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Abstract 

Background  Type 1 diabetes mellitus (T1DM) is well-known to trigger a disruption of lipid metabolism. This study 
aimed to compare lipid profile changes in T1DM patients after achieving glucose control and explore the underlying 
mechanisms. In addition, we seek to identify novel lipid biomarkers associated with T1DM under conditions of glyce-
mic control.

Methods  A total of 27 adults with T1DM (age: 34.3 ± 11.2 yrs) who had maintained glucose control for over a year, 
and 24 healthy controls (age: 35.1 + 5.56 yrs) were recruited. Clinical characteristics of all participants were analyzed 
and plasma samples were collected for untargeted lipidomic analysis using mass spectrometry.

Results  We identified 594 lipid species from 13 major classes. Differential analysis of plasma lipid profiles revealed 
a general decline in lipid levels in T1DM patients with controlled glycemic levels, including a notable decrease 
in triglycerides (TAGs) and diglycerides (DAGs). Moreover, these T1DM patients exhibited lower levels of six phosphati-
dylcholines (PCs) and three phosphatidylethanolamines (PEs). Random forest analysis determined DAG(14:0/20:0) 
and PC(18:0/20:3) to be the most prominent plasma markers of T1DM under glycemic control (AUC = 0.966).

Conclusions  The levels of all metabolites from the 13 lipid classes were changed in T1DM patients under glycemic 
control, with TAGs, DAGs, PCs, PEs, and FFAs demonstrating the most significant decrease. This research identified 
DAG(14:0/20:0) and PC(18:0/20:3) as effective plasma biomarkers in T1DM patients with controled glycemic levels.
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Introduction
Type 1 diabetes mellitus (T1DM) is a chronic autoim-
mune disorder characterized by the destruction of islet β 
cells, resulting in hyperglycemia due to impaired insulin 
secretion [1]. It has an estimated incidence of 15 cases 
per 100,000 and a prevalence rate of 9.5%, both showing 

an increasing trend globally [2]. With multifactorial and 
polygenic  etiology, T1DM demonstrates high heteroge-
neity across individuals [3–5]. While T1DM is commonly 
associated with childhood and adolescence [6], it can 
manifest at any age. Recent data from the UK Biobank 
reveal that up to 42% of T1DM cases are diagnosed in 
individuals aged between 30 and 60 years [7]. At present, 
insulin injection can effectively control the blood glucose 
levels of patients with T1DM [8]. However, hyperglyce-
mia can lead to a series of metabolic disorders, with lipid 
metabolic disorder being a significant manifestation.

Lipid metabolism involves a complex interplay of vari-
ous lipid species that are crucial for maintaining cellular 
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structure, energy storage, and signaling processes [9]. 
Metabolic abnormalities in lipids and amino acids are 
common in children who develop symptomatic T1DM 
[10, 11]. Higher levels of triglycerides (TAGs) and apoli-
poprotein B (apoB) are found correlated with elevated 
risk of T1DM [10, 12]. TAGs and other lipids manifest 
markedly elevated levels in children with positive autoan-
tibody [12]. These suggest that blood lipid levels may 
serve as predictors for T1DM diagnosis. In T1DM, dys-
regulation of lipid metabolism manifests as altered levels 
of lipid classes, including TAGs, diglycerides (DAGs), 
phosphatidylcholines (PCs), and phosphatidylethanola-
mines (PEs) [13, 14]. These changes can provide insights 
into the metabolic adaptations and potential vulnerabili-
ties in T1DM patients.

