
Thoracic: Lung Cancer: Basic Science Alifano, Prieto, Alifano
Glucose metabolism transcriptome clustering identifies
subsets of resectable lung adenocarcinoma with
different prognoses
Enzo Alifano, BSc, Mathilde Prieto, MD, and Marco Alifano, MD, PhD
ABSTRACT

Objectives: Reprogramming of energy metabolism is a well-established hallmark of
cancer, with aerobic glycolysis classically considered a prominent feature. We inves-
tigate the heterogeneity in glucose metabolism pathways within resectable primary
lung adenocarcinoma and its clinical significance.

Methods: Using The Cancer Genome Atlas data, RNA expressions were extracted
from 489 primary lung adenocarcinoma samples. Prognostic influence of glycolytic,
aerobic, and mitochondrial markers (monocarboxylate transporter [MCT]4, MCT1,
and translocase of outer mitochondrial membrane 20, respectively) was assessed
using Kaplan-Meier analysis. Clustering of 35 genes involved in glucose metabolism
was performed using the k-means method. The clusters were then analyzed for as-
sociations with demographic, clinical, and pathologic variables. Overall survival was
assessed using the Kaplan-Meier estimator. Multivariate analysis was performed to
assess the independent prognostic value of cluster membership.

Results: Classical statistical approach showed that higher expression of MCT4 was
associated with a significantly worse prognosis. Increased expression of translocase
of outer mitochondrial membrane 20 was associated with a nonsignificant trend
toward better prognosis, and increased expression of MCT1 was associated with
a better outcome. Clustering identified 3 major metabolic phenotypes, dominantly
hypometabolic, dominantly oxidative, and dominantly mixed oxidative/glycolytic
with significantly different pathologic stage distribution and prognosis; mixed oxida-
tive/glycolytic was associated with worse survival. Cluster membership was inde-
pendently associated with survival.

Conclusions: This study demonstrates the existence of distinct glucose meta-
bolism clusters in resectable lung adenocarcinoma, providing valuable prognostic
information. The findings highlight the potential relevance of considering metabolic
profiles when designing strategies for reprogramming energy metabolism. Further
studies are warranted to validate these findings in different cancer types and
populations. (JTCVS Open 2024;20:194-201)
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CENTRAL MESSAGE

Using a clustering gene tran-
scriptoma approach, we showed
the existence of different energy
metabolic phenotypes in lung
adenocarcinoma and demon-
strated that different clusters
had different prognoses.
PERSPECTIVE
Most of the energy production of cancer cells
originates from aerobic glycolysis. Concurrent
tricarboxylic acid cycle and oxidative phosphory-
lation is a possible feature, but the clinical signifi-
cance of the coexistence of both pathways is
unknown. By a clustering approach, we showed
the existence of different metabolic phenotypes
and demonstrated that different clusters had
different prognoses.
Reprogramming of energy metabolism has been recognized
as a hallmark of cancer cells: increased energy demands are
required to fuel cell growth and division.1 In their landmark
2011 article, Hanahan and Weinberg2 highlighted how aer-
obic glycolysis (the so-called Warburg effect) is largely
favored over normal glucose metabolism in cancer cells:
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Even under aerobic conditions, most of the energy produc-
tion would come from cytoplasmic glycolysis, without the
transfer of pyruvate to mitochondria for the tricarboxylic
acid cycle and oxidative phosphorylation.

This mechanism, originally described by Otto Warbourg
in 1930 and confirmed in various settings in the following
years, is rather counterintuitive because the energetic effi-
ciency of glycolysis (in terms of adenosine trisphosphate
production) is about 18 times lower compared to the usual
glucose metabolism of noncancerous cells.3 To compensate
for the lower energy efficiency and to enable enhanced
glycolysis, cancer cells require more glucose to enter the
cytosol, which is enabled by increased expression of glucose
transporters, mainly GLUT1.4,5 In this model, cancer can be
viewed as a metabolic parasite whose cells compete for en-
ergy substrates with host cells in the rest of the body and
in the tumor microenvironment.6 The ability of tumors to
take up glucose is clinically demonstrated using fludeoxyglu-
cose F18 positron emission tomography, and a large body of
literature has accumulated highlighting the negative prog-
nostic character of increased glucose uptake.7

