (MOUSE)NAT2_R127L, were reported previously
[8,22]. The third, (MOUSE)NAT2_F125S was generated
by site-directed mutagenesis, as described above and illus-
trated in Additional file 2: Figure S2.

The substrate panel listed in Additional file 3: Table S1
was used to characterise the activity profiles of the three
mutants in comparison with that of (MOUSE)NAT2*1.
The maximum specific activity of (MOUSE)NAT2_F125S
(observed with EOA) was around 7.5 times lower than
the maximal value of (MOUSE)NAT2*1 (observed with
4ABA), but the substrate preferences of (MOUSE)NAT2_
F125S and (MOUSE)NAT?2*1 were similar. Some discrep-
ancies were, however, observed: the main differences
observed were marked reductions in the relative rate of
N-acetylation of the arylamines 4ABglu and 4ABA and
an augmentation of activities towards the hydrazines
INH and HDZ.

Substituting R127 with glycine (R127G) or leucine
(R127L) caused a dramatic loss of N-acetylation activity
towards 4ABA and 4ABglu (Figure 2). Aminosalicylic
acids were differentially N-acetylated by (MOUSE)NAT2*1
and its R127 mutants: (MOUSE)NAT2_R127G and
(MOUSE)NAT?2_R127L had significantly lower N-acetylation
activity towards the (MOUSE)NAT2-specific substrate
4AS, but higher catalytic activity with 5AS compared with
(MOUSE)NAT?2*1. These mutations had no marked ef-
fects on the N-acetylation of halogenated arylamines and
alkyloxy-substituted arylamines with small alkyl chains
(ANS, 4AV), but those with extended alkyloxy or bulkier
aryloxy substituents (hexyloxy in HOA and phenoxy in
POA) were strongly preferred by both R127 mutants
compared with (MOUSE)NAT2*1. The mutants also had
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Figure 2 Substrate profiles of (MOUSE)NAT2*1, (MOUSE)NAT2_R127G and (MOUSE)NAT2_R127L. Substrate specific activity profiles of
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much higher N-acetylation activity towards hydrazines
such as HDZ.

Comparison of the substrate profiles of the two R127
mutants did not identify significant differences in their
activity profiles. Overall, the best substrate for (MOUSE)
NAT2_R127G was HDZ. The observed specific activity
(1,385 pM.sec .mg™') was 7 fold higher than the max-
imum specific activity of (MOUSE)NAT2*1 with 4ABA
(196 uM.sec*.mg™'), suggesting that (MOUSE)NAT2_
R127G mutant had greater catalytic efficiency than
(MOUSE)NAT?2*1. In contrast, comparing the maximum
specific activity value of (MOUSE)NAT2*1 (196 pM.seC’l.
mg71 with 4ABA) with that of (MOUSE)NAT2_R127L
(82.5 uM.sec '.mg! with 4AV) indicated that the max-
imum catalytic turnover of (MOUSE)NAT2_R127L was
~2.5 fold lower than that of (MOUSE)NAT?2*1.

Comparison of substrate selectivity among mammalian
NATs

The assays described here were performed under the condi-
tions described in our previous publications [8,22]. We
were therefore able to compare previously published sub-
strate selectivity profiles of (HUMAN)NAT1*4, (HUMAN)
NAT2*4 and (MESAU)NAT2*1 with those of (MOUSE)
NAT1*1, (MOUSE)NAT2*1 and the three engineered
(MOUSE)NAT2 mutants reported here (Table 1). In
Table 1, the NAT enzymes are arranged according to
divergence of the active site sequence from that of
(HUMAN)NAT1*4 (Figure 3) [9] and plotted against ary-
lamine and hydrazine substrates organised according to
their chemical functionalities and physicochemical proper-
ties. Overall, as the active site diverged further from that
of (HUMAN)NAT1*4, substrate preference moved from

arylamines with negatively charged para-substituents to-
wards aromatic amines and hydrazines without ionised,
polar or para-substituents around the aromatic core. In
particular, 4ABglu, 4ABA and 4AS have an acetyl acceptor
amine with pK,;; <3 (Additional file 3: Table S1) and are
subject to N-acetylation by (HUMAN)NAT1*4 and its
homologues (MOUSE)NAT2*1 and (MESAU)NAT2*1.
The other substrates have an acceptor amine with
pKat =3. These are better substrates for (HUMAN)
NAT2*4, (MOUSE)NAT1*1 and the two R127-mutated
(MOUSE)NAT?2 enzymes.