Traditionally, blood autoantibodies against cellular 
antigens, such as insulin, glutamic acid decarboxylase 
antibodies (GADAs), islet antigen 2 (IA-2), and zinc 
transporters are employed for T1DM prediction [15]. 
Moreover, gene expression analysis, metabolomics, pro-
teomics, and epigenetics may provide evidence and 
biomarkers to predict and diagnose T1DM [11, 16, 17]. 
Recent advancements in mass spectrometry and bio-
informatics have facilitated profound improvements in 
determining and interpreting lipidomics data [18, 19]. 
Current lipidomic studies have significantly broadened 
the profiling of lipids previously less well-known. A pop-
ulation-based cohort study detected 14 sphingolipids as 
significantly associated with elevated risk of T2DM [20], 
which confirmed the positive associations of SM C34:1 
and SM C36:1with T2DM in a Singapore Chinese popu-
lation [21], as well as of Cer(d18:1/20:0) with T2DM in a 
French population [22]. However, despite these advance-
ments, comprehensive plasma lipidomics analysis of 
T1DM remains limited. Understanding the lipidome 
alterations of T1DM could help unveil the fingerprints 
associated with dyslipidemia and cardiovascular diseases, 
which may serve as a valuable screening tool for T1DM.

Despite advancements in glycemic management strat-
egies, achieving optimal glycemic control remains chal-
lenging for many T1DM patients. Moreover, the impact 
of glycemic control on lipid metabolism in these patients 
is not well understood. Previous studies have primarily 
focused on the immediate effects of hyperglycemia on 
lipid profiles, with insufficient attention given to long-
term lipid changes after sustained glycemic control [23, 
24]. This study aimed to address this gap by investigat-
ing the lipidomic alterations in T1DM patients who have 
achived glycemic control. Using untargeted lipidomic 
analysis, we compared the lipid profiles of these T1DM 
patients to those of healthy participants, aiming to iden-
tify significant lipid changes and potential biomarkers. 
Understanding these lipidomic changes is crucial for 

developing better diagnostic tools and therapeutic strate-
gies to manage glycemic control in T1DM.

Materials and methods
Clinical samples and baseline data
A total of 27 T1DM patients under glycemic control 
(T1DMGC) were recruited in the Department of Endo-
crinology, the First People’s Hospital of Yunnan Province 
from January 2020 to January 2021. Inclusion criteria 
were as follows: 1) Patients aged between 18–45  years 
at the time of recruitment; 2) Patients diagnosed with 
T1DM for more than one year and received multiple-
dose insulin injections (MDII); 3) The level of glycated 
hemoglobin (HbA1c) was less than 9% (75  mmol/mol). 
Patients with abnormal thyroid function and ketoacido-
sis within one month before recruitment were excluded. 
Meanwhile, 24 age-matched healthy adults were selected 
in the physical examination center of the same hospital 
as the control group during the same period. Clinical and 
biochemical features of the study population are pre-
sented in Table 1. Detailed information of BMI are also 
listed in Supplementary Table 1.

A written informed consent was acquired from all par-
ticipants before inclusion. The study was approtableved 
by the Medical Ethics Committee of the First People’s 
Hospital of Yunnan Province (No. KHLL2016-KY038). 
All datasets were anonymized, with blood samples col-
lected and stored following REMARK for biomarker 
analysis.

Lipidomic analyses
Total lipids from plasma samples were analyzed 
using a modified Folch procedure [25]. Plasma Lipids 
were extracted from 100 μL plasma using a chloro-
form: methanol (2:1 v/v) solvent system after internal 

Table 1  Detailed clinical characteristics of the study population

a Differences between cases and controls were detected using the chi-squared 
(χ2) test
b Differences between cases and controls were detected using the Wilcoxon 
rank-sum test
c Normal-weight: BMI < 25 kg/m2; overweight: 25 ≤ BMI < 30 kg/m2; obese: 
BMI ≥ 30 kg/m2