It should be emphasized that aerobic conditions are not
necessarily present inside tumors whose neovascularization
favors reduced oxygen availability, especially in the depth
of the lesion; in this case, only glycolytic fueling allows
cancer cells to survive and proliferate. In addition, glyco-
lytic function has been shown to be associated with acti-
vated oncogenes such as RAS or MYC and mutated
tumor suppressors such as TP53.8-12 Furthermore,
glycolytic waste in the tumor stroma contributes to a
decrease in local pH, which in turn leads to a decrease in
the efficacy of antitumor immune cells in the tumor
microenvironment.7,8

Glycolysis is a sequence of 10 enzymatic reactions and
is believed to have 3 key regulatory steps, namely the reac-
tions catalyzed by hexokinase, phosphofructokinase, and
pyruvate kinase (first, third, and 10th steps, respectively).
These regulatory steps are essentially irreversible and
have large negative DG values. A large number of publica-
tions have been devoted to the influence of these enzymes
on cancer progression and outcome, but most of the avail-
able literature focuses on a single enzyme, its expression
and relationships with different oncogenic pathways.13,14

However, it has been highlighted how several glycolytic
intermediates, which are also generated in non-key steps
and whose levels would be increased in the event of
enhanced glycolysis and enhanced expression of non-key
enzymes, can be diverted to enter various biosynthetic
pathways, including those that generate nucleosides and
amino acids, which in turn facilitate the biosynthesis of
macromolecules required for cell division. Thus, upregula-
tion of the whole glycolytic pathway would be a real
advantage for cancer cells, mitigating the lower energy ef-
ficiency compared with normal glucose metabolism, but
clinical evidence of increased aggressiveness in the case
of current overactivation of the whole glycolytic pathway
is currently poor.
Cancer cells do not necessarily rely on glycolysis, and

Hanahan and Weinberg2 highlighted that some tumors
have been found to contain 2 subpopulations of cancer
cells that differ in their energy production pathways: 1
subpopulation would consist of cells that rely on the War-
burg effect and produce lactate, whereas the second sub-
population would preferentially import and use the
lactate produced by their neighbors as their main energy
source, converting lactate to pyruvate for use in the
tricarboxylic acid cycle and oxidative phosphorylation.
In this model, the role of tricarboxylic acid carriers is
crucial, allowing lactic acid to be secreted or imported:
The carriers responsible for this exchange, MCT4 and
MCT1, have been proposed to be more frequently associ-
ated with glycolytic or oxidative phosphorylation (OX-
PHOS) functions in cancer cells, respectively.9,15,16

However, the clinical significance of the coexistence of
both pathways has been poorly assessed.
Classifying tumor metabolism as oxidative, glycolytic,

or both (if possible) on the basis of analysis of single or
groups of proteins or gene expressions is not trivial.
Indeed, it is not clear how one should classify the meta-
bolism when, for example, some glycolytic genes show
high RNA expression and others a low RNA expression.
To our knowledge, there is no universally accepted heuris-
tic for doing so. In this analysis, we propose to learn the
classification heuristic on a publicly available dataset us-
ing a clustering approach.
Thus, using the RNA expressions available thanks to The

Cancer Genome Atlas (TCGA) project and performing a
clustering approach, we aimed to assess the coexistence
of different glucose metabolism pathways in a clinical
model of resectable primary lung adenocarcinoma; evaluate
whether or not different clusters are differentially repre-
sented among stages, sex, and age categories; and assess
the prognostic significance of different glucose metabolism
pathway clusters.
JTCVS Open c Volume 20, Number C 195
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MATERIAL AND METHODS
The R2 platform (http://r2.amc.nl) was used to extract demographic,

pathologic, RNA expression, and overall survival data from the

TCGA Lung Adenocarcinoma Database (Mixed Lung Adenocarcinoma

(2022-v32) - tcga - 589 - tpm - gencode36). We took into account data

on patients whose samples were represented by the primary tumor and

for whom a minimal follow-up beyond intervention was available

(n ¼ 489). The institutional review board did not approve this study,

because of its nature (retrospective analysis of a publicly available data-

base). Patient written consent for the publication of the study was not

received because they were anonymous.