In general, the results obtained corresponded with previ-
ous reports of functional similarities between (HUMAN)
NAT1*4, (MOUSE)NAT2*1 and (MESAU)NAT2*1 [8,22];
however, the substrate profile of (MOUSE)NAT1*1 did
not, as expected, correspond to that of (HUMAN)NAT2*4
[29,31]. Indeed, (MOUSE)NAT1*1 was able to N-acetylate
substrates characteristic of both (HUMAN)NAT1*4 (4ABA
and 4AS) and (HUMAN)NAT2*4 (SMZ, INH and HDZ).

Inhibition studies

The inhibitory potency and colorimetric properties of
the (HUMAN)NAT1-selective inhibitor naphthoquinone
1 were also explored in relation to alterations at positions
125, 127 and 129 using (MOUSE)NAT2_F125S, (MOUSE)
NAT1*1 and (HUMAN)NAT2*4, comparing the results
with those of previous studies using (HUMAN)NAT1%4,
(MESAU)NAT?2*1, (MOUSE)NAT2*1, (MOUSE)NAT2_
R127G and (MOUSE)NAT?2_R127L [24-26] (Table 2). The
lowest ICsq values for naphthoquinone 1 were exhibited
by (HUMAN)NAT1*4 and (MOUSE)NAT2*1 enzymes,
both of which possess the triad F125, R127 and Y129.
Naphthoquinone 1 was at least an order of magnitude
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Table 1 Arylamine activity profiles of native and engineered NATs in relation to substrate physicochemical properties

NAT enzymes: % specific activity values

(HUMAN) (MOUSE) (MESAU) (MOUSE) (MOUSE) (MOUSE) (MOUSE) (HUMAN)
NAT1*4  NAT2*1 NAT2*1 NAT2 NAT2 NAT2 NAT1*1  NAT2*4
F125S R127G R127L

F125 - - S - - Y S
NAT substrates R127 - - - G L G S
Y129 - L - - - - S
Negatively charged Folate catabolites 4ABglu  20+1 87+1 5743 1941 941 8+1 8+7 341
arylamines at pH 8.0 4ABA 100£2  100+2  100+6  70+2 841 8+1  48%6  6+1
Salicylic acids 4AS 67+2 55+1 74+3 75+3 27 +1 13£1 88+6 71
5AS 64+3 37+1 30+1 74 £1 94 +1 65+9 76£6 64 +2
Neutral electron-rich Halogenated anilines 4CA 36+2 46 +4 61+2 56+2 54+3 7041 18+3 7143
arylamines at pH 80 4BA 501 5222 7241 4742 70%£1 8111 2846  72%1
41A 63+1 72+£3 81+1 69+2 97 +1 74£8 28+3 65+2
Alkyl- and aryl-oxyanilines  ANS 56+2 88+6 89+1 100+3  97+4 77£10 48+1 9+2
4AV 252 N0 +1 32+1 N +1 66+ 3 100+10 28+6 57+3
HOA 12+4 23+2 35+1 47 1 59+3 80+8 3+4 51+2
POA 177 20+2 2241 6242 67 %1 6142 6+1 62+ 11
Other aniline SMZ 1£1 4+1 T£1 T£1 19+2 341 88+6 46+ 1
Arylhydrazines INH 0£2 2+2 1£1 38+2 63+10 76 £14 100+ 6 62+2
HDZ 2+1 8+2 31 19+1 100+ 2 95+ 1 68+6 100£1