CON(n = 24) DM (n = 27) P-value

Sex (%) 0.7248a

  Male 54.2 63.0

  Female 45.8 37.0

Age (mean ± SD) 35.1 ± 5.56 34.3 ± 11.2 0.45b

BMI c (%) 0.09302a

  Normal weight 91.7 88.9

  Overweight 8.3 7.4

  Obese 0 3.7
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standards were added (stable isotope labeled & non-
physiological lipid species). Lipids were quantified by a 
high-throughput quantitative lipidomics method [26]. 
The following lipid standards were used: 1,2-dimyris-
toyl-sn-glycero-3-phospho(choline-d13)(PC(14:0)-d13)), 
1,2,3-triheptadecanoylglycerol (TG(17:0/17:0/17:0)), 3β- 
hydroxy-5-cholestene 3-linoleate (ChoE(18:2)), 1,2- 
diheptadecanoyl-sn-glycero-3-phosphoethanolamine 
(PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosyl 
phosphorylcholine (SM(d18:1/17:0)), N-heptadecanoyl- 
D-erythro-sphingosine (Cer(1/17:0)-d18), 1,2-diheptade 
canoyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1- 
heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocho 
line (LPC(17:0)), 1-pal -mitoyl-d31-2-oleoyl-sn-glycero- 
3-phosphocholine (PC(16:0/d31/18:1)), 1-hexad -ecyl-
2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine  
(PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octadece 
noyl)-sn-glycero-3-phosphocholine (PC(18:0p/18:1(9Z))),  
1 - o c t a d e c a n o y l - s n - g l y ce ro - 3 - p h o s p h o ch o l i n e  
(LPC(18:0)), 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn- 
glycero-3-phosphocholine (PC(18:0p/22:6)) from Sigma- 
Aldrich Inc; 1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/ 
20:4)) from Avanti Polar Lipids Inc (Alabaster, AL, USA) 
and tripalmitin-1,1,1-13C3 (TG(16:0/16:0/16:0)-13C3), 
trioctanoin-1,1,1-13C3 (TG(8:0/8:0/8:0)-13C3) and 
1-palmitoyl-2-hydroxy-sn-glycero-3phosphatidylcholine 
(LPC(16:0)) from Larodan AB Inc (Solna, Sweden).

Ultra High‑Performance Liquid Chromatography‑MS/MS 
(UHPLC‑MS/MS) analysis
UHPLC separation was achieved using a SCIEX ExionLC 
series UHPLC System (Sciex, Framingham, USA), 
equipped with ACQUITY UPLC HSS T3 column (1.8 μm 
2.1*100  mm, Waters Corp., Milford, USA). The mobile 
phase A was 40% water, 60% acetonitrile, and 10 mmol/L 
ammonium formate, while the mobile phase B was 10% 
acetonitrile, 90% isopropanol, and 10  mmol/L ammo-
nium formate. The column temperature was set at 40 
℃. The auto-sampler temperature was at 6 ℃, and the 
injection volume was 2 μL. Further, an AB Sciex QTrap 
6500 + mass spectrometer was applied for assay develop-
ment. The ion source parameters were: ion spray volt-
age: + 5500/-4500  V, curtain gas: 40 psi, temperature: 
350℃, ion source gas: 1:50 psi, ion source gas 2: 50 psi, 
and DP: ± 80 V.

Data pre‑processing
Mass spectrometric lipidomic data were preprocessed 
with MZmine 2.18.2 [27]. The workflow consisted of 
raw data importing, filtering, peak detection, chromato-
gram construction, chromatogram deconvolution, peak 
list de-isotoping, peak list alignment, gap filling, and 
peak annotation. This was achieved by integrating mass 

spectrometry and retention time information using an 
in-house lipid library with a m/z tolerance of 0.006 m/z 
and an RT tolerance of 0.2 min. Pre-processing and anal-
ysis of lipidomics data were conducted using R software 
(v. 4.3.1). Pre-processed data were normalized according 
to internal specifications. Using the k-nearest neighbor 
technique, missing values of the lipidomic data set were 
retrieved. Log transformation was applied for a normal 
distribution. The coefficient of variation (relative stand-
ard deviation; %RSD) for peak regions and retention 
durations of lipid-class-specific internal standards were 
calculated. Lipid classes were determined by summing up 
individual lipid species within each class.

Statistical processing
R was utilized for data analysis and visualization. Four 
repeated measurements from each participant were 
analyzed by a mixed-effect model for lipid species. All 
statistical tests were adjusted for multiple tests using 
the Benjamini and Hochberg procedure. Twenty-five 
tests were adjusted for multiple comparisons based on 
the false discovery rate (FDR). Initially, the differences 
between the two groups were modeled with a lipid 
species-wise mixed-effect model, with time-diet inter-
action as a fixed effect and participants as a random 
effect.