First, we assessed the prognostic influence of RNA expression of a

marker of glycolytic activity (ie, MCT4), a marker of aerobic activity (ie,

MCT1), and a marker of mitochondrial function (ie, translocase of outer

mitochondrial membrane 20 [TOMM20]) by Kaplan-Meier estimates of

overall survival. We used the median, lower quartile, and upper quartile

as cutoffs. Log-rank was used for comparison.

Secondly, we used the platform’s grabber function to extract demo-

graphic and available clinical and pathological data. Together, we extracted

RNA expression levels (normalized by log2) of 35 genes, a number consid-

ered compatible with the subsequent clustering as representing approxi-

mately 50% more than the square number of observations. Thus, we

extracted the RNA expression of genes of the 3 main glucose transporters

(solute carrier family 2 member 1 [SLC2A1], solute carrier family 2 member

3, and solute carrier family 2 member 4, whose proteins are known as

GLUT1, GLUT3, and GLUT4), the 10 genes of glycolysis (hexokinase 2,

glucose-6-phosphate isomerase, phosphofructokinase, aldoase fructose-

bisphosphate A, triosephosphate isomerase 1, glyceraldehyde-3-phosphate,

phosphoglycerate kinase 1, phosphoglycerate mutase 1, enolase 1, and pyru-

vate kinaseM), the 8 genes of tricarboxylic cycle (citrase synthase, Aconitase

2, isocitrate dehydrogenase (NAD[þ]) 3 catalytic subunit alpha, oxoglutarate

dehydrogenase, succinate-CoA ligase GDP/ADP-forming subunit alpha,

succinate dehydrogenase complex flavoprotein subunit A, fumarate hydra-

tase, and malate dehydrogenase 2), and all 10 mitochondrial genes involved

in oxidative phosphorylation (mitochondrially encoded ATP synthase mem-

brane subunit 6, mitochondrially encoded ATP synthase membrane subunit

8, mitochondrially encoded cytochrome C oxidase I, mitochondrially

encoded cytochrome C oxidase II, mitochondrially encoded cytochrome C

oxidase III, mitochondrially encoded cytochrome B, mitochondrial

NADH-ubiquinone oxidoreductase chain (MT-ND)1, MT-ND2, MT-ND3,

MT-ND4) as well as of nonmitochondrial gene of OXPHOS, TOMM20,

belonging to the TOMM complex. Finally, to take into account the possible

utilization of lactate produced by glycolytic cancer cells by oxidative ones,

we extracted the RNA expression of 2 tricarboxylic acid carrier genes, solute

carrier family 16 member 3 (SLC16A3) and solute carrier family 16 member

1 (SLC16A1) (whose proteins are known asMCT1 andMCT4), and of lactate

dehydrogenase, which reversibly catalyze the pyruvate-lactate conversion.

For some of the enzymes different isoformsmay exist; we selected, after

careful literature review, the isoform more involved in glucose metabolism

abnormalities in lung adenocarcinoma, whenever known, or, more gener-

ally, in cancer. For example, for hexokinase, we selected the isoform 2

(ie, hexokinase 2).

Data were retrieved in the txt format and converted to Excel (Microsoft

Corporation). The Excel file was imported into Python and Python scripts

were written to perform data analysis and clustering.

Clustering was performed using the k-means approach. Kaplan-Meier

estimates were used to assess overall survival and curves were compared

by log-rank test. Finally, Cox regression analysis was used to assess the in-

dependent character of prognostic factors. In the Cox model we included

cluster, age, sex, and pathologic stage. Principal component analysis

(PCA) analyses were performed to discuss the results qualitatively and

display the relevant clusters. Used dataset and all the Python scripts are

available upon request. Institutional review board review was not required

due to the nature of the data analyzed.
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RESULTS
Records of 489 patients who met our criteria were

collected and available for analysis. All specimens were ob-
tained at surgical resection for primary lung adenocarci-
noma. The distribution of pathologic stages was I: 269, II:
116, III: 78, and IV: 25.
Prognostic Influence of Markers of Glycolytic or
Oxidative Metabolism and of Mitochondrial Activity

