CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 November 2016
Accepted 7 November 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; copper; dithiocarbamate; hydrogen bonding; Hirshfeld surface analysis; NMR.

CCDC reference: 1515483

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

[N,N-Bis(2-hydroxyethyl)dithiocarbamato$\left.\kappa^{2} S, S^{\prime}\right]$ bis (triphenylphosphane- κP)copper(I) chloroform monosolvate: crystal structure, Hirshfeld surface analysis and solution NMR measurements

Sang Loon Tan, ${ }^{\text {a }}$ Chien Ing Yeo, ${ }^{\text {a }}$ Peter J. Heard, ${ }^{\text {b }}$ Geoffrey R. Akien, ${ }^{\text {c }}$ Nathan R. Halcovitch ${ }^{\text {c }}$ and Edward R. T. Tiekink ${ }^{\text {a* }}$

${ }^{\mathbf{a}}$ Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, beffice of the Provost, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, and ${ }^{\text {c }}$ Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK. *Correspondence e-mail: edwardt@sunway.edu.my

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{CHCl}_{3}$, features a tetrahedrally coordinated Cu^{I} atom within a $\mathrm{P}_{2} \mathrm{~S}_{2}$ donor set defined by two phosphane P atoms and by two S atoms derived from a symmetrically coordinating dithiocarbamate ligand. Both intra- and intermolecular hydroxy-$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (hy-
droxy) hydrogen bonding is observed: the former closes an eight-membered $\left\{\cdots \mathrm{HOC}_{2} \mathrm{NC}_{2} \mathrm{O}\right\}$ ring, whereas the latter connects centrosymmetrically related molecules into dimeric aggregates via eight-membered $\{\cdots \mathrm{H}-\mathrm{O} \cdots \mathrm{H}-\mathrm{O}\}_{2}$ synthons. The complex molecules are arranged to form channels along the c axis in which reside the chloroform molecules, being connected by $\mathrm{Cl} \cdots \pi$ (arene) and short S $\cdots \mathrm{Cl}[3.3488$ (9) Å] interactions. The intermolecular interactions have been investigated further by Hirshfeld surface analysis, which shows the conventional hydrogen bonding to be very localized with the main contributors to the surface, at nearly 60%, being $\mathrm{H} \cdots \mathrm{H}$ contacts. Solution NMR studies indicate that whilst the same basic molecular structure is retained in solution, the triphenylphosphane ligands are highly labile, exchanging rapidly with free $\mathrm{Ph}_{3} \mathrm{P}$ at room temperature.

1. Chemical context

The motivation to prepare bis(phosphane)copper(I) dithiocarbamates of general formula $\left(R_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CN} R^{\prime} R^{\prime \prime}\right)\left(R, R^{\prime}\right.$, $R^{\prime \prime}=$ alkyl, aryl) largely stems from the versatile biological properties exhibited by these types of compounds (Skrott \& Cvek, 2012; Biersack et al., 2012) and metal dithiocarbamates in general, as summarized in a recent review (Hogarth, 2012). At present, research continues to develop promising antimicrobial agents in light of the growing prevalence of bacterial infections and threats associated with drug-resistant bacteria (Verma \& Singh, 2015; Onwudiwe et al., 2016). In our recent efforts to develop anti-microbial agents, phosphanegold(I) dithiocarbamates, $\quad R_{3} \mathrm{PAu}\left[\mathrm{S}_{2} \mathrm{CN}(i \mathrm{Pr}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right], \quad$ were prepared and these compounds demonstrated prominent and distinctive anti-microbial activity against a broad range of Gram-positive and Gram-negative bacteria, dependent on the type of P-bound substituent employed (Sim et al., 2014). A distinct structure-activity relationship was noted in that when $R=\mathrm{Et}$, the compound was potent against a broad range of Gram-positive and Gram-negative bacteria, whereas the $R=$ Ph and Cy compounds showed specific activity against Gram-
positive bacteria. Even greater, broad-range activity is apparent in triethylphosphanegold(I) dialkyldithiocarbamates (Chen et al., 2016). The above prompted an exploration of the anti-bacterial activity of related copper(I) and silver(I) derivatives, as these metals are known to possess noteworthy potential as anti-microbial agents (Losasso et al., 2014). Thus, a series of phosphanecopper(I) and silver(I) compounds of general formula $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} M\left[\mathrm{~S}_{2} \mathrm{CN}(R) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]$ for $M=\mathrm{Cu}$ and Ag , and $R=\mathrm{Me}, i \mathrm{Pr}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, were prepared and evaluated for their anti-microbial activities (Jamaludin et al., 2016). While none of the studied compounds exhibited activity against Gram-negative bacteria, they were found to be selectively potent against Gram-positive bacteria. Following new syntheses to evaluate further the potential of this class of compounds, crystals became available for the title complex, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]$ (I), as its $1: 1$ chloroform solvate. Herein, the crystal and molecular structures of (I). CHCl_{3} are described along with an analysis of its Hirshfeld surface. Finally, some non-standard, e.g. variable temperature, NMR measurements are presented in order to gain insight into the solution structure.

2. Structural commentary

The molecular structure of the complex in (I) $\cdot \mathrm{CHCl}_{3}$ is shown in Fig. 1 and selected geometric parameters are collected in

Figure 1
The molecular structure of the complex in (I) $\cdot \mathrm{CHCl}_{3}$, showing the atomlabelling scheme and displacement ellipsoids at the 70\% probability level. The solvent CHCl_{3} molecule is omitted.

Table 1
Geometric data ($\AA,{ }^{\circ}$) for (I) in (I) $\cdot \mathrm{CHCl}_{3}$ and (I) in its $1: 1 \mathrm{Ph}_{3} \mathrm{P}$ cocrystal.

Parameter	(I) in (I) $\cdot \mathrm{CHCl}_{3}$	(I) in (I) $\cdot \mathrm{PPh}_{3}{ }^{a}$
$\mathrm{Cu}-\mathrm{S} 1$	$2.3791(6)$	$2.3948(12)$
$\mathrm{Cu}-\mathrm{S} 2$	$2.4213(5)$	$2.4288(12)$
$\mathrm{Cu}-\mathrm{P} 1$	$2.2602(6)$	$2.2849(12)$
$\mathrm{Cu}-\mathrm{P} 2$	$2.2380(5)$	$2.2594(12)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.714(2)$	$1.709(4)$
$\mathrm{C} 1-\mathrm{S} 2$	$1.717(2)$	$1.702(4)$
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 2$	$75.264(18)$	$74.76(4)$
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{P} 1$	$110.96(2)$	$109.85(5)$
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{P} 2$	$109.81(2)$	$112.35(4)$
$\mathrm{S} 2-\mathrm{Cu}-\mathrm{P} 1$	$103.74(2)$	$102.50(4)$
$\mathrm{S} 2-\mathrm{Cu}-\mathrm{P} 2$	$123.17(2)$	$122.04(5)$
$\mathrm{P} 1-\mathrm{Cu}-\mathrm{P} 2$	$123.65(2)$	$124.52(4)$

Note: (a) Jian et al. (2000).

Table 1. The copper atom is bound by two dithiocarbamate-S atoms and two phosphane-P atoms. The dithiocarbamate ligand is coordinating in a symmetric mode with $\Delta(\mathrm{Cu}-\mathrm{S})=$ $0.042 \AA$, being the difference between the $\mathrm{Cu}-\mathrm{S}_{\text {long }}$ and $\mathrm{Cu}-$ $\mathrm{S}_{\text {short }}$ bond lengths. This near equivalence in $\mathrm{Cu}-\mathrm{S}$ bond lengths is reflected in the experimental equivalence of the associated $\mathrm{C} 1-\mathrm{S} 1, \mathrm{~S} 2$ bond lengths. A small disparity, i.e. $0.02 \AA$, is noted in the $\mathrm{Cu}-\mathrm{P}$ bond lengths. The resulting $\mathrm{P}_{2} \mathrm{~S}_{2}$ donor set defines an approximate tetrahedral geometry. A measure of tetrahedral vs square-planar geometry is the value of τ_{4} (Yang et al., 2007) with values of 1.0 and 0.0° corresponding to ideal tetrahedral and square planar geometries, respectively. In the case of the complex in (I) $\cdot \mathrm{CHCl}_{3}$, the value computes to 0.80 . Distortions from the ideal tetrahedral

Figure 2
Overlay diagram of (I) $\cdot \mathrm{CHCl}_{3}$ (red image) and (I) $\cdot \mathrm{Ph}_{3} \mathrm{P}$ (blue). The molecules have been overlapped so the chelate rings are coincident. The CHCl_{3} and $\mathrm{Ph}_{3} \mathrm{P}$ molecules have been omitted.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).
$C g 1$ is the ring centroid of (C51-C56).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 O \cdots \mathrm{O} 1$	0.84	1.95	$2.710(3)$	150
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.97	$2.697(3)$	142
$\mathrm{C} 6-\mathrm{Cl} 3 \cdots \mathrm{Cg} 1$	$1.77(1)$	$3.81(1)$	$3.798(3)$	$76(1)$

Symmetry code: (i) $-x,-y+2,-z+2$.
geometry are clearly related to the acute angle subtended by the dithiocarbamate ligand and the wide angle subtended by the bulky triphenylphosphane ligands, Table 1.