Results
Clinical studies and statistical information
Plasma samples were collected from the 27 T1DMGC 
patients (34.3 ± 11.2 yrs) and 24 healthy controls 
(35.1 ± 5.5 yrs). No significant variations existed in age, 
gender, and body weight (Table  1). However, biochemi-
cal tests demonstrated substantial differences between 
the two groups in several plasma parameters. Briefly, 
T1DMGC patients had significantly lower levels of low-
density lipoproteins (LDLs) (p < 0.01) and TAGs (Fig.  1, 
p < 0.001). Furthermore, plasma levels of uric acids (UA) 
and alanine aminotransferase (ALT) decreased sharply 
(p < 0.05). In contrast, the levels of HbA1c (p < 0.001) 
and fasting blood glucose (FBG, p < 0.01) were elevated. 
Higher levels of HbA1c in patients with T1DM usually 
indicate higher levels of blood glucose. In T1DMGC, 
HbA1c is directly correlated with cholesterol. TAGs and 
LDLs are negatively correlated with high-density lipo-
proteins (HDLs). There was a linear relationship between 
HbA1c and dyslipidemia.

Untargeted lipidomics detected alterations in plasma 
lipids in T1DMGC
Through UHPLC-Q-TOF–MS, a total of 594 lipid 
species from 13 major lipid classes were identi-
fied, such as TAGs, diglycerides (DAGs), PCs, 
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phosphatidylethanolamines (PEs), hexosylceramides 
(HexCers), lysophosphatidylethanolamines (LPEs), 
lysophosphatidylcholines (LPCs) and lactosylceramides 
(LCERs). TAG species dominated with 372 metabo-
lites, followed by PCs, PEs, and DAGs, each having 40, 
37, and 30 detectable metabolites, respectively. (Fig-
ure S1A). Partial least squares discriminant (PLS-DA) 
analysis revealed marked differences in lipid composi-
tion between the T1DM and normal groups (Figure 
S1B). Moreover, the levels of most lipid metabolites 
declined in T1DM patients, with the notable exceptions 
of LPCs and LPEs (Figure S1C). In T1DMGC patients, 
TAGs showed the greatest relative decrease, followed 
by DAGs (Figure S1D). In summary, plasma lipid com-
position of patients with T1DMGC was significantly 
changed from that of the healthy population.

Alterations in glycerides and phospholipids in T1DMGC
Differential analysis of all metabolites was conducted 
to examine the altering patterns of lipid molecules 
in T1DMGC. The results revealed that 224 TAGs 
(Fig.  2A) and 22 DAGs (Fig.  2B) were down-regulated 
in T1DMGC. Only one DAG was found elevated. TAGs 
constitute the primary component in vegetable and ani-
mal fats, serving as the principal component of adipose 
tissue stores. An extensive decrease of TAGs may indi-
cate dyslipidemia in T1DMGC patients. These findings 
concurred with the previous results in this study that 
T1DMGC patients had low levels of LDLs. Compared 
with the control group, the levels of six PCs (Fig. 3A) and 
three PEs (Fig.  3B) were all reduced. Most lipid metab-
olites exhibited a declining trend in T1DMGC plasma 
samples, allowing us to seek molecular markers for clini-
cal diagnosis.

