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ABSTRACT 
 
When complex systems move away from criticality—a balance between order and chaos—they 
are no longer optimized. Furthermore, when criticality is lost too quickly, or recovery is delayed, 
system damage can result. However, the mechanism for these abnormally fast or slow critical 
transitions remains unknown. Here, we show that the proximity of a complex network to 
explosive synchronization (ES), a first-order phase transition, determines the trajectories of 
criticality loss and recovery after perturbations. Our computational models revealed 
characteristic dynamics based on network proximity to ES, enabling us to infer network phase 
transition types from empirical data and predict criticality transition patterns. We validated our 
predictions using empirical data from the human brain under anesthesia and the stock market 
during an economic crisis, demonstrating that early and prolonged recoveries can be 
systematically predicted. This study has implications for designing resilient networks that 
withstand perturbations and recover quickly.  
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Main Text 

 
Rapid collapse during a crisis or delayed recovery afterwards can cause severe damage to 
systems. For example, excessive sensitivity to or prolonged recovery from anesthesia—a 
significant perturbation to brain networks— can lead to patient complications1. Similarly, a rapid 
market crash or prolonged economic recovery can have lasting adverse effects on a country’s 
economy2. Understanding the mechanisms of early and delayed transitions in complex dynamic 
systems, such as the brain and financial markets, is thus crucial for measuring, predicting, and 
correcting abnormal transitions. 

We first define normal states and crises to study system collapse and recovery during crises. 
Many complex systems in nature operate in a critical state, at the edge of phase transitions, 
exhibiting typical properties such as scale invariance, long-range correlation, large 
autocorrelation, and high susceptibility to external perturbations3. These properties underpin 
system capacities for energy efficiency, information integration, spatiotemporal memory, and 
flexible adaptation. Thus, a critical state is considered the “sweet spot” for emerging high-order 
functions and complexity in systems4-7. However, deviation from a critical state disrupts these 
abilities. In this study, we define a deviation from criticality as a system crisis and consider the 
times taken to lose and restore a critical state as surrogates for the times to system collapse 
and recovery during crises.  

When external perturbations are applied, the time to lose and regain criticality is largely 
determined by the stability of each system’s critical state, the system’s self-organization 
processes to maintain the critical state, and, most fundamentally, the type of phase transition8-10. 
Phase transitions describe the process of changing from one state to another, with the critical 
point being the specific condition at which this change occurs. The nature of the change at the 
critical point can be simply categorized as either first-order or second-order11. For example, the 
transition from water to ice is a first-order phase transition marked by abrupt change, while the 
transition from a ferromagnetic to a paramagnetic state is a second-order phase transition 
characterized by gradual change. Therefore, if we could infer a system’s phase transition type, 
we could anticipate whether it will undergo abrupt or gradual change near critical points. 
However, there is a paucity of methods to make such inferences, especially from empirical data, 
which hinders our ability to predict abnormal transitions during crises in real-world systems.  

Explosive synchronization (ES) is a first-order phase transition in complex networks 
characterized by a sudden transition from incoherence to complete synchronization. Recent 
studies argue that parameters like heterogeneous frequency and degree distribution, higher-
order connectivity, or adaptive feedback can generally induce ES12-14. Furthermore, simply 
modulating a few nodes in the complex network can change the network’s phase transition type 
from non-ES (second-order and gradual) to ES (first-order and abrupt), or vice versa15-17. These 
network connectivity and feedback parameters have parallels in the variation in the strength of 
inter- and intra-regional brain functional connectivity patterns and in financial networks of assets 
and investments. Despite fundamental differences in details—the brain is a biological network of 
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neurons and other cells mediating cognition and action, while financial markets are networks of 
institutions managing capital flow—both systems are thought to operate near critical points in 
non-equilibrium states. Therefore, we predict that the universality of ES and its characteristic 
transition patterns near critical points could apply to both systems during crises. 

Moreover, as illustrated in Figure 1 A, every network can be positioned along a spectrum 
ranging from close to distant ES proximity in parameter space. Networks with closer ES 
proximity may exhibit behavior more akin to first-order phase transitions near critical points 
(Figure 1 B). Methods based on critical slowing-down phenomena have been widely applied to 
detect early warning signs of critical transitions in various systems, including ecological, 
meteorological, and financial systems18-20. Similarly, methods based on a universal scaling law 
have been developed to measure the deviation of complex systems from criticality, thereby 
differentiating altered brain states from conscious brains21-24. However, inferring the system’s 
proximity to ES when near criticality remains unexplored. This study focuses on inferring a 
network's proximity to ES at a critical point, aiming to identify characteristic dynamics of 
networks with varying ES proximities and investigate the determinant roles these dynamics play 
in entering or exiting crises. 