The structure of (I) has also been determined in its $1: 1$ cocrystal with PPh_{3} (Jian et al., 2000), hereafter (I) $\cdot \mathrm{Ph}_{3} \mathrm{P}$, and key geometric parameters for this structure are also included in Table 1. Interestingly, within pairs of comparable bond lengths, those in (I) $\cdot \mathrm{PPh}_{3}$ are systematically longer. However, the value of $\Delta(\mathrm{Cu}-\mathrm{S})$ is slightly less at $0.034 \AA$. The value of τ_{4} is identical at 0.80 . An overlay diagram for (I) in each of (I). CHCl_{3} and (I) $\cdot \mathrm{PPh}_{3}$ is shown in Fig. 2 which confirms the very similar conformations adopted for (I) in both structures.

3. Supramolecular features

Geometric parameters describing the salient intermolecular interactions in the crystal of (I) $\cdot \mathrm{CHCl}_{3}$ are collated in Table 2. There are two types of hydroxy-O-H..O(hydroxy) hydrogen bonding in the molecular packing, one intramolecular and the other intermolecular. The former has hy-droxy-O2-H as the donor and the hydroxy-O1 as the acceptor, and closes an eight-membered $\left\{\cdots \mathrm{HOC}_{2} \mathrm{NC}_{2} \mathrm{O}\right\}$ ring. The key feature of the molecular packing is the presence of hydroxy- $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (hydroxy) hydrogen bonding which connects centrosymmetriclly-related molecules into dimeric aggregates via eight-membered $\{\cdots \mathrm{H}-\mathrm{O} \cdots \mathrm{H}-\mathrm{O}\}_{2}$ synthons, encompassing the intramolecular hydroxy-OH...O(hydroxy) hydrogen bonds, Fig. 3a. The only other identifiable directional interactions within standard distance criteria (Spek, 2009) involve the chloroform molecule. Thus, a chloroform- $\mathrm{Cl} 3 \cdots \pi$ (arene) interaction is noted, Table 2 . In addition, there is evidence for a close $\mathrm{S} 1 \cdots \mathrm{Cl} 3$ contact, i.e. involving the same chlorine atom as in the just mentioned $\mathrm{Cl} \cdots \pi$ (arene) interaction. The separation of 3.3488 (9) \AA is about $0.2 \AA$ less than the sum of their van der Waals radii (Spek, 2009). In a very recent and exhaustive review of halogen bonding (Cavallo et al., 2016), it was mentioned that sulfur is well known to function as an acceptor in $R-X \cdots \mathrm{~S}$ synthons. The interactions involving the chloroform molecule are highlighted in Fig. 3b. Globally, molecules of the copper(I) complex pack to define channels parallel to the c axis in which reside the solvent molecules, Fig. $3 c$. Given the presence of $\mathrm{Ph}_{3} \mathrm{P}$ ligands in (I). CHCl_{3}, evidence was sought for phenylembraces (Dance \& Scudder, 1995). While none was apparent for the P1-phosphane, centrosymmetrically related P2-phosphane ligands approach each other in this manner to generate
a sixfold phenyl-embrace. The closest interactions between the phosphane residues in this embrace is a pair of edge-to-facephenyl $-\mathrm{H} \cdots \pi$ (arene) interactions, i.e. C63-H63 $\cdots \pi(\mathrm{C} 51-$ C56 $)^{\mathrm{i}}=3.25 \AA$ with an angle at H 62 of 133°; symmetry operation (i): $1-x, 1-y, 1-z$.

4. Hirshfeld surface analysis

The protocols for the Hirshfeld surface analysis were as described recently (Yeo et al., 2016). In the present study, analyses were conducted on the following three species: (I) in (I). CHCl_{3}, (I) $\cdot \mathrm{CHCl}_{3}$ and CHCl_{3} alone. Hirshfeld surface

Figure 3
Molecular packing in (I) $\cdot \mathrm{CHCl}_{3}$: (a) supramolecular dimer sustained by hydroxy-O-H. . O(hydroxy) hydrogen bonding shown as orange dashed lines, (b) a view of the interactions between the complex and solvent molecules with the $\mathrm{Cl} \cdots \pi$ (arene) and $\mathrm{Cl} \cdots \mathrm{S}$ interactions shown as purple and blue dashed lines, respectively, and (c) a view of the unit-cell contents in projection down the c axis, with chloroform molecules occupying one channel highlighted in space-filling mode.

Figure 4
Comparison of the Hirshfeld surfaces of (a) molecule (I) in (I) $\cdot \mathrm{CHCl}_{3}$ and (b) CHCl_{3} in (I). CHCl_{3}, highlighting intermolecular interactions formed with the other component of the structure. The Hirshfeld surfaces were mapped over $d_{\text {norm }}$ within the range -0.572 to $1.457 \AA$.
analysis provides visualization on the existence of any intermolecular interactions within close proximity in a crystal structure, for which contact distances shorter than the sum of the respective van der Waals radii appear red while at distances equal or longer than this would be white and blue in appearance, respectively. Figs. $4 a$ and b show Hirshfeld surfaces mapped over $d_{\text {norm }}$ for (I) and CHCl_{3}, respectively. The former image exhibits intense red spots on the surface near the hydroxyethyl substituents which are correlated with the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. Apart from these dominant interactions, several other red spots attributed to the close contacts between the complex and chloroform molecules, i.e. $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{S} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{S}$ and $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$, are evident in Fig. $4 a$ and b.

The combination of d_{i} and d_{e} distances resulted in twodimensional cuttlefish- and chicken wing-like fingerprint plots for (I), (I) $\cdot \mathrm{CHCl}_{3}$ and CHCl_{3}, Fig. $5 a$, which may be decomposed into several essential close contacts as shown in Fig. $5 b-d$. In general, complex (I) and its chloroform solvate exhibit almost identical profiles except that the pincer form of (I) in its decomposed fingerprint plot delineated into $\mathrm{C} \cdots \mathrm{H} /$
$\mathrm{H} \cdots \mathrm{C}$ contacts shows two different tips at $d_{\mathrm{e}}+d_{\mathrm{i}} \sim 2.5 \AA$ and $\sim 2.7 \AA$ in contrast to the pincer form of (I) $\cdot \mathrm{CHCl}_{3}$ with a pair of symmetrical tips at $d_{\mathrm{e}}+d_{\mathrm{i}} \sim 2.7 \AA$ when the solvate is considered as a single entity. The close contact distance $\left(d_{\mathrm{e}}+d_{\mathrm{i}} \sim 2.5 \AA\right.$), which is shorter than the sum of van der Waals radii of $2.9 \AA$ (Spek, 2009), is also reflected in the lancet blade-like fingerprint plot of the solvent molecule corresponding to the $\mathrm{Cl}-\mathrm{H} \cdots \mathrm{C}(\pi)$ interaction. The $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contact, on the other hand, contributes to the half-pincer form in the decomposed fingerprint plot of (I) and develops into the full pincer form in (I) $\cdot \mathrm{CHCl}_{3}$, both with $d_{\mathrm{e}}+d_{\mathrm{i}} \sim 2.9 \AA$ that is very close to the sum of van der Waals radii $(2.95 \AA)$. As expected, $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts constitute the strongest among all interactions with $d_{\mathrm{e}}+d_{\mathrm{i}} \sim 1.9 \AA$ ($c f$. the sum of van der Waals radii of $2.75 \AA$) in the forceps form of both decomposed fingerprint plots of (I) and (I) $\cdot \mathrm{CHCl}_{3}$, Fig. $5 d$. Based on the asymmetric fingerprint patterns of the C $\cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ contacts, Fig. $5 b$ and c, and the symmetric pattern of the $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts, Fig. $5 d$, it may be concluded that two complex molecules are very closely associated, as shown in Fig. 3a, and these are flanked by two CHCl_{3} molecules, highlighted in Fig. $3 b$.

The quantification on the distribution of each of the contacts to the Hirshfeld surface reveals that $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ are the three main components for

Figure 5
Comparison between (I) in (I) $\cdot \mathrm{CHCl}_{3}$, (I) $\cdot \mathrm{CHCl}_{3}$ and CHCl_{3} of the (a) full two-dimensional fingerprint plots, and the plots delineated into (b) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C},(c) \mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ and (d) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts.

