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Abstract

Microfluidic partitioning of long genomic DNA fragments, and barcoding of shorter fragments 

derived from them, retains long-range information in short sequencing reads. Such read cloud 

approaches represent a powerful and cost-effective alternative to single-molecule long-read 

sequencing. We developed GROC-SVs, which uses read clouds for structural variant detection and 

assembly, and apply it to Illumina-sequenced 10× Genomics sarcoma and breast cancer data sets. 

Validation demonstrates substantial improvement in specificity of breakpoint detection compared 

to short-fragment sequencing, at comparable sensitivity, and vice versa. The long-range 

information also facilitates sequence assembly of breakpoints; importantly, consecutive 

breakpoints closer than the average length of the input DNA molecules can be assembled, with 

some events exhibiting remarkable complexity. We show that chromothriptic rearrangements 

occurred before copy number amplifications and that single-nucleotide and structural variants are 

not correlated. We predict significant advances in structural variant science using 10×/GROC-SVs 

and other read cloud-specific methods.

Introduction

Structural variants (SVs) represent the highly heterogeneous class of large-scale changes in 

the genome, including DNA deletions, duplications, inversions and translocations. Because 
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each event affects a large genomic region, SVs are responsible for the majority of 

nucleotides varying between individuals1 and in many cancer genomes2,3.

Despite its importance in evolution and disease, structural variation remains difficult to 

comprehensively characterize. The number of SVs possible is huge because DNA breakage 

and subsequent fusions can connect any genomic locus to any other. Repetitive loci, uneven 

or biased sequencing coverage, and the typically short length of sequenced fragments 

complicate accurate detection. In addition, previous work has illuminated the potential 

complexity of SVs4–8. One example of large-scale complexity is chromothripsis3, in which a 

chromosome shatters into many pieces that are then apparently randomly reassembled, 

leading to massive rearrangements.

These and other types of complex events can be difficult to interpret using existing 

sequencing technologies. For example, analyses of short-fragment sequence data can only 

confidently relate breakpoints that are within the fragment size distribution, typically <500 

bp. Longer-distance reconstruction (e.g. ref 2) requires the assumptions that downstream 

events occur in the same haplotype and that all breakpoints have been accurately identified. 

Single-molecule long-read approaches are better suited for detection of SVs, but throughput 

and cost are typically limiting, and the high per-base error rate is a drawback.

Read clouds marry the advantages of standard Illumina sequencing (high throughput and 

accuracy) with long-fragment information added through a barcode tag incorporated during 

a molecular partitioning step9–12. The recently released 10× Genomics platform produces 

read cloud libraries with dramatically higher numbers of partitions compared to previous 

methods, enabling new applications13. To prepare 10× Genomics libraries, long DNA 

fragments are diluted into 105 to 106 microfluidic droplets, each of which contains a unique 

barcode. Within each droplet, randomly primed amplification produces many identically 

barcoded short fragments templated off the handful of long fragments. When these barcoded 

short fragments are Illumina-sequenced, their alignments to the reference genome form 

clusters. We refer to the clusters of identically barcoded, linked reads as clouds. Each cloud 

allows us to infer the extent of an originating large DNA molecule even though the sparse 

sampling by short reads means we only directly observe a subset of positions within each 

long fragment.

The long-range information in read clouds can in principle be leveraged to identify, 

sequence-assemble, and reconstruct complex SVs. Using a novel method that we developed 

for this purpose, Genome-wide Reconstruction of Complex Structural Variants (GROC-

SVs), we show that 10× data substantially improves detection of SVs compared to standard 

short-fragment sequencing and that it enables the reconstruction of large-scale complex SVs. 