This study investigates (1) Whether networks with distant or close ES proximities have 
distinctive network dynamics at their critical points, enabling us to infer network proximity to ES 
based on their time series data. (2) Whether a network’s ES proximity, measured before a crisis, 
can predict rapid or prolonged network collapse and recovery during and after a crisis. (3) How 
network structure and dynamics influence ES proximity and transition patterns under external 
perturbation. (4) Whether these methods can be applied to real-world complex networks, such 
as brain and financial networks during neural and economic crises, to predict rapid or prolonged 
transitions. Figure 1 illustrates the schematic overview of this study. 

The proximity of a complex network to explosive synchronization determines rapid or 
prolonged transition near a critical point: a computational model study. 
We examined how a network’s proximity to ES affects dynamics near critical points and the 
response to perturbations. The conventional Stuart-Landau model, a simplified representation of 
an oscillator near a Hopf bifurcation, has been used to study network dynamics near and far 
from critical points25. We employed a modified Stuart-Landau model with two key parameters: 
one varying ES proximity26 and the other varying perturbation strength. This model allows us to 
characterize network dynamics at critical points for varying ES proximities and analyze their 
responses, quantifying the time for critical state loss and recovery. We further explored how 
different network topologies—random, scale-free, small-world—affect these dynamics. 

Our model adjusts ES proximity by manipulating the adaptive feedback strength (Z) among 
interconnected nodes. The adaptive feedback suppresses synchronization and acts as internal 
resistance to changes in synchronization. It competes with the force promoting synchronization 
as the coupling strength among nodes (the other main control parameter) increases. When 
these two forces are balanced at a critical point, the network becomes highly susceptible to 
small perturbations, leading to abrupt transitions—this is the core mechanism of ES. We 
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hypothesize that a network with closer ES proximity loses its baseline critical state more easily 
due to high susceptibility and has prolonged recovery because of significant internal resistance 
during state transitions, often manifested as hysteresis. 

To test this hypothesis, we constructed models comprising 78 interconnected Stuart-Landau 
oscillators representing a real-world complex network (a diffusion tensor image-informed human 
brain network), and 1,000 interconnected Stuart-Landau oscillators for small-world, random, and 
scale-free networks with 4,000 structural links. Each oscillator simulates node activity and 
interactions with linked nodes. We ran 100 simulations for each of the seven ES proximities, 
varying initial conditions. To identify each network’s critical point, we tested the pair correlation 
function (PCF) and autocorrelation function (ACF) of the instantaneous order parameters. The 
PCF measures the variance of collective phase synchronization fluctuations, while the ACF 
measures the temporal memory of these fluctuations. Both the PCF and ACF reach maximal 
values at critical points27,28. In this simulation study, we used the PCF peak to identify the critical 
points because it is non-parametric and was better at finding peaks than the ACF in our model.  

In Figure 2A, we illustrate maximal PCFs with yellow circles for Z=0 and Z=2. The network with 
closer ES proximity (Z=2) exhibits a steeper synchronization transition at the critical point than 
the one with distant ES proximity (Z=0). We analyzed time series signals across various ES 
proximities and found that networks with closer ES proximities displayed more variability in 
sequential ACF values (Figure 2B), reflecting intermittent and bistable transitions near their 
critical points (Figure S1.A-D). This indicates that these networks tend to produce uncommon 
ACF values, including extremely high and low ones, leading to fat tails in ACF distributions 
(Figure 2C). The kurtosis of the ACF distribution, which reflects these fat tails, is correlated with 
the adaptive feedback strength Z. As Z increases and begins to influence network dynamics 
near the critical point (Z > 2), the kurtosis of the ACF distribution increases significantly (p < 0.05; 
Tables S1 and S2 for the statistical tests). From Z > 2, the network dynamics exhibit heavy tails 
(kurtosis greater than 3). This suggests that the kurtosis of the ACF distribution at a critical point 
could serve as an indicator of ES proximity. We also obtained similar results with the kurtosis of 
the PCF (Figure S1.E and F). However, since the kurtosis of the ACF aligns more consistently 
with the real-world data we tested, our presentation was focused on the ACF results.  