Percentage specific activity values of native and engineered mammalian NAT proteins are shown. A value of 100% is attributed to the substrate towards which
the isoform in question has the highest specific activity. All results shown are the mean of 3 measurements =+ standard deviation. Percentages >90% for each
isoenzyme were compared by ANOVA using a Student’s t-test and statistically similar values are emboldened. Isoforms are ordered according to increasing number of
residue differences within the active site in relation to (HUMAN)NAT1*4. Residues identical to those in (HUMAN)NAT1*4 are labelled with a hyphen; residues different
from the corresponding residue of (HUMAN)NAT1%*4 are specified. Substrates are ordered according to the number of negative charges at pH 8.0, then to electron-
richness and increasing size of aromatic substituents. The chemical structures and physicochemical properties of the chemicals used as substrates for NAT in this study
are shown in Additional file 3: Table S1.

(HUMANNAT1 CERES] . BLER ~
(NeVSINTAPRMD IEAYRERIG Y8
(MESAUNAT2 IBEFSY - SRS Ed
(VSN EW D TEAYRERIG
(HUMAN)NAT2 3 K

(HUMAN)NAT1
(MOUSE)NAT2
(MESAUINAT2
(MOUSE)NAT1
(HUMAN)NAT2

(HUMAN)NAT1
(MOUSE)NAT2
(MESAU)NAT2
(MOUSE)NAT1 Vi v F
(HUMAN)NAT2 BT T ITT BcviicLvclyigl

Figure 3 Sequence alignment of five mammalian NAT proteins. The primary sequences of human, mouse and Syrian hamster NAT proteins
are aligned. Similar amino acids are highlighted by dark grey lettering in pale grey boxes; completely conserved residues are indicated by white
lettering on a dark grey background. The residues of the catalytic triad are indicated by a blue arrow. Each residue putatively involved in
substrate selectivity is indicated by a star. Alignments were generated using Clustal W [42] and the figure was prepared using ESPript 2.2 [43].
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Table 2 Effects of naphthoquinone 1 on the activity of mammalian NATs and their colorimetric detection

Enzyme (HUMAN) (MOUSE) (MESAU) (MOUSE) (MOUSE) (MOUSE) (MOUSE) (HUMAN)
NAT1*4 NAT2*1 NAT2*1 NAT2_F125S NAT2_R127G NAT2_R127L NAT1*1 NAT2*4
Primary sequence identity versus 100 82 81 82 82 82 74 71
(HUMAN)NAT1*4
Active site residues 125 F F F S F F Y
127 R R R R G L G
129 Y Y L Y Y Y Y S
ICs0 with naphthoquinone 1 (uM) 53° 1320 89.0° 68.7 51.7° 102.5% 129.7 >100
Amax Of Naphthoquinone 1 (nm) 585%P 625%F 525¢ 498 498° 498° 498° 498°

1Cso values were calculated using decreasing concentrations of naphthoquinone 1. NAT activity was measured following the hydrolysis rate of AcCoA (400 puM) in
the presence of 4ABA for (HUMAN)NAT1#4, (MOUSE)NAT2*1 and (MESAU)NAT2*1; 5AS for (MOUSE)NAT2 mutants and (MOUSE)NAT1%*1; and 2-aminofluorene for
(HUMAN)NAT2*4, 2adapted from [25] Padapted from [24] “adapted from [26]. Residues which are different from the corresponding residues in (HUMAN)NAT1%4

are labeled in bold.

more potent against (HUMAN)NAT1*4 and (MOUSE)
NAT2*1 (ICsq values of 5.3 and 1.3 uM, respectively) than
the other NATSs used in this study. When pure recombin-
ant (MOUSE)NAT?2_F125S was incubated with naphtho-
quinone 1 under the conditions reported previously, it did
not shift the A, of naphthoquinone 1 towards longer
wavelengths (585-625 nm), in contrast to previous obser-
vations with (HUMAN)NAT1*4 and (MOUSE)NAT2*1
(Additional file 4: Figure S3, Table 2).