In addition, we use the read cloud information to produce high-quality assemblies of the 

sequences spanning the breakpoints, enabling us to better interpret local complexity. We 

applied GROC-SVs to characterize chromothripsis and subsequent evolution of structural 

variation in a liposarcoma and to analyze SVs in a breast cancer cell line.
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Results

Sequence Data Generation and Characteristics

We Illumina-sequenced 10× GemCode libraries from each of 7 spatially distinct sites within 

a well-differentiated liposarcoma, as well as a control sample from the same patient. For 

purposes of comparison and validation, we also sequenced PCR-free Illumina and long-

insert (~7kb) mate-pair libraries.

Size-selection of sarcoma DNA resulted in a tight 10× fragment size distribution (mean > 

30kb; 95th percentile=~80kb; Supplementary Figure 1 and Supplementary Table 1). Each 

genomic position was covered on average by ~250 long fragments, but this was 

accomplished at an overall sequence coverage of ~25× through sparse sampling of each long 

fragment by short reads. We also analyzed 2nd generation 10× Chromium data from the 

HCC1143 breast cancer and matched-normal cell lines. Prepared without size-selection, 

HCC1143 fragment sizes covered a wide distribution (mean=41kb, 95th percentile=148kb).

Overview of GROC-SVs

GROC-SVs first looks for statistical evidence for long fragments that span breakpoints by 

quantification of barcode similarity between all pairs of genomic locations (Supplementary 

Figure 2a). Levels of barcode similarity are highest between any two nearby loci since input 

long fragments tend to overlap both loci (Supplementary Figure 2a, diagonal). Loci 

separated by distances larger than the input fragment size share zero or only a small number 

of barcodes. (This is because each barcoded partition contains only a small number of 

fragments randomly drawn from the genome, and thus the chance that multiple partitions 

contain long fragments from the same two distant loci is small; Supplementary Figure 2a, 

background). Thus, the presence of multiple barcodes that are shared between two distant 

locations at a level higher than that background is indicative of a breakpoint where the two 

locations are joined (Supplementary Figure 2a, translocation). Subsequent to breakpoint 

identification and refinement we perform sequence assembly of the linked reads from the 

relevant breakpoints. This includes the reconstruction of complex events on the basis of 

breakpoints that are connected by long fragments (Supplementary Figure 2b).

Structural variant discovery with GROC-SVs: breakpoint detection

Barcode similarity is highest near a breakpoint, and drops off at distances proportional to the 

fragment size distribution (Figure 1; see Supplementary Figure 3 and Supplementary Note 1 

for more detailed explanations). In the matched normal samples, the same region exhibits 

only low background similarity, indicative of a somatic SV (Figure 1b). Background levels 

are even lower when using larger numbers of molecular partitions (barcodes), and fragment 

lengths can be seen to extend further from each breakpoint when using higher molecular 

weight DNA (Supplementary Figure 4).

All supporting read clouds end near the putative breakpoint location (Figure 1c), a signal 

that is used during breakpoint refinement. In size-selected samples (as in the sarcoma), the 

clouds, ordered by their position relative to the first side of the breakpoint, tile across the 

breakpoint such that those starting furthest from the breakpoint tend to extend the least into 
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the second region, while those starting closest to the first side extend the furthest into the 

second. Short-fragment sequencing coverage profiles support changes in copy number at 

many structural variant breakpoints (Figure 1d).

A second example from the sarcoma illustrates the nature of the barcode similarity when two 

breakpoints are in close proximity. It shows the expected sudden dropoff in signal at the 

108.85 mb breakpoint, but along the Y axis the signal ends abruptly not only at 93.27 Mb 

but also, in the other direction, at 93.25 Mb (Figure 1e; the control only exhibits 

background, Figure 1f). When tiling the read clouds, it becomes apparent that there are two 

breakpoints present at the 93 mb locus (Figure 1g), with copy number profiles exhibiting 

consistent levels that change abruptly at the breakpoint locations (Figure 1h). A substantial 

number of fragments appear to span from the first to the second breakpoint, suggesting that 

it is possible to use the 10× long-fragment information to directly link breakpoints that are in 

proximity to one another (see below).