Fig. 1  Clinical phenotypic differences in plasma samples between type 1 diabetes (DM) patients and healthy controls (CON). LDL: Low-density 
lipoprotein, TAG: triglyceride, UA: uric acid, HbA1c: glycosylated hemoglobin, FBG: fasting blood glucose, ALT: alanine aminotransferase. *** 
denoting statistical test with p < 0.001, ** statistical test with p < 0.01 and * statistical test with p < 0.05 according to Wilcoxon test
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Fig. 2  Volcano plots showing the distribution of differential TAGs (A) and DAGs (B) in T1DM. The screening criteria for differential metabolites 
included P-value < 0.05, VIP > 1 and FOLD CHANGE > 1

Fig. 3  Volcano plots showing the distribution of differential PCs (A) and PEs (B). The screening criteria for differential metabolites included P-value 
of t-test < 0.05, VIP > 1 and FOLD CHANGE > 1
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Interconversion of plasma lipids in patients with T1DMGC
Alterations in overall lipid composition in T1DMGC 
may be caused by the mutual transformation of lipids.
The levels of TAGs in T1DMGC were lower than those in 
the control group (Fig. 4). TAGs are synthesized in vivo 
in two ways: one is the esterification pathways, in which 
fatty acids are esterified with glycerol by monoacylglyc-
erol acyltransferase (MGAT) and diacylglycerol acyl-
transferase (DGAT); the other is the ab  initio synthesis, 
which starts with 3-phosphoglycerate (G3P) and free 
fatty acids. Our results showed that esterification is the 
main way to synthesize TAGs in T1DMGC (Fig. 4).

There was no significant difference in the levels of PEs 
and PCs between the T1DMGC and the healthy group. 
Glycerol phospholipids contain at least one acyl, alkyl 
or alkenyl-linked fatty acyl side chain, which can be 
divided into phosphatidic acids (PAs), phosphatidylglyc-
erols (PGs), phosphatidylinositols (PIs), PCs, PEs, phos-
phatidylserine (PS) and lysophosphatidylphospholipids 
(lyso-PL) after hydrolyzing a fatty acid side chain. The 
metabolism and mutual transformation of phospholipids 
form a complex network, which is regulated by a variety 
of metabolic enzymes. PCs and PEs are the most abun-
dant phospholipids, which were dynamically balanced 
in T1DMGC. PEs can produce PCs through the PEMT 
pathway, which becomes another critical pathway for the 
source of PCs.

Changes in blood lipids can also be manifested by the 
level of sphingomyelin. The common structure of sphin-
gomyelins is a sphingosine skeleton and a long-chain fatty 

acid side chain, mainly synthesized from ab initio in the 
endoplasmic reticulum. SM and ceramide (Cer) can be 
transformed into each other by sphingomyelin synthase 
(SGMS) and sphingomyelin hydrolase (SMPD). In addi-
tion to the hydrolysis of SM, ceramide can also be syn-
thesized from scratch by serine and palmitoyl coenzyme 
A or by ceramide synthase (CERS).T1DMGC patients 
displayed no significant change in the level of SM but had 
decreased level of Cer compared with the control group 
(Fig. 4).

Identifying effective indicators of T1DMGC
Finally, we tried to detect biomarkers with high predic-
tive potential in T1DMGC patients. Random forest was 
adopted to estimate individual classification capabili-
ties using AUC (area under the curve). The top 20 lipid 
metabolites with the highest classification accuracy were 
selected (Fig.  5A), with DAG(14:0/20:0)(AUC = 0.966), 
DAG(16:0/16:0) (AUC = 0.941), DAG(16:0/18:0)
(AUC = 0.934), PC(18:0/20:3)(AUC = 0.92) and 
TAG(56:7)FA18:1(AUC = 0.948) to be the five biomark-
ers with the highest classification capability (Fig. 5B). In 
conclusion, the above five biomarkers may serve as highly 
accurate and novel indicators for clinical detection, diag-
nosis, and detection of T1DMGC.

Discussion
Our study identified significant changes in the plasma 
levels of TAGs, DAGs, PCs, and PEs in T1DM patients 
with controlled glycemic levels, suggesting a complex 

Fig. 4  Synthetic and degrading pathways of lipids
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interplay between lipid species and glycemic-controlled 
T1DM. Abnormal levels of specific lipid species may 
contribute to the dysregulation of glucose homeosta-
sis, thereby promoting the onset and progression of 
T1DM [28, 29]. The observed alterations in lipid profiles 
between T1DMGC and healthy groups provided valu-
able insights into the impact of glycemic control on lipid 
metabolism in T1DM.