To test how networks with different ES proximities respond over time, we introduced external 
perturbations u(t). Figure 3A illustrates how these perturbations disrupt baseline dynamics at a 
critical point and how the network returns to its baseline state as the perturbation fades. In our 
model, the fixed coupling strength at the critical point ensures the network self-organizes and 
returns to its baseline state after the perturbation ends. We measured the time for the network 
to deviate from and return to the baseline state by defining a zone as three times the standard 
deviation of ACF values at baseline. We then calculated correlations between the kurtosis of 
baseline ACF values before perturbation and the time required for the network to lose and 
regain its baseline dynamics. 

Figure 3A shows the response of closer ES proximity (Z=2) to an external perturbation. After a 
5-second perturbation at u(t) = 10, the network exhibits an abrupt deviation from baseline 
followed by gradual recovery. Figures 3B and 3C demonstrate significant correlations between 
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the kurtosis of ACF values and the times taken for critical state loss and recovery. We observed 
that the kurtosis of baseline ACF is negatively correlated with the time of critical state loss and 
positively correlated with recovery time. The robustness of the results was confirmed by testing 
various strengths u(t) (20, 40, 60, 80, and 100, Figure S2) and network structures (random, 
scale-free, small-world, Figure S3) (Figure S3). This study suggests that networks with closer 
ES proximity take less time to lose their baseline critical state but require more time to recover 
after perturbation. 

Proximity to explosive synchronization of brain networks during baseline consciousness 
determines the temporal course of anesthetic-induced state transitions.  
General anesthesia represents a neural “crisis” where functional brain networks are perturbed, 
and the brain deviates from a critical state29-31. We hypothesized that early or delayed transitions 
in loss and recovery of consciousness might be governed not only by the pharmacokinetics of 
anesthetics but also by the type of phase transition in functional brain networks. According to 
our model, we expected that the kurtosis of ACF of the electroencephalogram (EEG) recorded 
in a resting state, which is a surrogate for the ES proximity of the brain network, may determine 
the temporal course of state transitions at the boundaries of consciousness. Due to the high 
susceptibility and hysteresis of an ES network, we also expected that brain networks with a 
large kurtosis of ACF may exhibit a fast loss and slow recovery of consciousness during 
anesthetic transitions.  
 
To test the hypothesis, we analyzed data from 16 healthy human subjects who had 32-channel 
EEG recorded during anesthetic state transitions. Figure 4A illustrates the EEG electrodes and 
signals. Figure 4B presents a single subject’s EEG spectrogram, and the states studied: resting 
state with eyes closed (10 min), induction period (start of anesthetic delivery to loss of 
consciousness), unconscious period (loss of consciousness to maximal anesthetic 
concentration), and recovery period (maximal anesthetic concentration to the recovery of 
consciousness). Times to loss and recovery of consciousness were determined by behavioral 
response to verbal command. Despite maintaining the same anesthetic effect-site concentration 
across subjects, the times of consciousness loss and recovery were largely variable (See y-
axes in Figure 4C and D). 
 
We calculated the kurtoses of ACFs using 3-minute clean EEGs from resting states after pre-
processing and noise treatments (See Supplementary Method S2 for details). First, we applied 
band-pass filtering to isolate the alpha-frequency band (8-13Hz) and extracted the 
instantaneous phases with the Hilbert transform. Using these phases, we calculated the 
instantaneous order parameters for the EEG signals. To analyze the kurtosis of ACF, we 
employed a moving window on the sequence of instantaneous order parameters. Specifically, 
ACFs with a time lag of 50 (reflecting the alpha dynamics at ~10Hz and a sampling frequency of 
500Hz) were computed within 10-second windows with a 5-second overlap. Finally, we 
calculated the kurtosis of the ACFs from all windows. We then assessed the correlation 
between the kurtosis of ACFs in resting states and times of consciousness loss and recovery. 
The results showed significant negative and positive correlations between resting-state kurtosis 
of ACFs and times to consciousness loss (Spearman correlation coefficient: 𝜌 = -0.67, p<0.01) 
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and recovery (Spearman correlation coefficient: 𝜌 = 0.59, p<0.01), respectively. These findings 
indicate that an individual brain’s ES proximity in baseline states, measured by kurtosis of ACFs 
in EEG networks, significantly influences the pattern of conscious state transitions at the 
boundary between consciousness and unconsciousness. 
 