In silico analysis of substrate selectivity in mammalian
NATs

The structural features underlying substrate selectivity
were investigated by in silico analysis of interactions be-
tween the NAT proteins and their arylamine substrates.

Structural models of (MOUSE)NAT?2*1 and (MESAU)
NAT2*1 were generated using the crystal structure of
(HUMAN)NAT1*4 [PDB:2PQT] [9] because these three
isoforms have >80% amino acid identity (Additional file 5:
Table S2). Swiss-Model simulations generated models of
(MOUSE)NAT2*1 and (MESAU)NAT?2*1 which were of
high quality according to their scoring functions and
background noise, thus confirming the reliability of the
template used. The mutations (MOUSE)NAT2_F125S,
(MOUSE)NAT2_R127G and (MOUSE)NAT2_R127L did
not abolish the catalytic reactivity compared with the ref-
erence enzyme, so each individual residue modification
was considered unlikely to have altered overall protein
folding. The same modelling procedure was therefore used
to create structural models of (MOUSE)NAT2_F125S,
(MOUSE)NAT2_R127G and (MOUSE)NAT2_R127L. How-
ever, attempts to model (MOUSE)NAT1*1 (64% identity;
Additional file 5: Table S2) based on the structure of
(HUMAN)NAT?2*4 [PDB:2PFR] [9] did not yield reliable
results.

Substrates were docked into the catalytic site of each
enzyme as shown in the selectivity profile summarised
in Table 1. 4ABglu was docked in the active sites of
(HUMAN)NAT1*4, (MOUSE)NAT2*1, (MESAU)NAT2*1

and (MOUSE)NAT?2_F125S (Figure 4). The affinity ener-
gies of all these simulations were low (-8.0/-7.0 kcal
mol ™) and probable polar and hydrophobic interactions
were revealed within the enzyme-substrate complexes.
For example, the amide functionality of 4ABglu could
point towards the guanidinium of R127 via hydrogen
bonds (<3.2 A); the Cy carboxylic group of glutamate
could form a hydrogen bridge with the hydroxyl tail of
Y129 (<3.1 A) in (HUMAN)NAT1*4, (MOUSE)NAT2*1
and (MOUSE)NAT2_F125S; and/or the aromatic sub-
strate core could interact via m-m stacking (<3.8 A) with
the hydrophobic plane defined by the isopropyl moiety
of valine 93 (V93) and the phenyl ring of F125 in all
the reference enzymes. The results obtained with 4ABA
support the postulated interactions inferred from 4ABglu,
suggesting a polar interaction between the carboxylate of
4ABA and the guanidinium of R127 at pH 8.0 (~3.6 A)
and hydrophobic stacking of the aromatic portion of
4ABA on the apolar flat surface defined by the side chains
of V93 and F125 (~4 A) (Additional file 6: Figure S4).

We also attempted to model the selective hydrazine
substrates INH and HDZ within the active site of
(HUMAN)NAT2*4 and the (MOUSE)NAT2 mutants.
No proximity between the hydrazine functionality and
C68 thiolate compatible with the NAT catalytic mechan-
ism [44] was observed, possibly because of the smaller
steric size of the substrate docked. However, when a
bulkier selective arylamine substrate such as POA was
docked into (HUMAN)NAT?2*4 and the three (MOUSE)
NAT?2 mutants, the results indicated proximity between
the primary amine of the substrate and the key active
site residues C68 and H106 (<4 A) (Figure 5). These
simulations indicated that the 4-aminoarene of POA
could be sandwiched between the benzyl ring of F217
and the apolar side chain of F93 in (HUMAN)NAT2*4
and F125 in (MOUSE)NAT2_R127G and (MOUSE)NAT2_
R127L via hydrophobic interactions. In the (MOUSE)
NAT2 mutants, the phenoxy group of POA was predicted
to make further m-stacking interactions with the side
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Figure 4 Substrate binding pockets of (HUMAN)NAT1%4,
(MOUSE)NAT2*1, (MESAU)NAT2*1 and (MOUSE)NAT2_F125S
with 4ABglu docked. Maximised view of the active sites of (A):
(HUMAN)NAT1*4; (B): (MOUSE)NAT2*1; (C): (MESAU)NAT2*1; (D)
(MOUSE)NAT2_F125S with the arylamine substrate 4ABglu docked.
The overall structure of each NAT enzyme is drawn as a ribbon
diagram: (HUMAN)NAT1*4 is coloured in green [PDB:2PQT] [9]
(MOUSE)NAT2*1 model in dark blue, (MESAUNAT2*1 model in cyan
and (MOUSE)NAT2_F125S model in pale blue. The side chains of the
key residues involved in substrate binding within the active site are
drawn in stick representation and labelled with carbon atoms in the
corresponding colour of the enzyme, nitrogen in blue, oxygen in
red and sulphur in yellow. The arylamine substrate 4ABglu is labelled
with carbon atoms in orange, nitrogen in blue, oxygen in red and