Previous studies have established the higher prevalence 
of dyslipidemia in individuals with T1DM compared with 
non-diabetic populations [30]. Acute hyperglycemia has 
been shown to significantly alter lipid metabolism, often 
resulting in elevated levels of TAGs, low- LDL choles-
terol, along with a reduction in HDL cholesterol [31]. 
These alterations can exacerbate the risk of cardiovas-
cular diseases. Glycemic control plays a critical role in 
modulating lipid abnormalities in T1DM. Patients with 
inadequate glycemic control showed markedly elevated 
TAG levels and decreased high-density HDL cholesterol. 
As glycemic control deteriorated, alterations in LDL par-
ticle subclasses were noted, with a pronounced decrease 

in LDL levels among these individuals [32]. Conversely, 
T1DM patients who maintained good glycemic con-
trol exhibited lipid profiles closely resembling those of 
the general population [33]. Interestingly, a notable lack 
of literature addresses non-targeted lipid profiling in 
T1DM. Our research presents novel findings, revealing 
significant differences in TAGs, DAGs, PCs, and PEs in 
T1DM patients with HbA1c levels below 9%, compared 
to normal controls. This innovative approach highlights 
the necessity for further exploration of lipid profiles in 
T1DM with controlled glycemic levles to better under-
stand its implications for cardiovascular risk.

Lipids are crucial macromolecules performing criti-
cal tasks in the body. The lipidome composition may be 
influenced by dietary lipid intake in T1DM patient [34, 
35]. Our untargeted lipidomic analysis revealed sig-
nificant changes across 13 major lipid classes in T1DM 
patient post-glucose control, with TAGs, DAGs, PCs, 
PEs, and FFAs exhibiting the most dramatic changes. 
Notably, TAGs and DAGs, which are key in energy stor-
age and signaling, showed marked declines [36]. This 

Fig. 5  Random forest for identifying the most important categorical components in T1DM. A: Top 20 biomarkers by random forest. B: ROC analysis 
of biomarkers with the greatest AUC values
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decline might indicate a link between impaired TAG 
metabolism and disrupted blood glucose control, a key 
issue in T1DM management. Traditional clinical mark-
ers of diabetes include TAGs, cholesterol, and non-ester-
ified fatty acids [37, 38]. However, these plasma lipids are 
only of limited value in identifying individuals at risk for 
developing diabetes and fail to determine which indi-
viduals may progress into diabetes. Here, highly effective 
plasma biomarkers were detected for assessing glycmic 
control status in T1DM, such as DAG(14:0/20:0) and 
PC(18:0/20:3).

Phospholipids such as PCs and sphingomyelins are 
two significant groups of phospholipids crucial for nor-
mal functions of cell membranes [39, 40]. Phospholipids 
are also a substantial component of HDL, particularly 
in variants containing polyunsaturated fatty acids. This 
study revealed that plasma samples from T1DMGC 
patients had considerably lower levels of PCs and PEs. 
The altered levels of PCs and sphingomyelins further 
emphasize the importance of membrane lipid composi-
tion in T1DMGC. These lipids play critical roles in cel-
lular function, whose dysregulation may disrupt insulin 
signaling pathways, contributing to the hyperglycemic 
state observed in T1DM [41]. A lower plasma level of 
HDL cholesterol hinted at a positive association between 
levels of polyunsaturated sphingomyelin and PCs and the 
level of HDL cholesterol [42, 43].