Structural variant discovery with GROC-SVs: Sequence assembly of breakpoints and 
reconstruction of complex events

To better characterize breakpoints, GROC-SVs attempts to perform sequence assembly 

using the long-fragment information present in the barcoded reads. First, we identify 

barcodes that are shared among multiple breakpoints, suggesting some long fragments 

spanned across them; breakpoints that do not share barcodes are retained as singletons. For 

each such event or collection of events, we identify barcodes supporting each breakpoint and 

gather all reads marked by those barcodes (Supplementary Figure 2), including those that 

were unmappable or had low mapping quality in the initial genome-wide mapping. We then 

perform sequence assembly on these reads and align the resulting contigs to the reference 

genome to identify the precise breakpoint locations.

In many cases, we are able to directly use the sequence assemblies to reconstruct the order 

of multiple genomic segments within complex SVs. However, even when the sequence 

assemblies are incomplete, we can reconstruct complex events using the fact that adjacent 

genomic segments within a complex event will share more barcodes than distant segments 

within the same event.

Using this approach, we identified 12 events with 4 or more breakpoints, and 60 events with 

2 or 3 breakpoints in the sarcoma. As a fraction of all somatic breakpoints, 204/503 (41%) 

were assigned to complex events made up of at least 2 breakpoints. The ordering and 

assembly of 5 breakpoints comprising a sample complex event that spans 75 kb (Figure 2a–c 

and Supplementary Note 1) illustrates how the clouds tile and thereby connect neighboring 

breakpoints. Copy number profiles are consistent with the reconstruction (Figure 2b). 

Strikingly, the variant connects sequence from all over the long arm of chromosome 12 

(Figure 2c).

In the non-chromothriptic breast cancer cell line, we reconstructed 11 complex somatic 

events with a total of 24 breakpoints, including a large inverted repeat that illustrates both 

the potential complexity of structural variation and the power of read clouds to resolve it 

(Figure 2d–f).
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Genome-wide SV discovery, comparison and validation

The sarcoma genome harbored substantial structural variation, represented by a total of 503 

called somatic breakpoints (Figure 3a and Supplementary Figure 3a). The highest density of 

events occurred on the long arm of chromosome 12, involving 174 breakpoints (Figure 3a).

One expectation regarding the detection of SVs using 10× data is that its high physical 

coverage improves the signal-to-noise ratio compared to standard short-read SV detection 

approaches. The number of SV-supporting 10× fragments correlated highly with the number 

of supporting mate-pairs (rho=0.89; Supplementary Fig. 6) and fairly well with short 

fragments (rho=0.71; Supplementary Fig. 6b). Strikingly, there was a median 3.2 times as 

many 10× barcodes as short fragments supporting an event. The overall rate of validation of 

our breakpoints by mate-pairs was 94.6% (424/448), and this increased to 98.6% (351/356) 

when examining only successfully assembled SVs. Sensitivity and specificity were lower for 

events substantially smaller than the average fragment lengths (Supplementary Note 2). To 

compare the read cloud approach to previous methods, we applied commonly used tools to 

our standard Illumina libraries to identify large-scale SVs14. We found that only 65.1% 

(375/576) of the short fragment-called somatic events were validated by mate-pair data 

(Supplementary Fig. 7).

Genome evolution within the sarcoma

The 414 breakpoints present in all sarcoma samples but not in the control arose before the 

last common ancestor of the samples' cells. These shared, ancestral events include the 

chromothripsis on chromosome 12, with the vast majority of the other events involving 

chromosomes 1, 5, 7 and 20. In addition, we found an ancestral rearrangement followed by 

high-level amplification harboring the characteristic liposarcoma driver gene, MDM2 
(ref15).