Using median or 75th percentile but not the 25th percen-
tile as cutoff, higher expression of SLC16A3 (MCT4, a
marker of glycolytic metabolism) was associated with a
significantly worse prognosis. Increased expression of
SLC16A1 (MCT1, a marker of nonglycolytic metabolism)
was associated with a better outcome when using the 75th
percentile as cutoff, whereas the difference was not signif-
icant using the median or 25th percentile. Finally, increased
expression of TOMM20 (a marker of OXPHOS), is associ-
ated with a trend toward better prognosis without reaching
significance, regardless of the cutoff chosen (Figure 1).
Clustering Approach
We performed PCA on the gene expression variables to

assist visualization of clusters. The cumulative explained
variances for each principal component are shown in
Figure 2, A. This result supports a 2-dimensional analysis
of the clusters, as the first 2 components explain more
than half of the variance in the dataset. Subsequent compo-
nents explain far less variance. These 2 components corre-
late with each gene as shown in Figure 2, B.

We identified 4 clusters. On these 2 axes, the clusters can
be visualized with a color mapping in Figure 2, C. Table 1
shows the mean � SD of each analyzed gene expression as
well as the means or proportions of available clinical vari-
ables in each cluster.

In a univariate Kaplan-Meier analysis, the assigned clus-
ter is associated with overall survival (cluster 1 vs cluster 2
[P<.05], cluster 0 vs cluster 2 [P ¼ .01], and cluster 1 vs
cluster 0 [P ¼ .24]). Cluster 3 was excluded from this anal-
ysis due to the small number of data points, and therefore
large CIs. This can be seen in Figure 3. In a univariate
Cox regression model (Table 2), clusters 0 and 1 are signif-
icantly associated with better prognosis compared with
cluster 2, in the direction that is predicted by the Kaplan-
Meier estimates. When age, sex and stage were included
in the regression (Table 2), cluster 1 maintained signifi-
cance, whereas cluster 0 lost significance, but a trend in
the same direction was maintained.
DISCUSSION
In this study, we provide evidence that, in lung adenocar-

cinoma, genes of the entire glucose metabolism pathway
(including glucose transporters, tricarboxylic acid

http://r2.amc.nl
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FIGURE 1. Prognostic influence of monocarboxylte transporter 4 (MCT4), monocarboxylate transporter 1 (MCT1), translocase of outer mitochondrial

membrane 20 (TOMM20) using median, 75th and 25th percentile as cutoffs. Kaplan-Meier estimates of overall survival. Shadows indicate 95% CI.
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transporters, glycolysis, tricarboxylic acid cycle, and OX-
PHOS) can be clustered, resulting in a strong prognostic
discrimination. The prognostic significance of clusters is
maintained in multivariate analysis underlining the inde-
pendent prognostic significance.
This clustering approach has the advantage of not
requiring labeled data; as discussed above, the labeling it-
self (ie, defining a tumor as merely glycolytic or not) may
be hardly achievable. The expression of SLC16A3
(included in our analysis) has been reported as a general
JTCVS Open c Volume 20, Number C 197
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marker of glycolysis, because its product,MCT4 is a tricar-
boxylic acid carrier responsible for lactate export
from glycolytic-producing cells.9,15-18 By a conventional
statistical approach, using median as the cutoff, higher
expression of SLC16A3, was associated with a signifi-
cantly worse prognosis, compared with tumors with lower
expression of MCT4, which could be considered
nonglycolytic, although they cannot be directly qualified
as relying on oxidative metabolism. We also show by a
conventional approach that increased expression of
TOMM20, classically considered as a marker of XPHOS,
is associated with trend toward better prognosis without
reaching significance (regardless from the cutoff chosen).
Yet, increased expression of SLC16A1 (considered as
marker of nonglycolytic metabolism) was associated with
a better outcome when the 75th percentile was used as a
cutoff, whereas the difference was not significant at
median. The product of SLC16A1, MCT1, is a
tricarboxylic acid carrier that uptake lactate from the
interstitium (where it is rejected by glycolytic cells) into
the nonglycolytic cells where it can be transformed into
pyruvate by lactate dehydrogenase A.9 The fate of pyruvate
can be dual because it can proceed toward the tricarboxylic
acid cycle and oxidative phosphorylation or even enter in
the gluconeogenesis pathway to produce glucose, as in the
Cori cycle. Using a conventional approach on TCGA
data, one could conclude that glycolytic tumors have a
198 JTCVS Open c August 2024
worse prognosis as compared with nonglycolytic tumors
and that tumors expressing a specific marker of OXPHOS
show a nonsignificant trend toward better prognosis.