 
Pre-crisis proximity to explosive synchronization of stock market networks determines 
the time courses of stock market collapse and recovery associated with the 2008 
economic crisis.  
To determine whether ES proximity is a general principle of state transitions during crises 
across computational, neurobiological, and economic systems, we examined the 2008 
economic crisis. This crisis was triggered by the collapse of the U.S. subprime mortgage 
market, subsequently causing widespread banking system failure and, eventually, worldwide 
recession. Using the S&P Compustat Global database, we collected daily stock prices from 39 
global equity markets from 2006 to 2010. Countries’ GDPs per capita (USD) are shown on the 
world map (Figure 5A). Details of data collection and processing are found in the 
Supplementary Methods (See Table S3).  
 
We defined analysis periods for each market: baseline, response, and recovery. Based on 
studies of the 2007-2009 Subprime Mortgage Crisis32, we designated 2006 as the baseline 
period, preceding the crisis. We tested the robustness of our results by varying the baseline 
period (See Table S4 for test results). We defined response and recovery periods for each 
country by calculating the market collapse rate (R1) and recovery rate (R2) during the 2008 
crisis, triggered by Lehman Brothers’ collapse in September 2007. Recession periods were 
identified using recession indicators from the Organization of Economic Cooperation and 
Development (OECD). We first identified the maximum stock price during the recession period 
and evaluated the collapse rate over a period 𝛼, reflecting the price drop from the maximum. To 
assess the recovery rate, we identified the minimum price during the crisis and calculated how 
much the stock price rose from that minimum over the same period 𝛼 (Figure 5B). Considering 
the large difference in the price ranges among countries, we normalized market collapse and 
recovery rates, R1 and R2, for each country (c) as follows. 
 

𝑅1(𝑐) = !!"(##)%!!"(##&')
!!"(##)%!!"(#$)

	, 𝑅2(𝑐) = !!"(#$&')%!!"(#$)
!!"(##)%!!"(#$)

    

Where 𝑃()(𝑡) is the stock market index of country c and time 𝑡 = 1, 2, 3, …𝑇. 𝑡* = {𝑡 ∈ 	𝑇 ∶
𝑃()(𝑡)	}, 𝑡+ = {𝑡 ∈ 𝑇: 𝑃()(𝑡)	}, indicate dates of maximal and minimal stock prices, respectively. 
Because the 39 stock markets have diverse dynamics, we tested several time periods, 𝛼 =
{40, 60, 80, 100, 𝑎𝑛𝑑	120	𝑑𝑎𝑦𝑠}, to calculate collapse and recovery rates. 40 and 120 days 
correspond approximately to 2 and 6 months, considering market closures. Here, we chose 𝛼 of 
100 days, an appropriate period to reflect the scale of price changes during the crisis. However, 
the results were not sensitive to 𝛼	(See Table S5 for test results). Finally, we applied logarithms 
to the inverse of the market collapse and recovery rates for direct comparison with the EEG 
study’s induction and recovery time. 
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𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑡𝑖𝑚𝑒(𝑐) = 𝑙𝑛	( *
,*(()

)	, 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦	𝑡𝑖𝑚𝑒(𝑐) = 𝑙𝑛	( *
,+(()

)	, 

 
With this transformation, a shorter response/recovery time (i.e., a faster response/recovery rate) 
corresponds to a shorter induction/recovery time in the EEG study. The financial network 
analysis showed that the kurtosis of ACFs in the baseline period negatively correlates with the 
market response times (Spearman coefficient, 𝜌 = - 0.40, p<0.001, Figure 5C); conversely, the 
kurtosis of ACFs positively correlates with market recovery times (Spearman coefficient, 𝜌 = 
0.49, p<0.001, Figure 5D). In other words, stock markets with higher ES proximity at baseline 
showed faster market collapse and slower recovery after the crisis. This is consistent with our 
computational predictions and the empirical neurophysiology of anesthetic state transitions. 
Moreover, we found the kurtosis of ACF (lag2) significantly correlates with the gross domestic 
product (GDP) per capita (𝜌 = -0.36, p<0.05) (See Table S6 for the test results). These results 
indicate that the state transitions in emerging markets, for instance, Thailand, Philippines, and 
Indonesia, which are classified as Morgan Stanley Capital International (MSCI) emerging 
markets, are relatively closer to ES than those in developed markets and, therefore, are highly 
unstable during economic crises.  
 