We also identified 89 SVs that were present in certain subsets of the samples (but not in the 

control). The majority of these involved chromosomes 5, 7, and 12, and were private to one 

of the samples, marking subclone expansions that did not extend to the other samples: 59 in 

sample 10, 11 in sample 0 and 3 in sample 3. The remaining 19 SVs did not robustly 

determine subclones on their own.

The non-ancestral SVs and the inferred presence of subclones suggests that there was some 

evolutionary differentiation within the sarcoma that was captured by our sampling. We 

therefore set out to determine the evolutionary relationships amongst the samples and then 

analyze the dynamics of SV accumulation, based on the inferred phylogenetic tree. Because 

they are more common than SVs, we used somatic SNVs to build the samples' evolutionary 

tree16. In agreement with the SVs and copy number profiles, the majority (6393/7171) of 

high-confidence somatic SNVs were ancestral, originating before the last common ancestor 

of the samples' cells. We identified an additional four subclones based on the presence of 

SNVs shared between subsets of samples.

Analysis of the SVs on the basis of the tree suggests that SVs do not accumulate 

proportionally to the number of cell divisions and that they instead tend to occur in bursts, 

clustering in evolutionary time. If SVs accumulated gradually through evolutionary time (ie, 
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with each cell division), we would expect a constant ratio between the number of SVs and 

SNVs present in a subclone. Instead, we see very low numbers of SVs compared to SNVs 

for most of the lower branches on the evolutionary tree, with the subclone that is private to 

sample 10 being a major outlier (Figure 3e). This utter lack of agreement between SNV and 

SV rates suggests that SV accumulation is episodic, similar to what has been observed for 

copy number variation in breast cancer17.

Further evidence for the episodic nature of SV accumulation is found in the differential 

localization of the breakpoints depending on exactly when they occurred during the 

evolution of the sarcoma. The 414 trunkal events are highly enriched for involvement of 

chromosome 12, mostly intrachromosomally, with some involvement of chromosomes 1, 5, 

7 and 20 (Figure 3a). The private events in sample 1 mostly fell near regions of 

chromosomes 7 and 12 that harbor trunkal structural variation (Figure 3b). Strikingly, a large 

majority (43/59, 73%) of breakpoints present in the subclone private to sample 10 occurred 

within or between chromosomes 5 and 7 (Figure 3c). In contrast, only 30% of ancestral 

mutations occurred within or between those chromosomes. This enrichment was highly 

significant (p < 10−9, Fisher exact test), supporting the occurrence of a sudden series of 

events affecting a small portion of the tumor genome. These structural events thus likely 

occurred in a short enough time span that SNVs could not accumulate to substantial enough 

levels to directly observe the subclone.

Discussion

Based on the high rate of validation of breakpoints with mate-pair data, it is apparent that 

10×/GROC-SVs provides a substantial improvement in the detection of large-scale structural 

variation when compared to standard analysis methods applied to short-fragment sequencing 

data. We note that because mate-pair libraries span a limited range of fragment sizes, they 

are not well-suited to reconstructing complex structural variants. We expect that other 

methods leveraging read cloud data for breakpoint detection will also show improved 

accuracy due to the substantially improved physical coverage and long distance information.

Breakpoint detection is only the first step in the characterization of SVs. We designed 

GROC-SVs to take full advantage of 10× data to perform simultaneous analysis of multiple 

breakpoints when it detects a complex SV, and it performs sequence assembly of SVs. 

Sequence assembly serves as both validation (as incorrect breakpoint calls would not lead to 

a consistent assembly), and base-pair level reconstruction. GROC-SVs thus differs 

substantially from the current version of 10× Genomics’ LongRanger package, which 

performs only the SV detection step. In addition, we note that GROC-SVs also supports 

multi-sample analysis, enabling accurate calling of somatic SVs when paired tumor and 

normal samples are available.