Figure 6
Percentage contributions of the different close contacts to the Hirshfeld surface of (I) in (I). CHCl_{3}, (I) $\cdot \mathrm{CHCl}_{3}$ and CHCl_{3}.
(I) in (I) $\cdot \mathrm{CHCl}_{3}$, with the corresponding contributions of $c a$ $59.4,20.2$ and 8.9%, respectively, Fig. 6. Despite this, not all of these contacts result in meaningful interactions based on the comparison between $d_{\mathrm{e}}+d_{\mathrm{i}}$ contact distances and the sum of the van der Waals radii. This sequence is followed by $\mathrm{O} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{O}$ contacts which form the fourth most dominant interactions with a contribution of approximately 4.6% to the overall Hirshfeld surface. In general, there is not much deviation of the topological distribution between (I) and (I) $\cdot \mathrm{CHCl}_{3}$ except that the contribution from $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ increases by nearly twofold upon the inclusion of the solvent molecule in (I) CHCl_{3}. As for the chloroform molecule, $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ makes the major contribution at 74.4%, followed by 8.9% from $\mathrm{H} \cdots \mathrm{H}$ and 8.4% from $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$; the remaining contributions from other minor contacts.

As mentioned previously, $\mathrm{Cl} \cdots \pi$ (arene) and $\mathrm{S} \cdots \mathrm{Cl}$ interactions are formed by the chloroform molecule. In order to gain insight into the charge distribution and rationalize these close contacts, the electrostatic potential (ESP) was mapped over the Hirshfeld surface by $a b$ initio Hartree-Fock (HF) quantum modelling with the $6-31 \mathrm{G}(\mathrm{d})$ basis set, as this represents the best possible level of theory and basis set functions in this study so as to keep the accuracy and computational cost at manageable level.

As shown in Fig. 7a, a phenyl ring of the complex molecule exhibits mild electronegative character as evidenced from the pale-red spot on the ESP map in contrast to the strong electropositive character about CHCl_{3}, being intense-blue. The electropositive character of the methine group extends slightly beyond the chloro atom approaching its equatorial ring of the negative charge region, hence establishing the weak $\mathrm{Cl} \cdots \pi($ arene $)$ interaction with $d_{\mathrm{e}}+d_{\mathrm{i}} \sim 3.3 \AA$ being slightly less than the sum of van der Waals radii of $3.45 \AA$. The $\mathrm{S} \cdots \mathrm{Cl}$ halogen bond, on the other hand, is established through the highly directional interaction between the electronegative sulfur of (I) and the σ-hole of the chloro atom of CHCl_{3} with weak electropositive character, Fig. 7b. The electropositive character of the σ-hole results from the electron deficiency in the outer lobe of the p orbital (non-bonded) when a half-filled
p orbital of a halogen participates in the formation of covalent bond (Clark et al., 2007).

5. NMR Study

FT NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer, operating at $400.13,100.61$ and 161.98 MHz , respectively, for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$. Spectra were indirectly referenced to the solvent deuterium lock shift; chemical shifts are quoted relative to TMS and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Probe temperatures were controlled by a standard variable temperature unit and are considered accurate to within $\pm 1 \mathrm{~K}$. Spectra were acquired on approximately 14 mmol solutions of (I) in each of $\mathrm{CD}_{2} \mathrm{Cl}_{2}, d_{6}$-DMSO and $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$.

The ambient temperature (298 K) ${ }^{1} \mathrm{H}$ NMR spectra of (I) display the expected signals due to the triphenylphosphine and dithiocarbamate ligands. The spectra are qualitatively identical in all three solvents, with the only significant differences being the position of the - OH signal of the dithiocarbamate ligand.

The aromatic region of the ${ }^{1} \mathrm{H}$ spectrum in d_{6}-DMSO shows two multiplets at ca $7.39 \mathrm{ppm}(6 \mathrm{H})$ and $7.28 \mathrm{ppm}(24 \mathrm{H})$ attributable to $\mathrm{Ph}-\mathrm{H}$ atoms of the triphenylphosphine ligands. A sharp singlet observed at $8.32 \mathrm{ppm}(1 \mathrm{H})$ was assigned to

Figure 7

Electrostatic potential (ESP) mapped over the Hirshfeld surfaces of the complex molecule (I) (left) and CHCl_{3} (right), showing the attraction between the electronegative (red) and electropositive (blue) sites for (a) $\mathrm{Cl} \cdots \pi$ (arene) and (b) $\mathrm{S} \cdots \mathrm{Cl}$ interactions, respectively. The ESP was mapped onto the Hirshfeld surface within the isocharge value of -0.119 to 0.164 a.u. by the $a b$ initio Hartree-Fock (HF) quantum modelling approach with the $6-31 \mathrm{G}(\mathrm{d})$ basis set.
CHCl_{3}, as seen in the X-ray crystal structure analysis. The dithiocarbamate moiety displays a single set of resonances, indicating the two $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ groups are chemically equivalent. The -OH groups display a triplet at $4.80 \mathrm{ppm}\left({ }^{3} J_{\mathrm{HH}}\right.$ $=5.3 \mathrm{~Hz}$), which disappears on the addition of $\mathrm{D}_{2} \mathrm{O}$. The methylene hydrogen atoms display a triplet at $3.96 \mathrm{ppm}\left({ }^{3} J_{\mathrm{HH}}\right.$ $=6.4 \mathrm{~Hz}$) and a pseudo quartet at 3.65 ppm , assignable to $\mathrm{NCH}_{2}-$ and $-\mathrm{CH}_{2} \mathrm{OH}$, respectively. On the addition of $\mathrm{D}_{2} \mathrm{O}$, the quartet collapses to a triplet.

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra in each of the solvents are also qualitatively identical. In d_{6}-DMSO solution, the carbon atoms of the triphenylphospine ligands give rise to four resonances at 134.6 ppm (very weak, $d,{ }^{1} J_{\mathrm{PC}} \sim 22 \mathrm{~Hz}, \mathrm{C}_{i p s o}$), $133.6 \mathrm{ppm}(d$, $\left.{ }^{2} J_{\mathrm{PC}}=12 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right), 130.1 \mathrm{ppm}\left(s, \mathrm{C}_{\text {para }}\right)$ and $128.9 \mathrm{ppm}(d$, $\left.{ }^{3} J_{\mathrm{PC}}=5.70 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right)$. The dithiocarbamate ligand shows two signals due to the methylene carbon atoms at 58.7 ppm $\left(\mathrm{NCH}_{2}-\right)$ and $56.0 \mathrm{ppm}\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$, respectively. The quaternary carbon atom of the dithiocarbamate was not observed.

The ambient temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ displays as single, broad resonance at $-1.55 \mathrm{ppm}\left(\Delta \mathrm{v}_{1 / 2}=\right.$ 280 Hz). The line broadening is attributed to rapid relaxation of Cu via the quadrupole relaxation (QR) mechanism. Quadrupole relaxation is strongly temperature dependent: the rate of relaxation increases as the temperature decreases. On cooling, the signal sharpens progressively: $\Delta \mathrm{v}_{1 / 2}$ (203 K) $\sim 35 \mathrm{~Hz}$. The sharpening presumably arises because of the effective 'decoupling' of the ${ }^{65} \mathrm{Cu}^{31} \mathrm{P}$ and ${ }^{63} \mathrm{Cu}^{31} \mathrm{P}$ scalar couplings as the rate of (Cu) relaxation increases (Grace et al., 1970). The addition of $c a 2 \mathrm{mg}$ (0.9 equivalents) of triphenylphosphine at ambient temperature, to putatively give (I) $\cdot \mathrm{PPh}_{3}$, gives a single, broad peak at $c a-3 \mathrm{ppm}$, which is between the chemical shifts of pure (I) and free $\mathrm{PPh}_{3}(c a-6$ ppm), indicating rapid exchange of the triphenylphosphine ligands.

In an attempt to resolve the $\mathrm{Cu}-\mathrm{P} J$ couplings, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were recorded in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$ solution at elevated temperatures (to reduce the rate of QR). However, no significant changes were observed in the line widths on elevating the temperature to 328 K , and any $\mathrm{Cu}-\mathrm{P}$ coupling, if not lost through reversible ligand dissociation, remained unresolved. There was no evidence of decomposition at higher temperatures in this solvent.