polar hydrogen in gray. The figures were generated using PyMOL [41].

chain of Y129 (~3.9 A), whereas the equivalent residue in
(HUMAN)NAT?2*4, S129, is incapable of this interaction.

Discussion

The present study has extended our understanding of
(MOUSE)NAT1 by demonstrating that it is functionally
different from (HUMAN)NAT?2. In addition to its known
activity in N-acetylating the hydrazine INH and the aryla-
mine SMZ [29,30], (MOUSE)NAT1*1 was shown to have
significant activity towards the hydrazine HDZ and two
arylamine substrates which were previously considered to
be (HUMAN)NAT1 and (MOUSE)NAT2-specific (4ABA
and 4AS).

The substrate-binding interactions involved in N-
acetylation were previously characterised using nuclear
magnetic resonance [33,45], demonstrating that an aryla-
mine or hydrazine could bind to a non-acetylated NAT
active site. In the present study, arylamine substrates
were docked within the catalytic pockets of different
non-acetylated NATs in silico in order to identify pos-
sible selective interactions underlying the formation of
the enzyme-substrate complex.

In (HUMAN)NAT1*4, the positively charged guanidi-
nium (at pH 8.0) of R127 plays an essential role in
recognising the negatively charged carboxylate of 4ABA,
as illustrated by modelling 4ABA (Additional file 6:
Figure S4) or 4AS [9] within the active site. The signifi-
cant N-acetylation activity of (MOUSE)NAT1*1 towards
4ABA, 4AS and ANS in the present study was difficult
to reconcile with the presence of an apolar G127 instead
of an R127. However, it is possible that the presence of
a sterically smaller residue (G) at this position in
(MOUSE)NAT1*1 permits bulky or highly polar sub-
strates to enter and allows their charged para-substitu-
ents to interact with other polar side chains in the active
site (e.g. Y125 and Y129). Similarly, essential m-m stack-
ing interactions observed between the aromatic core of
4ABA and F125, as seen in (HUMAN)NAT1*4, may be
permitted by the side chain arene of Y125 within the
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Figure 5 Substrate binding pockets of (HUMAN)NAT2%4,
(MOUSE)NAT2_F125S, (MOUSE)NAT2_R127G and (MOUSE)
NAT2_R127L with POA docked. Maximised view of the active sites
of (A): (HUMAN)NAT2*4; (B): (MOUSE)NAT2_F125S; (C): (MOUSE)
NAT2_R127G; (D): (MOUSE)NAT2_R127L with the arylamine substrate
POA docked. The overall structure of each NAT enzyme is drawn as
a ribbon diagram: (HUMAN)NAT2*4 is coloured in mauve [PDB:2PFR]
[9] and (MOUSE)NAT2 mutants in light blue. The side chains of the
key residues involved in substrate binding within the active site are
drawn in stick representation and labelled with carbon atoms in the
corresponding colour of the enzyme, nitrogen in blue, oxygen in
red and sulphur in yellow. The arylamine substrate POA is labelled
with carbon atoms in orange, nitrogen in blue, oxygen in red and
polar hydrogen in gray. The figures were generated using PyMOL [41]. )

active site of (MOUSE)NAT1*1. The lack of a structural
model suitable for docking studies and the restricted
commonality of substrate selectivity between (MOUSE)
NAT1*1 and either of the two human NATs precluded
the construction of a structural model for (MOUSE)
NAT1*1, so this hypothesis could not be tested.