Because of the importance of large-scale rearrangements in tumor genomes, and the poor 

performance of short-fragment detection methods on these types of variants, we focused our 

efforts here (Supplementary Note 2). To-date, genome-scale reconstruction of complex SVs 

has been limited to cases where the breakpoints are spaced no longer than the fragment 

insert size (typically ~500bp), or has involved indirect inference that events are related, 
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based on their proximity and orientation in the reference genome2,18. Using the 10× data, we 

were able to directly reconstruct the order of large scale genomic rearrangements involving 

many breakpoints without the need for any assumptions about pairs of breakpoints. In the 

sarcoma genome, where chromothripsis produced dramatic genomic change, we found that 

40% of our breakpoints fell within complex SVs, with adjacent breakpoints frequently 

separated by tens of kb.

Most SVs in the sarcoma were shared across all 7 spatially distinct locations, and therefore 

must have occurred early in the evolution of the tumor. These ancestral events include the 

174 chromosome-12 chromothripsis breakpoints and subsequent copy number 

amplifications as well an additional 240 breakpoints. In contrast, while 778 subclonal SNVs 

were detected, corresponding to 4 distinct subclone lineages, very few SVs other than the 

ancestral ones were shared across subclones. Thus, the sarcoma must have undergone an 

initial period of substantial structural instability, accumulating hundreds of rearrangements 

and copy number changes, before converging to a stable genomic configuration. Our results 

are concordant with a model recently proposed for liposarcomas, in which chromothripsis is 

followed by breakage-fusion-bridge cycles and subsequent chromosome linearization19. In 

addition to the ancestral SVs, we found a subclone private to sample 10 with 59 breakpoints 

that likely occurred in an additional, recent burst of genome instability.

In summary, using GROC-SVs, which we specifically developed for leveraging read cloud 

information, we show that 10× data allows for direct, data-driven reconstruction of complex 

structural variation. This is accomplished at high sensitivity and excellent specificity 

compared to short-fragment data, and at much lower laboratory effort and sample 

requirements than specialized libraries or mate pair approaches. Two distinct substrates, a 

chromothriptic sarcoma and a less highly rearranged breast cancer cell line, demonstrate 

wide applicability of the approach. Our evolutionary analysis of the sarcoma foreshadows 

substantial future advances in the related pursuits of reconstructing the full cancer genome 

and understanding each tumor's structural evolution.

Online Methods

Sample Preparation and Library Construction

Sections (0.5cm thick, 14cm diameter) of a well-differentiated liposarcoma tumor, obtained 

under informed consent from the Stanford Tissue Bank, were cut into multiple pieces, snap 

frozen with liquid nitrogen, and stored at −80°C. Genomic DNA was extracted from 7 

spatially distinct sites of this sarcoma as well as from matched control kidney tissue of the 

same patient. We extracted genomic DNA from about 20 mg tissue using Gentra Puregene 

Tissue Kit (Qiagen, Cat 158667). Tissue was ground in liquid nitrogen, lysed in Cell Lysis 

Solution and Proteinase K, and digested with RNase A. Protein was pelleted and removed by 

adding Protein Precipitation Solution followed by centrifugation. Genomic DNA was 

precipitated with isopropanol and resuspended in buffer EB. Purified genomic DNA was 

aliquoted and stored at −20°C.

Genomic DNA was separated by running about 1µg DNA on a 1% low-melting-point 

agarose gel using Pulsed Field Gel Electrophoresis (PFGE). DNA of size 50–100 kb was 
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then recovered by β-agarase I digestion and filter concentration (NEB, Cat M0392S). 1.2 ng 

of size-selected DNA was partitioned and barcoded using the 10× Genomics GemCode 

platform13. Libraries were then sequenced with a HiSeq2500 to ~25-fold sequence coverage.

Standard short-fragment Illumina libraries were prepared for all 7 sarcoma samples plus the 

matched normal control. Mate-pair libraries were prepared for sarcoma samples 0, 9 and 10 

as well as the matched control.