There are two key conclusions from the foregoing. Firstly, the experiments with $\mathrm{D}_{2} \mathrm{O}$ proving exchange of the hydroxy- H atom indicates that this atom is labile, suggesting functionalization at this group should, in principle, be feasible. Secondly, the presence of additional $\mathrm{Ph}_{3} \mathrm{P}$ in solution does not result in displacement of the dithiocarbamate ligand nor force a monodentate mode of coordination proving the stability of complex (I) in each of (I) $\cdot \mathrm{CHCl}_{3}$ and (I) $\cdot \mathrm{PPh}_{3}$, and in solution.

6. Database survey

The structural chemistry of $\left(R_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CN} R^{\prime} R^{\prime \prime}\right)$ compounds was summarized very recently (Jamaludin et al., 2016). In all, there are eight examples now available in the literature,
namely $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left[\mathrm{S}_{2} \mathrm{CN}(\mathrm{Me})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\right]\right\} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ Jamaludin et al., 2016), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right\}\right] \cdot \mathrm{PPh}_{3}$ (Jian et al., 2000), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}(n-\mathrm{Pr})_{2}\right\}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Xu}$ et al., 2001), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~S}\right\}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Gupta et al., 2013), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NPh}\right\}\right]$ (Gupta et al., 2013), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Kumar et al., 2009) and $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{CH}_{2}\right.\right.\right.$ py-4) $\left.\}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Rajput et al., 2012). Interestingly, all but one structure co-crystallizes with another molecule, solvent or otherwise, perhaps indicating inefficient molecular packing for these molecules. The $\mathrm{P}_{2} \mathrm{~S}_{2}$ donor sets all eight compounds approximate tetrahedral angles with the range of τ_{4} values being a low 0.78 in $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left[\mathrm{S}_{2} \mathrm{CN}(\mathrm{Me})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\right]\right\} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Jamaludin et al., 2016) to a high of 0.85 in $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~S}\right\}\right]$-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Gupta et al., 2013), the narrow range emphasizing the similarity in the molecular structures/geometries.

7. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification, and all reactions were carried out under ambient conditions. The melting point was determined on a Biobase automatic melting point apparatus MP450. The IR spectrum was obtained on a Perkin Elmer Spectrum 400 FT Mid-IR/FarIR spectrophotometer from 4000 to $400 \mathrm{~cm}^{-1}$; abbreviations: $b r$, broad; m, medium; s, strong.

Preparation of (I) $\cdot \mathrm{CHCl}_{3}$: triphenylphosphine (Alfa Aesar, $2 \mathrm{mmol}, 0.524 \mathrm{~g}$) in acetonitrile (Merck, 10 ml) was added to copper(I) chloride (Sigma Aldrich, $1 \mathrm{mmol}, 0.099 \mathrm{~g}$) in acetonitrile $(10 \mathrm{ml})$, followed by addition of a dispersion of potassium bis(2-hydroxyethyl)dithiocarbamate (1 mmol, 0.219 g) in acetonitrile (15 ml), prepared from the standard procedures (Jamaludin et al., 2016). The resulting mixture was stirred for 2 h at room temperature. Chloroform (Merck, 35 ml) was added to the reaction mixture and it was left for slow evaporation at room temperature. Yellow blocks of (I). CHCl_{3} were obtained after one day. Yield: $0.699 \mathrm{~g}(91 \%)$. M.p. $423.8-424.5$ K. IR $\left(\mathrm{cm}^{-1}\right): 3268(b r)(\mathrm{OH}), 1433(s)(\mathrm{C}-$ N), 1168 (m), 990 (s) (C-S).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA)$ and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$. Refinement of the O-bound H atoms proved unstable so these atoms were fixed in the model in the positions revealed by a difference Fourier map, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The maximum and minimum residual electron density peaks of 1.97 and $1.93 \mathrm{e}_{\AA^{-3}}$, respectively, were located 0.78 and $0.62 \AA$ from the Cl 1 atom. While this feature of the difference map might indicate disorder, additional peaks that might be anticipated for the other atoms in the disordered component of chloroform molecule were not evident. This, plus the observation that the anisotropic displacement parameters of the atoms comprising the
chloroform molecule exhibited no unusual features, suggest the residual electron densities have limited chemical significance. Finally, owing to poor agreement, four reflections, i.e. (326), (1 $\overline{1} 5),(666)$ and (142), were omitted from the final cycles of refinement.

Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal dithiocarbamates.

References

Biersack, B., Ahmad, A., Sarkar, F. H. \& Schobert, R. (2012). Curr. Med. Chem. 19, 3949-3956.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. \& Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.
Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. \& Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68-80.

Clark, T., Hennemann, M., Murray, J. S. \& Politzer, P. (2007). J. Mol. Model. 13, 291-296.
Dance, I. \& Scudder, M. (1995). J. Chem. Soc. Chem. Commun. pp. 1039-1040.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.
Grace, M., Beall, H. \& Bushweller, C. H. (1970). J. Chem. Soc. D, p. 701.

Gupta, A. N., Singh, V., Kumar, V., Rajput, A., Singh, L., Drew, M. G. B. \& Singh, N. (2013). Inorg. Chim. Acta, 408, 145-151.

Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202-1215.
Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.
Jian, F.-F., Bei, F.-L., Lu, L.-D., Yang, X.-J., Wang, X., Razak, I. A., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2000). Acta Cryst. C56, e288-e289.
Kumar, A., Mayer-Figge, H., Sheldrick, W. S. \& Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720-2725.

Losasso, C., Belluco, S., Cibin, V., Zavagnin, P., Mičetić, I., Gallocchio, F., Zanella, M., Bregoli, L., Biancotto, G. \& Ricci, A. (2014). Front. Microbiol. 5, 1-9.
Onwudiwe, D. C., Ekennia, A. C. \& Hosten, E. (2016). J. Coord. Chem. 69, 2454-2468.
Rajput, G., Singh, V., Singh, S. K., Prasad, L. B., Drew, M. G. B. \& Singh, N. (2012). Eur. J. Inorg. Chem. pp. 3885-3891.
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Table 3
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot-$ M_{r}
Crystal system, space group	887.71
Temperature (K)	Triclinic, $P \overline{1}$
$a, b, c(\AA)$	100
	$10.7271(2), 13.5412(2)$,
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$15.9361(3)$
$V\left(\AA^{3}\right)$	$67.747(2), 87.126(2), 72.826(2)$
Z	$2041.92(7)$
Radiation type	2
$\mu\left(\mathrm{~mm}^{-1}\right)$	Mo K α
Crystal size (mm)	0.95
	$0.44 \times 0.24 \times 0.19$
Data collection	
Diffractometer	Rigaku SuperNova, Dual Mo at
Absorption correction	zero, AtlasS2
	Multi-scan $(C r y s A l i s ~ P R O ;$ Rigaku
$T_{\text {min }}, T_{\text {max }}$	Oxford Diffraction, 2015)
No. of measured, independent and	$0.928,1.000$
\quad observed $[I>2 \sigma(I)]$ reflections	$78295,11363,10195$
$R_{\text {int }}$	
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.029
	0.708
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.045,0.117,1.03$
No. of reflections	11363
No. of parameters	478
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$1.97,-1.93$

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sim, J. H., Jamaludin, N. S., Khoo, C. H., Cheah, Y. K., Halim, S. N. B. A., Seng, H. L. \& Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.
Skrott, Z. \& Cvek, B. (2012). Mini Rev. Med. Chem. 12, 1184-1192. Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Verma, S. K. \& Singh, V. K. (2015). RSC Adv. 5, 53036-53046.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xu, L. Z., Lin, J. H., Zhang, S. S., Jiao, K. \& Jian, F. F. (2001). Pol. J. Chem. 75, 755-757.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

Yeo, C. I., Tan, S. L. \& Tiekink, E. R. T. (2016). Acta Cryst. E72, 14461452.

supporting information

Acta Cryst. (2016). E72, 1799-1805 [https://doi.org/10.1107/S2056989016017837]
[N, N-Bis(2-hydroxyethyl)dithiocarbamato- $\kappa^{2} S, S^{\prime}$]bis(triphenylphosphane$\kappa P)$ copper(I) chloroform monosolvate: crystal structure, Hirshfeld surface analysis and solution NMR measurements

Sang Loon Tan, Chien Ing Yeo, Peter J. Heard, Geoffrey R. Akien, Nathan R. Halcovitch and Edward R. T. Tiekink

Computing details

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
[N, N-Bis(2-hydroxyethyl)dithiocarbamato- $\left.\kappa^{2} S, S^{\prime}\right]$ bis(triphenylphosphane- κP)copper(I) chloroform monosolvate

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{CHCl}_{3}$
$M_{r}=887.71$
Triclinic, $P \overline{1}$
$a=10.7271$ (2) \AA
$b=13.5412$ (2) \AA
$c=15.9361(3) \AA$
$\alpha=67.747(2)^{\circ}$
$\beta=87.126(2)^{\circ}$
$\gamma=72.826(2)^{\circ}$
$V=2041.92(7) \AA^{3}$