However, it should be underlined that most of the
variance in gene expressions can be explained by
2-component PCA. In Figure 2, the x-axis is correlated
with mitochondrial genes and therefore explains the aerobic
character of the phenotype; the y-axis is correlated to anaer-
obic genes, but also with gene expressions related to lactate
reuptake and lactate to pyruvate transformations. The fact
that these 2 variables explain most of the variance in the da-
taset is consistent with basic research: these lung adenocar-
cinoma phenotypes are explained by a theoretical oxidative/
mitochondrial variable, and a theoretical anaerobic vari-
able. This second variable correlates with lactate and pyru-
vate metabolism, as predicted by the 2-components model.

Using our approach, wewere able to identify 3 main clus-
ters, including 171, 165, and 130 patients, respectively, and
a smaller cluster with 23 individuals. The latter was mainly
composed of younger individuals, with lower average to-
bacco consumption and more frequent early stage disease:
expression of both oxidative and glycolytic genes was
very low and few events were observed during the first years
after surgery. The other 3 clusters were represented by a
cluster (No. 1) expressing low levels of both glycolytic
and OXPHOS genes, a cluster mainly relying on OXPHOS
metabolism (No. 0) and a cluster (No. 2) with increased



TABLE 1. Clinical characteristics of each cluster and mean RNA expression levels

Feature Cluster 0 Cluster 1 Cluster 2 Cluster 3

Mean age (y) 64.69 � 10.31 67.38 � 8.94 64.7 � 10.1 57.96 � 10.96

Women 56 58 50 43

Stage I 57 65 42 74

Stage II 20 22 29 17

Stage III 18 8 21 9

Stage IV 4 4 8 0

Pack-years 42.52 � 28.34 38.8 � 25.59 45.35 � 29.11 30.67 � 17.17

ACO2 4.02 � 0.56 4.29 � 0.68 4.47 � 0.53 3.4 � 0.52

ALDOA 2.68 � 0.75 2.58 � 0.59 3.49 � 0.72 2.46 � 0.99

CS 6.09 � 0.5 6.12 � 0.52 6.56 � 0.52 5.18 � 0.66

ENO1 9.87 � 0.64 9.74 � 0.73 10.64 � 0.6 8.82 � 1.24

FH 6.42 � 0.51 6.54 � 0.59 6.74 � 0.5 5.78 � 0.57

GAPDH 10.18 � 0.66 9.95 � 0.72 11.32 � 0.6 9.25 � 1.29

GPI 6.26 � 0.58 6.04 � 0.54 6.96 � 0.6 5.23 � 0.7

HK2 4.88 � 1.03 4.56 � 1.08 5.95 � 0.98 4.96 � 1.36

IDH3A 2.72 � 0.59 3.04 � 0.46 3.26 � 0.52 3.05 � 0.5

LDHA 8.31 � 0.62 8.34 � 0.57 9.31 � 0.65 8.27 � 0.68

MDH2 7.32 � 0.57 7.31 � 0.63 7.76 � 0.51 6.33 � 0.7

MT-ATP6 13.89 � 0.48 12.69 � 0.56 12.8 3 � 0.69 9.36 � 1.95

MT-ATP8 11.69 � 0.76 10.72 � 0.74 10.89 � 0.73 7.04 � 1.78

MT-CO1 14.82 � 0.49 13.73 � 0.48 13.71 � 0.69 11.63 � 1.25

MT-CO2 14.71 � 0.49 13.47 � 0.5 13.65 � 0.66 11.06 � 1.2

MT-CO3 14.79 � 0.52 13.53 � 0.5 13.67 � 0.71 11.56 � 1.13

MT-CYB 13.84 � 0.52 12.64 � 0.53 12.59 � 0.71 9.76 � 1.9

MT-ND1 13.73 � 0.57 12.55 � 0.58 12.51 � 0.83 9.04 � 1.96