Discussion  
We investigated the impact of a network’s proximity to explosive synchronization (ES) on the 
time courses of network collapse and recovery during and after computational, neuronal, and 
financial crises. Our computational model showed that networks with different ES proximities 
exhibit characteristic dynamics at their critical points, characterized by the kurtoses of their 
autocorrelation function (ACF) values. We demonstrated that the kurtosis of ACF values before 
perturbation is negatively correlated with the time to critical state loss and positively correlated 
with the time to critical state recovery. This finding suggests that the characteristic transition 
properties of first-order phase transition determine the time courses during network crises. 
Specifically, networks with high ES proximity tend to lose their critical state faster and take 
longer to recover. This relationship was confirmed with diverse model networks (scale-free, 
small-world, and random) and real-world networks (human brain networks during anesthesia 
and stock market networks during the 2008 global economic crisis). 
 
Explosive synchronization proximities of the human brain and stock market networks.  
Although the brain and financial networks are composed of distinct elements and operate on 
different principles, both share features as nonequilibrium systems where flows of energy, 
matter, and information are continuously introduced. The brain is a hierarchical network of cells 
processing signals for sensory perception, motor control, cognition, and emotions, while 
financial networks interconnect banks, investors, and institutions through assets and 
investments to uphold market stability and efficiency. Despite their differences, both networks 
reside near their critical states under normal conditions3,4,5,9,33-35. We hypothesized that each 
network’s response to significant perturbations depends on its inherent proximity to a first-order 
phase transition (i.e., proximity to ES). 
 
Previously, we found evidence of ES in the brain networks of individuals experiencing abrupt 
wakefulness under light anesthesia36. Anesthesia reconfigures functional brain networks, 
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decreasing global efficiency and enhancing modularity, which suppresses network 
synchronization and prompts ES conditions in some subjects36,37. Our EEG analysis showed 
that ES proximity in a resting state is significantly correlated with both induction and recovery 
times associated with propofol anesthesia, especially in the alpha band (8–13 Hz). Alpha waves 
coordinate hierarchical neural activities, facilitating cognitive processing and top-down 
control38,39, filter out irrelevant sensory inputs, enhance attentional focus, and transfer 
information globally via traveling waves40,41. 
 
Our EEG analysis showed that only the alpha network’s ES proximity in the resting state reliably 
predicts both induction and recovery times. This finding suggests that the network mechanism 
driving diverse brain state transitions at the edge of consciousness prominently operates within 
globally networked alpha waves. Given that ES proximity significantly influences the brain’s 
response to perturbations, we propose that individual variations in a brain network’s proximity to 
ES should be considered an important factor for effectively predicting and modulating brain 
states through various brain stimulations (pharmacological, electrical, magnetic, etc.). 
 
We applied the same method to financial networks during an economic crisis to test its 
generality. Significant correlations were found between the kurtosis of ACF values in the pre-
crisis period, the market response time during the crisis, and the recovery time afterward. These 
results aligned with both our computational model predictions and observations related to 
anesthetic state transitions, suggesting that ES proximity, as measured by daily stock prices, 
could serve as a market index for characterizing financial markets and potentially forecasting 
market collapse and recovery. Furthermore, we discovered that ES proximity in the pre-crisis 
period is negatively correlated with a country's GDP per capita, indicating that markets with 
higher ES proximity tend to have lower GDP. This implies that emerging markets with lower 
GDP per capita are closer to a first-order phase transition and are more vulnerable to economic 
crises than mature markets. Our findings underscore the importance of further research into the 
relationship between stock market network dynamics, GDP, and market collapse and recovery 
during crises. These results provide new insights into understanding economic crises through 
the lens of financial network dynamics and structure. Additionally, it remains unknown how 
these findings may apply to other types of markets—such as bonds, foreign exchange, 
derivatives, and cryptocurrency—and to different sources of economic crisis, such as the 
COVID-19 pandemic. 