Data collection

Rigaku SuperNova, Dual Mo at zero, AtlasS2 diffractometer
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 5.2303 pixels mm^{-1}

ω scans

Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)

$$
\begin{aligned}
& Z=2 \\
& F(000)=916 \\
& D_{\mathrm{x}}=1.444 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 38605 \text { reflections } \\
& \theta=3.1-30.1^{\circ} \\
& \mu=0.95 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.44 \times 0.24 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

$$
T_{\min }=0.928, T_{\max }=1.000
$$

$$
78295 \text { measured reflections }
$$

$$
11363 \text { independent reflections }
$$

$$
10195 \text { reflections with } I>2 \sigma(I)
$$

$$
R_{\text {int }}=0.029
$$

$$
\theta_{\max }=30.2^{\circ}, \theta_{\min }=2.4^{\circ}
$$

$$
h=-14 \rightarrow 14
$$

$$
k=-19 \rightarrow 18
$$

$$
l=-22 \rightarrow 21
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.117$
$S=1.03$
11363 reflections
478 parameters
0 restraints

Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0542 P)^{2}+3.7972 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=1.97 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.93$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu	0.36192 (2)	0.77121 (2)	0.71076 (2)	0.01300 (7)
S1	0.19989 (5)	0.72501 (4)	0.81318 (3)	0.01687 (10)
S2	0.18227 (5)	0.94266 (4)	0.66887 (3)	0.01434 (10)
P1	0.51698 (5)	0.80568 (4)	0.77705 (3)	0.01311 (10)
P2	0.40667 (5)	0.66266 (4)	0.62988 (3)	0.01279 (10)
O1	-0.0657 (2)	1.09492 (18)	0.86819 (14)	0.0388 (5)
H1O	-0.0221	1.1248	0.8899	0.058*
O2	-0.0552 (2)	0.89051 (18)	0.99446 (14)	0.0379 (5)
H2O	-0.0317	0.9473	0.9646	0.057*
N1	0.00449 (17)	0.90924 (16)	0.79337 (12)	0.0179 (3)
C1	0.11675 (19)	0.86434 (16)	0.76152 (13)	0.0138 (3)
C2	-0.0662 (2)	1.02862 (19)	0.74859 (15)	0.0222 (4)
H2A	-0.1600	1.0404	0.7600	0.027*
H2B	-0.0588	1.0517	0.6822	0.027*
C3	-0.0154 (3)	1.1018 (2)	0.78121 (17)	0.0274 (5)
H3A	0.0814	1.0761	0.7870	0.033*
H3B	-0.0444	1.1802	0.7370	0.033*
C4	-0.0538 (2)	0.8356 (2)	0.86728 (15)	0.0244 (5)
H4A	-0.0415	0.7655	0.8574	0.029*
H4B	-0.1491	0.8725	0.8635	0.029*
C5	0.0018 (2)	0.8061 (2)	0.96199 (16)	0.0276 (5)
H5A	-0.0136	0.7356	1.0035	0.033*
H5B	0.0974	0.7937	0.9613	0.033*
C11	0.4522 (2)	0.90455 (17)	0.83239 (13)	0.0155 (4)
C12	0.3587 (2)	0.88068 (19)	0.89530 (15)	0.0193 (4)
H12	0.3316	0.8164	0.9064	0.023*
C13	0.3054 (2)	0.9506 (2)	0.94159 (15)	0.0223 (4)
H13	0.2421	0.9338	0.9842	0.027*
C14	0.3446 (2)	1.0450 (2)	0.92569 (16)	0.0239 (4)
H14	0.3080	1.0928	0.9572	0.029*

C15	0.4374 (3)	1.0687 (2)	0.86363 (16)	0.0264 (5)
H15	0.4645	1.1330	0.8528	0.032*
C16	0.4912 (2)	0.99887 (18)	0.81703 (15)	0.0214 (4)
H16	0.5547	1.0158	0.7746	0.026*
C21	0.6312 (2)	0.86383 (16)	0.69950 (13)	0.0140 (3)
C22	0.5816 (2)	0.96097 (17)	0.62185 (14)	0.0186 (4)
H22	0.4900	0.9973	0.6120	0.022*
C23	0.6653 (2)	1.00436 (18)	0.55932 (15)	0.0221 (4)
H23	0.6308	1.0706	0.5072	0.027*
C24	0.7997 (2)	0.95133 (19)	0.57246 (15)	0.0212 (4)
H24	0.8568	0.9818	0.5298	0.025*
C25	0.8497 (2)	0.85403 (19)	0.64806 (14)	0.0196 (4)
H25	0.9411	0.8171	0.6568	0.024*
C26	0.7660 (2)	0.81042 (18)	0.71115 (14)	0.0169 (4)
H26	0.8009	0.7436	0.7627	0.020*
C31	0.6275 (2)	0.68849 (17)	0.86749 (13)	0.0162 (4)
C32	0.6884 (2)	0.70275 (19)	0.93539 (15)	0.0218 (4)
H32	0.6666	0.7743	0.9389	0.026*
C33	0.7811 (2)	0.6126 (2)	0.99804 (16)	0.0268 (5)
H33	0.8220	0.6228	1.0444	0.032*
C34	0.8138 (3)	0.5084 (2)	0.99318 (17)	0.0300 (5)
H34	0.8781	0.4474	1.0356	0.036*
C35	0.7531 (3)	0.4929 (2)	0.9266 (2)	0.0347 (6)
H35	0.7752	0.4211	0.9236	0.042*
C36	0.6593 (2)	0.58267 (19)	0.86396 (18)	0.0267 (5)
H36	0.6170	0.5716	0.8187	0.032*
C41	0.48854 (19)	0.51623 (16)	0.69995 (14)	0.0156 (4)
C42	0.5952 (2)	0.45035 (19)	0.67222 (16)	0.0220 (4)
H42	0.6255	0.4805	0.6136	0.026*
C43	0.6577 (2)	0.3406 (2)	0.73001 (18)	0.0272 (5)
H43	0.7300	0.2961	0.7105	0.033*
C44	0.6151 (2)	0.29608 (19)	0.81547 (18)	0.0273 (5)
H44	0.6593	0.2219	0.8552	0.033*
C45	0.5079 (3)	0.3600 (2)	0.84291 (17)	0.0273 (5)
H45	0.4773	0.3288	0.9012	0.033*
C46	0.4446 (2)	0.46945 (18)	0.78592 (16)	0.0223 (4)
H46	0.3711	0.5127	0.8055	0.027*
C51	0.26885 (19)	0.65508 (16)	0.57220 (13)	0.0135 (3)
C52	0.2709 (2)	0.55962 (17)	0.55691 (14)	0.0169 (4)
H52	0.3427	0.4937	0.5812	0.020*
C53	0.1684 (2)	0.56083 (18)	0.50627 (15)	0.0196 (4)
H53	0.1702	0.4958	0.4960	0.024*
C54	0.0630 (2)	0.65717 (19)	0.47064 (15)	0.0207 (4)
H54	-0.0067	0.6581	0.4355	0.025*
C55	0.0595 (2)	0.75232 (18)	0.48645 (15)	0.0192 (4)
H55	-0.0125	0.8181	0.4622	0.023*
C56	0.16193 (19)	0.75072 (17)	0.53791 (14)	0.0158 (4)
H56	0.1588	0.8151	0.5496	0.019*

C61	$0.51483(19)$
C62	$0.4884(2)$
H62	0.4136
C63	$0.5711(2)$
H63	0.5526
C64	$0.6801(2)$
H64	0.7356
C65	$0.7076(2)$
H65	0.7827
C66	$0.6258(2)$
H66	0.6454
C6	$0.0552(3)$
H6	0.0901
C11	$0.14649(11)$
C12	$-0.10822(9)$
C13	$0.07466(6)$

$0.69669(16)$
$0.70661(17)$
0.6900
$0.74078(18)$
0.7468
$0.7659(2)$
0.7901
$0.7553(2)$
0.7716
$0.7211(2)$
0.7141
$0.4509(2)$
0.4682
$0.31507(7)$
$0.46142(12)$
$0.55046(5)$