MT-ND2 13.78 � 0.58 12.48 � 0.57 12.64 � 0.71 8.58 � 2.28

MT-ND3 13.53 � 0.56 12.63 � 0.56 12.63 � 0.62 9.96 � 1.12

MT-ND4 14.63 � 0.47 13.39 � 0.53 13.52 � 0.71 9.86 � 2.11

OGDH 6.45 � 0.62 6.33 � 0.59 6.68 � 0.57 5.47 � 0.75

PFKP 5.32 � 0.99 4.81 � 1 6.36 � 0.96 4.66 � 0.94

PGAM1 5.22 � 0.57 5.41 � 0.46 6.22 � 0.52 5.14 � 0.68

PGK1 7.91 � 0.7 8.12 � 0.59 9.09 � 0.63 8.19 � 0.96

PKM 8.59 � 0.59 8.59 � 0.65 9.47 � 0.5 7.66 � 0.87

SDHA 1.81 � 0.48 1.69 � 0.43 1.88 � 0.5 2.29 � 0.93

SLC16A1 2.84 � 1.08 2.85 � 0.99 4.37 � 1.44 3.82 � 0.94

SLC16A3 5.13 � 1.02 4.88 � 0.87 6.21 � 0.92 4.42 � 1.2

SLC2A1 5.32 � 1.21 4.73 � 0.97 7.17 � 1.06 5.24 � 1.28

SLC2A3 4.36 � 1.1 4.4 � 1.12 5.34 � 1.21 4.72 � 1.22

SLC2A4 0.72 � 0.48 0.65 � 0.37 0.62 � 0.52 0.47 � 0.32

SUCLG1 5.48 � 0.42 5.68 � 0.53 5.78 � 0.47 5.18 � 0.75

(Continued)
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TABLE 1. Continued

Feature Cluster 0 Cluster 1 Cluster 2 Cluster 3

TOMM20 7.57 � 0.61 8.01 � 0.65 7.96 � 0.51 7.63 � 0.35

TPI1 8.97 � 0.51 8.86 � 0.69 9.88 � 0.53 8.15 � 1.24

Values are presented as mean � SD or %. ACO2, Aconitase 2; ALDOA, aldolase, fructose-bisphosphate A; CS, citrate synthase; ENO1, enolase 1; FH, fumarate hydratase;

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GPI, glucose-6-phosphate isomerase;HK2, hexokinase 2; IDH3A, isocitrate dehydrogenase (NAD(þ)) 3 catalytic subunit

alpha; LDHA, lactate dehydrogenase A; MDH2, malate dehydrogenase 2; MT-ATP6, mitochondrially encoded ATP synthase membrane subunit 6; MT-ATP8, mitochondrially

encoded ATP synthase membrane subunit 8; MT-CO1, mitochondrially encoded cytochrome C oxidase I; MT-CO2, mitochondrially encoded cytochrome C oxidase II; MT-

CO3, mitochondrially encoded cytochrome C oxidase III;MT-CYB, mitochondrially encoded cytochrome B;MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreduc-

tase core subunit 1;MT-ND2, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 2;MT-ND3, mitochondrially encoded NADH:ubiquinone oxidoreductase

core subunit 1;MT-ND4, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 4;OGDH, oxoglutarate dehydrogenase; PFKP, phosphofructokinase, platelet;

PGAM1, phosphoglycerate mutase 1; PGK1, phosphoglycerate kinase 1; PKM, pyruvate kinase M; SDHA, succinate dehydrogenase complex flavoprotein subunit A; SLC16A1,

solute carrier family 16 member 1; SLC16A3, solute carrier family 16 member 3; SLC2A1, solute carrier family 2 member 1; SLC2A3, solute carrier family 2 member 3; SLC2A4,

solute carrier family 2 member 4; SUCLG1, succinate-CoA ligase GDP/ADP-forming subunit alpha; TOMM20, translocase of outer mitochondrial membrane 20; TPI1, triose-

phosphate isomerase 1.