As demonstrated by previous research, β-cell inflam-
mation is modulated by aberrant sphingolipid levels dur-
ing an early stage of T1DM [20, 44]. Sphingolipids are 
comprised of sphingomyelin (SM) and glycosphingolipid 
(GSP), both sharing a similar structural framework of a 
sphingosine backbone and a long fatty acid side chain. 
Sphingolipids are predominantly generated from scratch 
within the endoplasmic reticulum. Both sphingomyelin 
synthase (SGMS) and sphingomyelin hydrolase (SMH) 
can interconvert SM and ceramide. Furthermore, SM can 
be decomposed into ceramide via hydrolysis, which can 
also be synthesized de novo using serine and palmitoyl-
CoA or by ceramide synthase (CERS). Both ceramide and 
dihydroceramide (DCERs) were significantly down-regu-
lated in T1DMGC patients. We thus postulated that this 
might be a root cause of aberrant inflammatory response. 
Autoimmune response against pancreatic beta cells is 
probably a significant causative factor in T1DM. By acti-
vating critical signaling lipids such as lysin lecithin, pros-
taglandins, and other arachidonic acid derivatives and 
certain sphingolipids, inflammation has been directly 
correlated with multiple sclerosis and rheumatoid arthri-
tis [45, 46]. Therefore, the aberrant levels of sphingolipids 
in plasma samples of T1DM patients may implicate inap-
propriate immunological responses. One notable finding 
is the decrease in LDL levels in T1DMGC patients, which 

may be attributed to the overall metabolic alterations 
and the effects of glycemic control measures [47]. The 
reduction in LDL cholesterol could be a compensatory 
mechanism or a result of altered lipid metabolism path-
ways in T1DMGC [48]. ALT is a marker of liver function 
and has been associated with metabolic disorders. Lower 
ALT levels in T1DMGC patients might indicate reduced 
hepatic lipid synthesis or altered liver function due to 
chronic hyperglycemia and its management [49]. Moni-
toring ALT levels could provide insights into the hepatic 
involvement in T1DMGC and help in managing the dis-
ease more effectively.

Our study unveils crucial insights into the lipidomic 
alterations associated with T1DM, offering potential clin-
ical insights in several key areas. The distinct lipid pro-
files observed in T1DM individuals post-glucose control 
may pave the way for developing a lipidomic signature 
that can aid in assessing glycemic control status in T1DM 
and differentiating it from other metabolic disorders. 
While this study provides valuable insights, it is essential 
to acknowledge certain limitations that may impact the 
generalizability of our findings. Firstly, the cross-sectional 
nature of the study design limits our ability for analyses 
of causation. Longitudinal studies are warranted to eluci-
date the temporal relationships between lipid alterations 
and T1DM management and progression. Furthermore, 
the sample size of the study may decrease the generaliz-
ability of obtained results. Larger, more diverse cohorts 
are necessary to account for potential variations in lipid-
omic profiles among different demographic groups.

Conclusions
This study presents novel insights into the lipidomic 
alterations in T1DMGC patients after achieving glu-
cose control, a relatively underexplored area in dia-
betes research. While previous studies have primarily 
focused on the immediate effects of hyperglycemia on 
lipid profiles, our research delves into the long-term 
lipid changes under glycemic control, highlighting the 
significance of sustained metabolic management. Our 
findings reveal substantial changes in plasma levels of 
various lipid species, particularly TAGs, DAGs, PCs, and 
PEs. The identification of specific lipid biomarkers such 
as DAG(14:0/20:0) and PC(18:0/20:3) offers new tools 
for assessing glycemice control status in T1DM, poten-
tially enabling better differentiation from other meta-
bolic disorders. The significance of our study lies in its 
contribution to the understanding of lipid metabolism 
in T1DM, particularly after glycemic control, which has 
been largely overlooked in existing literature. By eluci-
dating the lipid profile alterations, we provide a deeper 
understanding of the metabolic disturbances in T1DM, 
emphasizing the complex interplay between lipid species 
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and glucose homeostasis. Future research should focus 
on longitudinal studies to further explore the temporal 
relationships between lipid alterations and T1DM man-
agement. Larger, more diverse cohorts are also necessary 
to validate our findings and ensure their generalizability 
across different populations. Additionally, investigating 
the mechanisms underlying the observed lipid changes 
can uncover new therapeutic targets, enhancing the 
management of T1DM. In summary, our study under-
scores the importance of lipidomics in understanding 
glycemic control in T1DM and in differentiating it from 
other metabolic disorders. These findings may ultimately 
contribute to more effective management strategies and 
better patient outcomes.
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