$0.53792(14)$	$0.0150(4)$
$0.44993(14)$	$0.0179(4)$
0.4363	0.021^{*}
$0.38150(16)$	$0.0225(4)$
0.3218	0.027^{*}
$0.40050(18)$	$0.0266(5)$
0.3538	0.032^{*}
$0.4883(2)$	$0.0295(5)$
0.5018	0.035^{*}
$0.55654(17)$	$0.0237(5)$
0.6164	0.028^{*}
$0.7262(2)$	$0.0354(6)$
0.6646	0.042^{*}
$0.79474(7)$	$0.0593(3)$
$0.71310(9)$	$0.0740(4)$
$0.76719(4)$	$0.03169(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	$0.01265(12)$	$0.01232(11)$	$0.01406(12)$	$-0.00179(8)$	$0.00184(8)$	$-0.00664(9)$
S 1	$0.0200(2)$	$0.0124(2)$	$0.0169(2)$	$-0.00543(18)$	$0.00520(18)$	$-0.00421(17)$
S 2	$0.0153(2)$	$0.0118(2)$	$0.0124(2)$	$-0.00113(16)$	$0.00266(16)$	$-0.00311(16)$
P 1	$0.0136(2)$	$0.0124(2)$	$0.0123(2)$	$-0.00270(17)$	$0.00066(17)$	$-0.00431(17)$
P 2	$0.0117(2)$	$0.0117(2)$	$0.0150(2)$	$-0.00122(17)$	$0.00111(17)$	$-0.00678(18)$
O 1	$0.0411(11)$	$0.0450(12)$	$0.0303(10)$	$0.0017(9)$	$0.0000(8)$	$-0.0252(9)$
O 2	$0.0432(11)$	$0.0421(11)$	$0.0300(10)$	$-0.0052(9)$	$0.0066(8)$	$-0.0216(9)$
N 1	$0.0131(8)$	$0.0227(9)$	$0.0159(8)$	$-0.0025(7)$	$0.0033(6)$	$-0.0078(7)$
C 1	$0.0134(8)$	$0.0163(9)$	$0.0125(8)$	$-0.0043(7)$	$0.0015(7)$	$-0.0065(7)$
C 2	$0.0161(9)$	$0.0255(11)$	$0.0198(10)$	$0.0043(8)$	$-0.0011(8)$	$-0.0107(8)$
C 3	$0.0300(12)$	$0.0218(11)$	$0.0257(11)$	$0.0060(9)$	$-0.0041(9)$	$-0.0136(9)$
C 4	$0.0171(10)$	$0.0363(13)$	$0.0199(10)$	$-0.0105(9)$	$0.0076(8)$	$-0.0097(9)$
C 5	$0.0244(11)$	$0.0366(13)$	$0.0182(10)$	$-0.0062(10)$	$0.0046(8)$	$-0.0090(9)$
C 11	$0.0166(9)$	$0.0161(9)$	$0.0135(9)$	$-0.0027(7)$	$-0.0002(7)$	$-0.0069(7)$
C 12	$0.0188(10)$	$0.0219(10)$	$0.0200(10)$	$-0.0076(8)$	$0.0039(8)$	$-0.0103(8)$
C 13	$0.0220(10)$	$0.0269(11)$	$0.0194(10)$	$-0.0055(9)$	$0.0044(8)$	$-0.0119(9)$
C 14	$0.0300(12)$	$0.0234(11)$	$0.0194(10)$	$-0.0039(9)$	$0.0027(9)$	$-0.0126(9)$
C 15	$0.0400(13)$	$0.0209(10)$	$0.0233(11)$	$-0.0130(10)$	$0.0068(10)$	$-0.0117(9)$
C 16	$0.0284(11)$	$0.0194(10)$	$0.0190(10)$	$-0.0094(8)$	$0.0055(8)$	$-0.0090(8)$
C 21	$0.0178(9)$	$0.0127(8)$	$0.0120(8)$	$-0.0049(7)$	$0.0004(7)$	$-0.0050(7)$
C 22	$0.0230(10)$	$0.0134(9)$	$0.0152(9)$	$-0.0008(7)$	$0.0012(8)$	$-0.0046(7)$
C 23	$0.0335(12)$	$0.0135(9)$	$0.0153(9)$	$-0.0054(8)$	$0.0040(8)$	$-0.0025(7)$
C24	$0.0311(11)$	$0.0200(10)$	$0.0169(10)$	$-0.0132(9)$	$0.0084(8)$	$-0.0083(8)$
C25	$0.0191(10)$	$0.0245(10)$	$0.0171(9)$	$-0.0087(8)$	$0.0029(8)$	$-0.0085(8)$
C26	$0.0167(9)$	$0.0187(9)$	$0.0137(9)$	$-0.0050(7)$	$0.0002(7)$	$-0.0047(7)$
C31	$0.0153(9)$	$0.0159(9)$	$0.0132(9)$	$-0.0052(7)$	$0.0003(7)$	$-0.0006(7)$
C32	$0.0241(11)$	$0.0226(10)$	$0.0153(9)$	$-0.0067(8)$	$-0.0009(8)$	$-0.0035(8)$
C33	$0.0274(12)$	$0.0311(12)$	$0.0164(10)$	$-0.0105(10)$	$-0.0048(8)$	$-0.0009(9)$

C34	$0.0268(12)$	$0.0241(11)$	$0.0247(12)$	$-0.0076(9)$	$-0.0063(9)$	$0.0073(9)$
C35	$0.0373(14)$	$0.0151(10)$	$0.0410(15)$	$-0.0023(10)$	$-0.0130(12)$	$-0.0012(10)$
C36	$0.0292(12)$	$0.0164(10)$	$0.0299(12)$	$-0.0050(9)$	$-0.0087(9)$	$-0.0038(9)$
C41	$0.0146(9)$	$0.0137(8)$	$0.0183(9)$	$-0.0020(7)$	$-0.0018(7)$	$-0.0072(7)$
C42	$0.0199(10)$	$0.0190(10)$	$0.0232(11)$	$0.0006(8)$	$0.0000(8)$	$-0.0085(8)$
C43	$0.0213(11)$	$0.0186(10)$	$0.0339(13)$	$0.0049(8)$	$-0.0025(9)$	$-0.0093(9)$
C44	$0.0259(11)$	$0.0158(10)$	$0.0322(12)$	$-0.0018(8)$	$-0.0085(9)$	$-0.0027(9)$
C45	$0.0308(12)$	$0.0188(10)$	$0.0263(12)$	$-0.0079(9)$	$0.0009(9)$	$-0.0017(9)$
C46	$0.0218(10)$	$0.0170(10)$	$0.0249(11)$	$-0.0042(8)$	$0.0041(8)$	$-0.0062(8)$
C51	$0.0126(8)$	$0.0146(8)$	$0.0125(8)$	$-0.0039(7)$	$0.0032(6)$	$-0.0049(7)$
C52	$0.0156(9)$	$0.0154(9)$	$0.0198(9)$	$-0.0023(7)$	$0.0013(7)$	$-0.0083(7)$
C53	$0.0198(10)$	$0.0201(10)$	$0.0227(10)$	$-0.0072(8)$	$0.0031(8)$	$-0.0116(8)$
C54	$0.0156(9)$	$0.0260(11)$	$0.0214(10)$	$-0.0068(8)$	$0.0002(8)$	$-0.0096(8)$
C55	$0.0138(9)$	$0.0177(9)$	$0.0219(10)$	$-0.0013(7)$	$-0.0002(7)$	$-0.0054(8)$
C56	$0.0143(9)$	$0.0137(9)$	$0.0186(9)$	$-0.0030(7)$	$0.0035(7)$	$-0.0064(7)$
C61	$0.0131(8)$	$0.0117(8)$	$0.0209(9)$	$-0.0018(7)$	$0.0043(7)$	$-0.0087(7)$
C62	$0.0174(9)$	$0.0152(9)$	$0.0195(10)$	$-0.0038(7)$	$0.0037(7)$	$-0.0060(7)$
C63	$0.0245(11)$	$0.0178(10)$	$0.0205(10)$	$-0.0044(8)$	$0.0066(8)$	$-0.0043(8)$
C64	$0.0239(11)$	$0.0217(11)$	$0.0373(13)$	$-0.0098(9)$	$0.0165(10)$	$-0.0142(10)$
C65	$0.0198(11)$	$0.0349(13)$	$0.0484(15)$	$-0.0146(10)$	$0.0147(10)$	$-0.0284(12)$
C66	$0.0177(10)$	$0.0309(12)$	$0.0332(12)$	$-0.0088(9)$	$0.0075(9)$	$-0.0231(10)$
C6	$0.0351(14)$	$0.0380(14)$	$0.0356(14)$	$-0.0135(12)$	$-0.0031(11)$	$-0.0143(12)$
C11	$0.0739(6)$	$0.0376(4)$	$0.0688(6)$	$-0.0043(4)$	$-0.0159(5)$	$-0.0297(4)$
C12	$0.0320(4)$	$0.1170(9)$	$0.1089(9)$	$-0.0168(5)$	$-0.0041(5)$	$-0.0847(8)$
C13	$0.0340(3)$	$0.0258(3)$	$0.0323(3)$	$-0.0095(2)$	$-0.0041(2)$	$-0.0067(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{P} 2$	$2.2380(5)$	$\mathrm{C} 26-\mathrm{H} 26$	0.9500
$\mathrm{Cu}-\mathrm{P} 1$	$2.2602(6)$	$\mathrm{C} 31-\mathrm{C} 32$	$1.392(3)$
$\mathrm{Cu}-\mathrm{S} 1$	$2.3791(6)$	$\mathrm{C} 31-\mathrm{C} 36$	$1.394(3)$
$\mathrm{Cu}-\mathrm{S} 2$	$2.4213(5)$	$\mathrm{C} 32-\mathrm{C} 33$	$1.391(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.714(2)$	$\mathrm{C} 32-\mathrm{H} 32$	0.9500
$\mathrm{~S} 2-\mathrm{C} 1$	$1.717(2)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.381(4)$
$\mathrm{P} 1-\mathrm{C} 31$	$1.824(2)$	$\mathrm{C} 33-\mathrm{H} 33$	0.9500
$\mathrm{P} 1-\mathrm{C} 21$	$1.825(2)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.383(4)$
$\mathrm{P} 1-\mathrm{C} 11$	$1.827(2)$	$\mathrm{C} 34-\mathrm{H} 34$	0.9500
$\mathrm{P} 2-\mathrm{C} 51$	$1.827(2)$	$\mathrm{C} 35-\mathrm{C} 36$	$1.395(3)$
$\mathrm{P} 2-\mathrm{C} 61$	$1.828(2)$	$\mathrm{C} 35-\mathrm{H} 35$	0.9500
$\mathrm{P} 2-\mathrm{C} 41$	$1.828(2)$	$\mathrm{C} 36-\mathrm{H} 36$	0.9500
$\mathrm{O} 1-\mathrm{C} 3$	$1.442(3)$	$\mathrm{C} 41-\mathrm{C} 42$	$1.395(3)$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.8576	$\mathrm{C} 41-\mathrm{C} 46$	$1.398(3)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.397(3)$	$\mathrm{C} 42-\mathrm{C} 43$	$1.394(3)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	0.8400	$\mathrm{C} 42-\mathrm{H} 42$	0.9500
$\mathrm{~N} 1-\mathrm{C} 1$	$1.348(3)$	$\mathrm{C} 43-\mathrm{C} 44$	$1.380(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.468(3)$	$\mathrm{C} 43-\mathrm{H} 43$	0.9500
$\mathrm{~N} 1-\mathrm{C} 4$	$1.476(3)$	$\mathrm{C} 44-\mathrm{C} 45$	$1.382(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.513(3)$	$\mathrm{C} 44-\mathrm{H} 44$	0.9500