When 4ABglu was docked into the structure of
(HUMAN)NAT1*4 and models of (MOUSE)NAT2*1 and
(MESAU)NAT?2*1, the essential role of R127 in forming
ionic interactions with the electron-negative para-sub-
stituent of the substrate was evident; this may explain why
a bulky charged arylamine such as 4ABglu can enter a
small, very hydrophobic microenvironment such as the ac-
tive site crevice of (HUMAN)NAT1*4 [9]. The preference
of (HUMAN)NAT1*4 and its homologues (MOUSE)
NAT2*1 and (MESAU)NAT2*1 for arylamine substrates
with a negatively charged para-substituent (e.g. 4ABA and
4AS) may therefore be due to the positively charged gua-
nidinium moiety of R127.

Previous studies have shown that mutation of F125 to
S$125 modifies the catalytic preference of (HUMAN)
NAT1*4 from the conventional probe substrate 4AS to
SMZ [27]. When we examined the effect of the equiva-
lent mutation on (MOUSE)NAT?2, no such shift in sub-
strate preference was observed; neither did the general
substrate preferences of (MOUSE)NAT2 change to re-
semble those of (MOUSE)NAT1*1. The higher reactivity
of (MOUSE)NAT2_F125S with conformationally flexible
hydrazines than with planar arylamines could be associ-
ated with increased active site space in (MOUSE)
NAT?2*1 after the substitution of the bulky benzyl group
of F with the less hindering hydroxymethyl of S.

Site-directed mutagenesis of R127 to G127 or L127
within (MOUSE)NAT2 markedly altered the enzyme’s
substrate selectivity. Overall, the non-polar side chains
of G and L appeared to have similar effects in terms of
modifying the substrate preferences of (MOUSE)NAT?2:
the metabolism of 4ABglu and 4ABA was dramatically
decreased whereas N-acetylation of the hydrazines INH
and HDZ, which are commonly used as probe substrates
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for (MOUSE)NAT1 and (HUMAN)NAT?2, was augmented.
R127 seemed to play a crucial role in discriminating
between arylamines with highly hydrophilic substituents
and hydrazines with less polar aromatic functional groups.
Moreover, the (MOUSE)NAT2 R127G mutation im-
proved the overall catalytic activity of the enzyme, possibly
due to the larger size of the active site cavity generated
after substitution. Similarly, when the arylamine POA was
docked into the active sites of (MOUSE)NAT2_F125S,
(MOUSE)NAT2_R127G and (MOUSE)NAT2_R127L, the
results suggested that accommodation of this substrate via
stacking interactions is facilitated by the larger cavity cre-
ated by these single substitutions. When POA was docked
into the active pocket of (HUMAN)NAT2*4, the results
of substrate fitting were very similar to previous model-
ling results obtained with SMZ [9], consistent with the
preference of (HUMAN)NAT2*4 for apolar and flexible
substrates [11].

The individual (MOUSE)NAT?2 mutants tested did not
affect the specificity of (MOUSE)NAT2 for SMZ, which
is a very poor substrate for this isoform. This may be re-
lated to the need for a larger active site to accommodate
SMZ, which is a bulky arylamine; a single amino acid
change may not be sufficient to permit access to the ac-
tive site. Further 3D structural data and thermal stability
studies on the mutants would help to ascertain the
extent of the folding perturbations produced by each
mutation. However, it is also intriguing that small hydra-
zines such as INH and phenylhydrazine are poor sub-
strates for (HUMAN)NAT1 and its rodent homologues
[8,22], whereas arylamines of similar steric size such as
4ABA, 4AS and ANS are good substrates.