Thoracic: Lung Cancer: Basic Science Alifano, Prieto, Alifano
levels of expression of glycolytic genes, but also expressing
genes responsible for lactate reuptake and transformation to
pyruvate at a higher level compared with clusters 0 and 1,
and expressing also mitochondrial genes at a level on
average superior to the hypometabolic cluster, but similar
to the cluster relying mainly on OXPHOS. The outcome
was different among the 3 clusters, with the best survival
in the cluster (No. 1) with low expression of both oxidative
and glycolytic genes, followed by the cluster with dominant
OXPHOS metabolism (No. 0), and finally by the cluster
(No. 2) with glycolytic metabolism associated with OX-
PHOS 1. Notably, this prognostic significance applies to
the entire population, but similar trends are observed within
the different stages of the disease. In other words, our find-
ings support the concept that inside a tumor harboring
a glycolytic component the presence of a nonglycolytic
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FIGURE 3. Kaplan-Meier estimates of overall survival by clusters.

Shadows indicate 95% CI.
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1 conjure to increase aggressiveness, which is reflected by
worsening prognosis.

Thus, the results of our approach seem to be consistent
with some knowledge from basic science and show that
clustering could allow the identification of metabolic
phenotypes associated with different prognoses in
clinical settings.19-21 This could be potentially relevant on
clinical grounds, and could support the concept that
reprogramming tumor metabolism should be a major
research goal in coming years.2,22,23 In the era of personal-
ized medicine, allocating patients to a specific group of
metabolic profiles would be crucial in the design of such
studies on energy metabolism reprogramming strategies.24

Previous studies based on TCGA data have shown the
enormous potential of this project to reveal multiple meta-
bolic pathway dysregulation in different cancers.25 In this
study we focused on a specific cancer type and demon-
strated the existence of different clusters with a strong influ-
ence on survival: We believe that the main strength of our
study is the relative simplicity of the concepts. There are
2 main limitations of our study. The first is due to the nature
of the samples: The RNA was extracted from bulk tumors
and therefore contained variable amounts of host RNA
along with the tumor RNA, which is likely to represent
the dominant part of the RNA: Despite an unavoidable lim-
itation, the bulk approach has the advantage of taking into
account tumor heterogeneity, which cannot be easily taken
into account when using other approaches, such as single-
cell RNA analysis. The other limitation is that the results
of our method should be considered as dataset specific. Un-
fortunately, to date, publicly available transcriptome data-
sets (eg, lung squamous cell - China or lung squamous
cell - Korea26) contain a limited number of patients, which
precludes a clustering approach.

Overall, patterns and correlations derived from the
TCGA dataset we used are specific to the cancer type stud-
ied in this article; that is, primary lung adenocarcinoma.
The behavior (including influence on survival) in other his-
tologic types of lung cancer and, more generally, in other
cancers and relative comparisons deserve further study.



TABLE 2. Univariate and multivariate Cox regression for each cluster*

Feature coef exp(coef) se(coef)

coef

lower 95%

coef

upper 95%

exp(coef)

lower 95%

exp(coef)

upper 95% z P value �log2(p)

Univariate

Cluster 0 �0.54 0.58 0.21 �0.95 �0.14 0.39 0.87 �2.63 .01 6.85

Cluster 1 �0.87 0.42 0.25 �1.36 �0.37 0.26 0.69 �3.44 <.005 10.73

Multivariate

Cluster 0 �0.28 0.76 0.21 �0.69 0.14 0.50 1.15 �1.31 .19 2.40

Cluster 1 �0.80 0.45 0.26 �1.31 �0.28 0.27 0.76 �3.00 <.005 8.54

Sex 0.17 1.18 0.19 �0.20 0.53 0.82 1.70 0.88 .38 1.41

Age 0.02 1.02 0.01 0.01 0.04 1.01 1.04 2.51 .01 6.36

Stage II 0.94 2.55 0.24 0.47 1.40 1.60 4.06 3.94 <.005 13.57

Stage III 1.34 3.81 0.24 0.87 1.81 2.39 6.08 5.62 <.005 25.65

Stage IV 1.34 3.83 0.36 0.64 2.05 1.90 7.74 3.75 <.005 12.45

coef, Coefficients; exp(coef), hazard ratios, obtained by exponentiation the coefficients; se(coef), standard error of the coefficients;�log2(p), negative logarithm in base two of the

P value. *Cluster 2 and stage I are the reference categories.
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