$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
C2-H2B	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
C3-H3B	0.9900
C4-C5	1.512 (3)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
C4-H4B	0.9900
C5-H5A	0.9900
C5-H5B	0.9900
C11-C16	1.391 (3)
C11-C12	1.400 (3)
C12-C13	1.391 (3)
C12-H12	0.9500
C13-C14	1.391 (3)
C13-H13	0.9500
C14-C15	1.386 (3)
C14-H14	0.9500
C15-C16	1.395 (3)
C15-H15	0.9500
C16-H16	0.9500
C21-C26	1.399 (3)
C21-C22	1.402 (3)
C22-C23	1.386 (3)
$\mathrm{C} 22-\mathrm{H} 22$	0.9500
C23-C24	1.394 (3)
C23-H23	0.9500
C24-C25	1.386 (3)
C24-H24	0.9500
C25-C26	1.392 (3)
C25-H25	0.9500
$\mathrm{P} 2-\mathrm{Cu}-\mathrm{P} 1$	123.65 (2)
$\mathrm{P} 2-\mathrm{Cu}-\mathrm{S} 1$	109.81 (2)
$\mathrm{P} 1-\mathrm{Cu}-\mathrm{S} 1$	110.96 (2)
$\mathrm{P} 2-\mathrm{Cu}-\mathrm{S} 2$	123.17 (2)
$\mathrm{P} 1-\mathrm{Cu}-\mathrm{S} 2$	103.74 (2)
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 2$	75.264 (18)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu}$	84.12 (7)
C1-S2-Cu	82.75 (7)
C31-P1-C21	101.95 (9)
C31-P1-C11	101.78 (9)
C21-P1-C11	104.44 (9)
C31-P1-Cu	118.06 (7)
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{Cu}$	114.57 (7)
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{Cu}$	114.16 (7)
C51-P2-C61	102.10 (9)
C51-P2-C41	103.13 (9)
C61-P2-C41	103.77 (9)

C45-C46	1.390 (3)
C45-H45	0.9500
C46-H46	0.9500
C51-C56	1.393 (3)
C51-C52	1.397 (3)
C52-C53	1.389 (3)
C52-H52	0.9500
C53-C54	1.391 (3)
C53-H53	0.9500
C54-C55	1.393 (3)
C54-H54	0.9500
C55-C56	1.394 (3)
C55-H55	0.9500
C56-H56	0.9500
C61-C62	1.393 (3)
C61-C66	1.398 (3)
C62-C63	1.397 (3)
C62-H62	0.9500
C63-C64	1.387 (3)
C63-H63	0.9500
C64-C65	1.390 (4)
C64-H64	0.9500
C65-C66	1.389 (3)
C65-H65	0.9500
C66-H66	0.9500
C6-Cl2	1.733 (3)
C6- Cl 1	1.748 (3)
C6- Cl 3	1.771 (3)
C6-H6	1.0000
C24-C25-H25	120.0
C26-C25-H25	120.0
C25-C26-C21	120.80 (19)
C25-C26-H26	119.6
C21-C26-H26	119.6
C32-C31-C36	119.2 (2)
C32-C31-P1	122.25 (16)
C36-C31-P1	118.39 (16)
C33-C32-C31	120.2 (2)
C33-C32-H32	119.9
C31-C32-H32	119.9
C34-C33-C32	120.3 (2)
C34-C33-H33	119.9
C32-C33-H33	119.9
C33-C34-C35	120.0 (2)
C33-C34-H34	120.0
C35-C34-H34	120.0

C51-P2-Cu	117.50 (6)
C61-P2- Cu	116.28 (7)
$\mathrm{C} 41-\mathrm{P} 2-\mathrm{Cu}$	112.27 (7)
C3-O1-H1O	105.7
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	109.4
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	120.12 (18)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	119.48 (18)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	120.09 (18)
N1-C1-S1	120.50 (15)
N1-C1-S2	122.12 (15)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	117.38 (11)
N1-C2-C3	113.01 (18)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.8
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	108.3 (2)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0
O1-C3-H3B	110.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.0
H3A-C3-H3B	108.4
N1-C4-C5	114.9 (2)
N1-C4-H4A	108.5
C5-C4-H4A	108.5
N1-C4-H4B	108.5
C5-C4-H4B	108.5
H4A-C4-H4B	107.5
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	111.6 (2)
O2-C5-H5A	109.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.3
O2-C5-H5B	109.3
C4-C5-H5B	109.3
H5A-C5-H5B	108.0
C16-C11-C12	119.11 (19)
C16-C11-P1	124.41 (16)
C12-C11-P1	116.47 (16)
C13-C12-C11	120.4 (2)
C13-C12-H12	119.8
C11-C12-H12	119.8
C14-C13-C12	120.2 (2)
C14-C13-H13	119.9
C12-C13-H13	119.9
C15-C14-C13	119.6 (2)
C15-C14-H14	120.2
C13-C14-H14	120.2
C14-C15-C16	120.4 (2)

117.50 (6)
116.28 (7)
112.27 (7)
109.
120.12 (18)
119.48 (18)
120.09 (18)
120.50 (15)
122.12 (15)
117.38 (11)
13.01 (18)
109.0
109.0
109.0
108.3 (2)
110.0
110.0
110.0
10.0
108.4
4.9 (2)
108.5
108.5
108.5
108.5
107.5
111.6 (2)
109.3
109.3
109.3
10.3
119.11 (19)
124.41 (16)
116.47 (16)
120.4 (2)
119.8
119.8
120.2 (2)
119.9
119.9
119.6 (2)
120.2
120.4 (2)