While the amine nitrogen and the aromatic carbons of
an arylamine substrate are on the same plane, crystallo-
graphic studies of INH, HDZ and phenylhydrazine as
single molecules [46-50] and protein co-crystallised li-
gands [51,52], showed that the hydrazine bond could
also be off the plane defined by the remaining aryl and
acyl carbon atoms, thereby giving the hydrazine sub-
strate a non-planar conformation. Our docking simula-
tions using the crystal structure of (HUMAN)NAT1*4
and the model of (MOUSE)NAT?2*1 show that the bulky
side chain of R127, the benzyl ring of F125 and the 4-
hydroxybenzyl of Y129 create a characteristic constrained
microenvironment which appears to allow preferable ac-
commodation of planar arylamines rather than conforma-
tionally flexible hydrazines in the active site of (HUMAN)
NAT1*4. This is consistent with the volumes of the active
sites in human NAT structures: the (HUMAN)NAT1*4
cavity has a volume of 162 A®, whereas (HUMAN)NAT2*4
(with S at positions 125, 127 and 129) has a larger active
pocket (257 A®). In this context it is also noteworthy
that the crystal structures of prokaryotic NATs from Myco-
bacterium tuberculosis, M. marinum and M. smegmatis,
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which preferentially N-acetylate conformationally flexible
hydrazine substrates, have much larger active sites
(>200 A®) than (HUMAN)NAT1*4 [53-55].

Recent studies have suggested that F125, R127 and
Y129 in the active sites of (HUMAN)NATI1*4 and
(MOUSE)NAT2*1 are essential for selective recognition
and binding of the potent inhibitor naphthoquinone 1
[24-26]. In particular, ionic recognition between the con-
jugate base of naphthoquinone 1 and the guanidinium
moiety of R127 is known to be essential for inhibitor
binding. The results shown here confirm that these key
residues are required for the interaction with naphtho-
quinone 1, since the absence of any of them results in a
protein which is resistant to inhibition and colour shift-
ing in response to naphthoquinone 1 (Table 2).

Overall, our results suggest that the substrate selectiv-
ity of the mammalian NATs investigated in this study is
influenced by two major factors; firstly, the planarity of
the acceptor arylamine and the polarity of its para sub-
stituent (which appear to affect both the type of the
intermolecular interactions within the enzyme and the
pKap strength and nucleophilicity of the acceptor amine);
and secondly, the size of the catalytic cavity and its overall
polarity, as determined by the residues at positions 125,
127 and 129. In particular, F125 in (HUMAN)NAT1*4
and (MOUSE)NAT?2*1 appears to play a key role in dis-
criminating between planar arylamines and conformation-
ally flexible hydrazines, while the ionised (at physiological
pH) side chain of R127 perturbs the characteristic hydro-
phobicity of the NAT active site and, in cooperation with
the 4-hydroxybenzyl side chain of Y129, contributes to the
narrowness of the (HUMAN)NAT1*4 active site.

Conclusions

In conclusion, this evaluation of the substrate profiles of
various native and engineered mammalian NATs in the
context of their structures has highlighted the features
which influence NAT substrate selectivity in mammals.
The virtual models of mammalian NATs generated in
this study, used in conjunction with X-ray structures of
human NATs, constitute a rich resource for investigating
the roles of particular residues within the NAT active
site in relation to both NAT activity and inhibitor select-
ivity. Three non-catalytic residues within (HUMAN)
NAT1*4 (F125, R127 and Y129) contribute both to sub-
strate recognition and inhibitor binding by participating
in distinctive intermolecular interactions and maintain-
ing the steric conformation of the catalytic pocket. These
active site residues contribute to the definition of substrate
and inhibitor selectivity, an understanding of which is
essential for facilitating the design of second gener-
ation (HUMAN)NAT1-selective inhibitors for diagnostic,
prognostic and therapeutic purposes. In particular, since
the expression of (HUMAN)NAT1 is related to the
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development and progression of oestrogen-receptor-
positive breast cancer, these structure-based tools will fa-
cilitate the ongoing design of candidate compounds for
use in (HUMAN)NAT1-positive breast tumours.