Novel insights into rapid and prolonged system collapse and recovery around the time of 
crisis. First, research on catastrophic phase transitions, commonly known as "fold bifurcations" 
or "subcritical bifurcations" in bifurcation theory, has made significant theoretical progress18-20,42. 
Empirical indicators like critical slowing down, increasing variance and correlation in space and 
time, and spectral reddening (shifting the highest frequency to a lower one) have demonstrated 
the potential to anticipate impending phase transitions in diverse systems, including socio-
ecological, neurological, financial, and climate systems. Recent theoretical studies have 
highlighted the need not only to predict upcoming critical points but also to identify the type of 
bifurcation that governs the transition pattern near these critical points. For instance, a smooth 
transition (transcritical bifurcation), the emergence of oscillations (Hopf bifurcation), or an abrupt 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.28.625924doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.28.625924
http://creativecommons.org/licenses/by-nc-nd/4.0/


change to another attractor (fold bifurcation) could characterize the transition pattern. However, 
given the generality of the critical slowing-down phenomenon, these indicators are unable to 
distinguish the bifurcation types, limiting the capacity to estimate the transition patterns near 
critical points43. In complex dynamical networks, the kurtosis of ACF offers a promising 
approach to address this limitation by estimating the proximity of a network’s phase transition 
type to a first-order transition, i.e., ES. We propose that combining the kurtosis of ACF with 
critical slowing-down indicators may enable the prediction of both impending critical points 
(abrupt transitions, often associated with system crises) and their associated phase transition 
types.  

Second, previous theoretical models have identified network configurations that can induce 
ES13. However, practical application is limited by the difficulty of obtaining precise network 
structures in real-world scenarios. The kurtosis of ACF, a signal-based ES proximity indicator, 
can estimate ES proximity using time series signals, making it valuable for monitoring changes 
in a network's phase transition type over time. For instance, we applied this approach to sickle 
cell disease and found that ES proximity in brain networks progressively increases until a pain 
crisis occurs and then diminishes afterward, repeating unpredictably over weekly or monthly 
intervals44. The kurtosis of ACF could be used to monitor changes in ES proximity and assess 
network vulnerability over time.  

Third, our findings suggest the possibility of controlling abnormal network recoveries by 
modulating ES proximity. In previous modeling, we demonstrated that network modulation, 
specifically enhancing hub connections, converts the type of phase transition in the brain 
network from ES to non-ES, reducing sensitivity to external stimuli16. Another study showed that 
adding or removing a few key links can induce abrupt transition, called “ES bombs,” supporting 
the potential of modulating ES proximity through local structural changes15. This line of research 
could advance novel network modulation methods that could, for example, reduce the 
hypersensitivity in the brain in chronic pain, facilitate the recovery of normal brain functions in 
pathologic states, and accelerate market recovery after an economic crisis.  