C34-C35-C36	120.0 (2)
C34-C35-H35	120.0
C36-C35-H35	120.0
C31-C36-C35	120.2 (2)
C31-C36-H36	119.9
C35-C36-H36	119.9
C42-C41-C46	118.73 (19)
C42-C41-P2	122.71 (17)
C46-C41-P2	118.53 (16)
C41-C42-C43	120.4 (2)
C41-C42-H42	119.8
C43-C42-H42	119.8
C44-C43-C42	120.3 (2)
C44-C43-H43	119.8
C42-C43-H43	119.8
C43-C44-C45	119.7 (2)
C43-C44-H44	120.1
C45-C44-H44	120.1
C44-C45-C46	120.5 (2)
C44-C45-H45	119.7
C46-C45-H45	119.7
C45-C46-C41	120.3 (2)
C45-C46-H46	119.8
C41-C46-H46	119.8
C56-C51-C52	119.51 (18)
C56-C51-P2	118.08 (15)
C52-C51-P2	122.29 (15)
C53-C52-C51	120.22 (19)
C53-C52-H52	119.9
C51-C52-H52	119.9
C52-C53-C54	120.1 (2)
C52-C53-H53	119.9
C54-C53-H53	119.9
C53-C54-C55	120.0 (2)
C53-C54-H54	120.0
C55-C54-H54	120.0
C54-C55-C56	119.85 (19)
C54-C55-H55	120.1
C56-C55-H55	120.1
C51-C56-C55	120.29 (19)
C51-C56-H56	119.9
C55-C56-H56	119.9
C62-C61-C66	118.8 (2)
C62-C61-P2	123.81 (16)
C66-C61-P2	117.29 (16)
C61-C62-C63	120.5 (2)
C61-C62-H62	119.7
C63-C62-H62	119.7

C14-C15-H15	119.8
C16-C15-H15	119.8
C11-C16-C15	120.3 (2)
C11-C16-H16	119.9
C15-C16-H16	119.9
C26-C21-C22	118.63 (19)
C26-C21-P1	122.28 (15)
C22-C21-P1	118.91 (16)
C23-C22-C21	120.4 (2)
C23-C22-H22	119.8
C21-C22-H22	119.8
C22-C23-C24	120.4 (2)
C22-C23-H23	119.8
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23$	119.8
C25-C24-C23	119.7 (2)
C25-C24-H24	120.1
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24$	120.1
C24-C25-C26	120.0 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-179.88 (15)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-6.2 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	0.1 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	173.79 (16)
$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-173.40 (17)
$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	6.57 (10)
$\mathrm{Cu}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	173.49 (17)
$\mathrm{Cu}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	-6.48 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-84.6 (2)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	101.8 (2)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	-77.9 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	83.8 (3)
C2-N1-C4-C5	-102.5 (2)
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	82.1 (3)
C31-P1-C11-C16	103.55 (19)
C21-P1-C11-C16	-2.2 (2)
$\mathrm{Cu}-\mathrm{P} 1-\mathrm{C} 11-\mathrm{C} 16$	-128.12 (17)
C31-P1-C11-C12	-75.31 (18)
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 11-\mathrm{C} 12$	178.89 (16)
$\mathrm{Cu}-\mathrm{P} 1-\mathrm{C} 11-\mathrm{C} 12$	53.01 (17)
C16-C11-C12-C13	0.2 (3)
P1-C11-C12-C13	179.10 (17)
C11-C12-C13-C14	0.0 (3)
C12-C13-C14-C15	-0.2 (4)
C13-C14-C15-C16	0.2 (4)
C12-C11-C16-C15	-0.2 (3)
P1-C11-C16-C15	-179.03 (18)
C14-C15-C16-C11	0.0 (4)
C31-P1-C21-C26	8.01 (19)

C64-C63-C62	120.2 (2)
C64-C63-H63	119.9
C62-C63-H63	119.9
C63-C64-C65	119.6 (2)
C63-C64-H64	120.2
C65-C64-H64	120.2
C66-C65-C64	120.3 (2)
C66-C65-H65	119.8
C64-C65-H65	119.8
C65-C66-C61	120.6 (2)
C65-C66-H66	119.7
C61-C66-H66	119.7
C12-C6-Cl1	111.63 (17)
C12-C6-Cl3	111.63 (17)
C11-C6-Cl3	111.60 (15)
C12-C6-H6	107.2
Cl1-C6-H6	107.2
Cl3-C6-H6	107.2
P1-C31-C32-C33	-174.02 (18)
C31-C32-C33-C34	0.3 (4)
C32-C33-C34-C35	-0.9 (4)
C33-C34-C35-C36	0.4 (4)
C32-C31-C36-C35	-1.3 (4)
P1-C31-C36-C35	173.7 (2)
C34-C35-C36-C31	0.7 (4)
C51-P2-C41-C42	96.01 (19)
C61-P2-C41-C42	-10.2 (2)
$\mathrm{Cu}-\mathrm{P} 2-\mathrm{C} 41-\mathrm{C} 42$	-136.55 (17)
C51-P2-C41-C46	-85.86 (18)
C61-P2-C41-C46	167.95 (17)
$\mathrm{Cu}-\mathrm{P} 2-\mathrm{C} 41-\mathrm{C} 46$	41.58 (19)
C46-C41-C42-C43	-1.0 (3)
P2-C41-C42-C43	177.13 (18)
C41-C42-C43-C44	-0.3 (4)
C42-C43-C44-C45	1.6 (4)
C43-C44-C45-C46	-1.4 (4)
C44-C45-C46-C41	0.1 (4)
C42-C41-C46-C45	1.1 (3)
P2-C41-C46-C45	-177.09 (19)
C61-P2-C51-C56	-94.07 (16)
C41-P2-C51-C56	158.48 (16)
$\mathrm{Cu}-\mathrm{P} 2-\mathrm{C} 51-\mathrm{C} 56$	34.40 (18)
C61-P2-C51-C52	82.03 (18)
C41-P2-C51-C52	-25.42 (19)
$\mathrm{Cu}-\mathrm{P} 2-\mathrm{C} 51-\mathrm{C} 52$	-149.50 (15)
C56-C51-C52-C53	1.3 (3)
P2-C51-C52-C53	-174.71 (16)

$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 26$	$113.67(18)$
$\mathrm{Cu}-\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 26$	$-120.71(16)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 22$	$-176.85(16)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 22$	$-71.19(18)$
$\mathrm{Cu}-\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 22$	$54.43(17)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$-1.6(3)$
$\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$-176.94(17)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$0.6(3)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$0.6(3)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-0.9(3)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$-0.2(3)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$1.4(3)$
$\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$176.57(16)$
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 32$	$79.67(19)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 32$	$-28.1(2)$
$\mathrm{Cu}-\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 32$	$-153.85(16)$
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 36$	$-95.22(19)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 36$	$157.05(19)$
$\mathrm{Cu}-\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 36$	$31.3(2)$
$\mathrm{C} 36-\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$	$0.8(3)$

$\mathrm{C} 51-\mathrm{C} 52-\mathrm{C} 53-\mathrm{C} 54$	$-0.1(3)$
$\mathrm{C} 52-\mathrm{C} 53-\mathrm{C} 54-\mathrm{C} 55$	$-0.6(3)$
$\mathrm{C} 53-\mathrm{C} 54-\mathrm{C} 55-\mathrm{C} 56$	$0.1(3)$
$\mathrm{C} 52-\mathrm{C} 51-\mathrm{C} 56-\mathrm{C} 55$	$-1.9(3)$
$\mathrm{P} 2-\mathrm{C} 51-\mathrm{C} 56-\mathrm{C} 55$	$174.34(16)$
$\mathrm{C} 54-\mathrm{C} 55-\mathrm{C} 56-\mathrm{C} 51$	$1.2(3)$
$\mathrm{C} 51-\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 62$	$-2.56(19)$
$\mathrm{C} 41-\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 62$	$104.40(18)$
$\mathrm{Cu}-\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 62$	$-131.80(16)$
$\mathrm{C} 51-\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 66$	$173.12(17)$
$\mathrm{C} 41-\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 66$	$-79.91(18)$
$\mathrm{Cu}-\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 66$	$43.89(18)$
$\mathrm{C} 66-\mathrm{C} 61-\mathrm{C} 62-\mathrm{C} 63$	$-0.3(3)$
$\mathrm{P} 2-\mathrm{C} 61-\mathrm{C} 62-\mathrm{C} 63$	$175.35(16)$
$\mathrm{C} 61-\mathrm{C} 62-\mathrm{C} 63-\mathrm{C} 64$	$-0.4(3)$
C62-C63-C64-C65	$0.9(3)$
C63-C64-C65-C66	$-0.7(4)$
C64-C65-C66-C61	$0.0(4)$
C62-C61-C66-C65	$0.5(3)$
P2-C61-C66-C65	$-175.44(18)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the ring centroid of (C51-C56).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 O \cdots \mathrm{O} 1$	0.84	1.95	$2.710(3)$	150
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.97	$2.697(3)$	142
$\mathrm{C} 6-\mathrm{Cl} 3 \cdots C g 1$	$1.77(1)$	$3.81(1)$	$3.798(3)$	$76(1)$

Symmetry code: (i) $-x,-y+2,-z+2$.