Chemical compounds studied in this article
Aminobenzoyl glutamate (PubChem CID: 5103842), 4-
aminobenzoic acid (PubChem CID: 978), 4-aminosalicylate
(PubChem CID: 4649), 5-aminosalicylate (PubChem CID:
4075), 4-chloroaniline (PubChem CID: 7812), 4-methoxya-
niline (PubChem CID: 7732), 4-phenoxyaniline (PubChem
CID: 8764), hydralazine (PubChem CID: 3637), isoniazid
(PubChem CID: 3767), sulfamethazine (PubChem CID:
5327).

Additional files

Additional file 1: Figure S1. Selective functionality of (HUMAN)NAT1*4
and (MOUSE)NAT2*1. Two catalytic reactions are selective to (HUMAN)
NAT1*4 and (MOUSE)NAT2*1 amongst mammalian NATs: the N-acetylation
of the folate catabolite 4ABglu and the folate-dependent hydrolysis of
AcCoA. Both reactions are selectively inhibited by naphthoquinone 1
(shown in red).

Additional file 2: Figure S2. Multiple sequence alignment of (MOUSE)
Nat2*1 gene and (MOUSE)Nat2_F125S gene. Alignment of (MOUSE)Nat2*1
sequence and the forward and reverse sequences obtained after
mutagenesis was conducted by ClustalW [42]. The single mutated
nucleotide is highlighted in red. *indicates nucleotide identity among all
three genetic sequences. No additional mutations were generated during
the process of site directed mutagenesis.

Additional file 3: Table S1. Chemical NAT substrates used in this study.
lonic charges of substrates at assay pH 8.0 are shown according to their
pKaqy values [56-61].

Additional file 4: Figure S3. Visible spectra of naphthoquinone 1 in the
presence of different mammalian NAT variants. Naphthoquinone 1 (15 uM)
was incubated with 20 mM Tris—=HCl, pH 8.0, 5% DMSO (v/v) (red line) or
NAT variants (30 pM): (MOUSE)NAT2*1 (blue line); (MOUSE)NAT2_F125S
(yellow line)). Wavelength scans from 800 to 350 nm were recorded against
the appropriate blank (20 mM Tris=HC, pH 8.0, 5% DMSO (v/V)).

Additional file 5: Table S2. Comparison of eukaryotic NAT sequence
identity and similarity. Percentage identity (no shade) and similarity (grey
shade) values were calculated amongst five mammalian NATs using
BLAST2 sequences.

Additional file 6: Figure S4. Substrate binding pockets of (HUMAN)
NAT1*4 with 4ABA docked. Maximised view of the active sites of
(HUMAN)NAT1*4 with the arylamine substrate 4ABA docked. The overall
structure of (HUMAN)NAT1*4 is drawn in ribbon diagram (green)
[PDB:2PQT]. The side chain of the key residues involved in substrate
binding within the active site are drawn in stick representation and
labelled with carbon atoms in the colour of the enzyme, nitrogen in
blue, oxygen in red and sulphur in yellow. The arylamine substrate 4ABA
is labelled with carbon atoms in orange, nitrogen in blue, oxygen in red
and polar hydrogen in gray. The figures were generated using PyMOL [41].

Abbreviations

4ABA: 4-aminobenzoic acid; 4ABglu: 4-aminobenzoylglutamate;

4AS: 4-aminosalicylate; 5AS: 5-aminosalicylate; 4AV: 4-aminoveratrole;

4BA: 4-bromoaniline; 4CA: 4-chloroaniline; 41A: 4-iodoaniline;

ANS: 4-methoxyaniline; AcCoA: Acetyl coenzyme A; DMSO: Dimethyl sulphoxide;
HOA: 4-hexyloxyaniline; HDZ: Hydralazine; INH: Isoniazid; NAT: Arylamine
N-acetyltransferase; POA: 4-phenoxyaniline; SMZ: Sulfamethazine.
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