This study has several limitations. First, while the observed relationship between signal 
characteristics (kurtosis of ACF) at critical points, ES proximity, and critical state transitions is 
intriguing, it lacks analytical justification. Future research should aim to develop a mathematical 
framework to better understand this relationship. Second, the computational modeling used the 
maximal PCF of the instantaneous order parameter as a proxy for identifying the critical point. 
However, while a high PCF is necessary for criticality, it is not sufficient to confirm it. Due to this 
limitation, we prioritized evaluating the state transition rate after perturbation rather than 
performing advanced statistical tests to definitively verify criticality. Third, given the complexity 
of the study, we employed a simplified perturbation model to explore the influence of ES 
proximity on criticality loss and recovery rates. For feasibility, we assumed a uniform 
perturbation across all networks, because accounting for diverse perturbation forms was beyond 
the scope of this work. 
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Our study demonstrates that a network’s proximity to ES at a critical point plays a pivotal role in 
its resilience to external disruption. Specifically, the network's susceptibility dictates the 
collapsing process, while the recovery is influenced by the internal resistance determined by ES 
proximity. This finding paves the way for developing network-specific methods to predict and 
modulate network collapse and recovery rates. This approach could be applied to various 
complex networks, including brain and financial networks, to enhance resilience and prevent or 
mitigate abrupt crises. 
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Fig 1. Network explosive synchronization (ES) proximity, resilience, and recovery under 
perturbation. (A) Networks at healthy and normal states stay near critical points, and the 
network crisis is characterized by its deviation from the critical point. Individual networks have 
diverse proximities to ES, i.e., first-order phase transition, resulting in larger interindividual 
variability in criticality loss and recovery. (B) Response behaviors to perturbations differ 
according to ES proximity: networks with 'close' ES proximity are more susceptible at critical 
points and show greater internal resistance, manifested as hysteresis, leading to faster criticality 
loss and slower recovery. Black and red arrows mark approximate times of criticality loss and 
recovery, respectively. (C) Networks with 'close' or 'distant' ES proximities exhibit distinct 
dynamics at critical points or critical-like regimes, which can be estimated through time series 
signals. (D) Real-world complex networks, such as the human brain and financial networks, 
operate near critical points in healthy and normal states. When these systems deviate from 
criticality, as during anesthesia-induced neuronal crises or financial crises like 2008, pre-crisis 
ES proximity significantly influences the rates of consciousness and market collapse and 
recovery. 
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Figure 2. Distinct network dynamics at critical points with varying explosive synchronization 
(ES) proximity. (A) Networks with close (Z=2) and distant (Z=0) ES proximities exhibit distinctive 
network dynamics near their critical points. The network with closer ES proximity (Z=2) 
undergoes a steeper phase transition near its critical point than the network with distant ES 
proximity (Z=0). Critical points were identified based on the maximal pair correlation function 
(PCF) of instantaneous order parameters (indicated by circles). The red dashed line indicates 
the PCF values at each coupling strength. (B) A moving window technique was employed to 
analyze the variability of the autocorrelation function (ACF) of order parameters, distinguishing 
the close and distant ES proximities. (C) The ACF distribution of a close ES proximity (Z=2) has 
a larger kurtosis compared to that of the distant ES proximity network (Z=0). The distinct ACF 
distributions, which reflect different network dynamics at critical points, demonstrate the 
potential to estimate the ES proximity using time series data of a complex dynamical network.  
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Figure 3. The influence of ES proximity on the critical state loss and recovery under external 
perturbation. (A) a network with close ES proximity (Z=2) presents characteristic critical state 
loss and recovery patterns. Under external perturbation, the network loses and regains its 
baseline critical state. The times to lose (red zone) and regain (blue zone) the baseline states 
were determined by the times when the network's ACF values cross over and return to within 
three standard deviations of the ACF values in the baseline state. (B) The kurtoses of baseline 
ACF distributions are negatively correlated with the times to baseline critical state loss, 
indicating that networks with closer ES proximity (a larger Z) are more prone to faster critical 
state loss. (C) Conversely, the kurtoses of baseline ACF distribution are positively correlated 
with the recovery time. A network with closer ES proximity (a larger Z) exhibits slower critical 
state recovery. Error bars indicate standard errors of 100 simulations. 
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Figure 4. The ES proximity of human EEG in a conscious resting state significantly correlates 
with the induction time and the recovery time in general anesthesia. (A) Thirty-two channel 
EEGs during baseline consciousness, induction of anesthesia, unconsciousness, and recovery 
states were analyzed to test the relationship between ES proximity in conscious brains and 
fast/slow state transitions induced by the general anesthetic propofol. (B) The spectrogram 
shows a significant change in the spectral content of the EEG along with state transitions in 
anesthesia. The anesthetic induction and recovery times were defined by the time intervals 
between the injection of propofol and the loss of responsiveness (red dotted lines) to a verbal 
command (induction) and between the end of injection and the recovery of response (blue 
dotted lines) to a verbal command (recovery). The solid line indicates the modeled effect-site 
concentration of propofol in the volunteer’s brain. The kurtosis of ACF calculated with the 
baseline EEG shows a significant negative correlation with the induction times (C) for 16 
subjects. Conversely, the kurtosis of the ACF of the baseline EEG positively correlates with the 
recovery time (D).  
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Fig 5. The ES proximities of stock market networks significantly correlate with the rates of 
market collapse and recovery during the 2008 economic crisis. (A) The thirty-nine countries 
analyzed in this study are mapped according to their 2006 GDP per capita (USD), with colors 
ranging from red to blue. (B) The market price of the S&P 500 index underwent a dramatic price 
change in the 2008-2009 economic crisis, which created natural epochs of baseline (pre-crisis), 
response (intra-crisis), and recovery (post-crisis) periods. The ES proximity of a stock market 
network was calculated in the baseline period, and the response and recovery times were 
calculated with the market collapse (R1) and recovery (R2) rates. (C) and (D) The kurtosis of 
ACF in the baseline period is negatively correlated with the response time (𝜌 = - 0.40, p<0.001), 
and positively correlated with the recovery time (𝜌 = 0.49, p<0.001). Blue and red circles 
represent developed and emerging countries, respectively, and the marker sizes are scaled by 
the country’s GDP. 
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