For short-fragment DNA libraries, 1 µg of total genomic DNA was sheared to 350 bp. PCR-

free libraries were then constructed using Illumina’s TruSeq DNA PCR-Free library 

preparation kit and sequenced with the Illumina HiSeqX system to ~35-fold sequence 

coverage.

For large-insert mate-pair libraries, 4 µg of total genomic DNA was fragmented with 

Tagment Enzyme and gel size-selected to build 7kb-insert mate-pair libraries using 

Illumina’s Nextera Mate Pair Sample Preparation Kit (FC-132-1001) (Tagmentation, Strand 

Displacement, Gel Size Selection, Circularization, Linear DNA Digestion, Circulated DNA 

Shearing, Streptavidin Bead Binding, End Repairing, A-Tailing, Adaptor Ligation, and PCR 

Amplification). Libraries were sequenced with HiSeq2500 to ~20-fold sequence coverage.

Breakpoint Detection

GROC-SVs is implemented as a multi-sample analysis pipeline, allowing the simultaneous 

analysis of multiple tumor and matched normal samples, or multiple related individuals.

10× Genomics sequencing libraries are first demultiplexed and droplet barcodes are called 

using the provided scripts, then reads are aligned to the reference genome using bwa mem20 

or RFA12 (which has been implemented in the Long Ranger pipeline as the “Lariat” aligner). 

Barcodes are then ranked in decreasing order by the number of sequenced reads, and 

barcodes comprising 90% of all reads are retained while the remainder, which are enriched 

for experimental artifacts, are filtered. Next read clouds are identified as previously13. 

Briefly, reads with the same barcode are combined into a single barcode if the largest 

distance between any adjacent reads is less than a certain distance threshold and the reads on 

either end are of high map quality. This distance threshold was fixed as per ref13 at 60 kb for 

the data produced in this paper, but an appropriate threshold, typically ~20 kb for Chromium 

data, can be learned directly from the data in order to increase sensitivity for smaller events.

GROC-SVs begins SV detection by identifying all barcodes overlapping each 10 kb 

genomic window and then performing an all-by-all comparison. Some independent 

fragments with the same barcode can cause a low level of background similarity, typically 

<1 (Chromium) or 0–5 (GemCode) barcodes at any given pair of positions. A pair of loci 

(x,y) is considered a structural variant candidate if the number of shared barcodes exceeds 

that expected based on the total number of barcodes (proportional to copy number) at each 

locus. For computational efficiency, this initial test is performed as a binomial test (a more 

rigorous test is applied later for each structural variant).

Next, candidate SV loci are clustered, and candidate breakpoints are extracted based on 

peaks in the distribution of read cloud ends. This takes advantage of the fact that read clouds 
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are expected to end suddenly near each of the breakpoints; performing this operation only on 

those barcodes that are shared between the two loci dramatically improves both the signal 

and reduces the background. Candidate breakpoints are identified in each sample separately.

At this point, the breakpoints have been identified typically to within several kb of the 

correct location. The next step is to perform refinement on the breakpoint coordinates to 

obtain approximately nucleotide-level accuracy. This step takes all read clouds within 20 kb 

of the candidate site and selects only those clouds with barcodes shared on both sides of the 

breakpoint. Then, for each breakend (the two half-open intervals that make up each 

breakpoint) separately, the maximum point of read cloud density is found, and then walked 

toward the putative breakpoint location until the read cloud density drops off suddenly to 

background levels, indicating the presence of the breakpoint location. We found that this 

procedure typically identifies the correct breakpoint location to within several nucleotides if 

the breakpoint is uniquely mappable with short reads. In the case that the breakpoint region 

is not uniquely mappable, the inferred breakpoint location will be the last well-mappable 

(mapq ≥ 30) position before the breakpoint. Breakpoint refinement occurs across samples 

together so all fragments spanning a breakpoint are used for refinement, even if the event is 

only present in a small subclone within a sample.

Copy numbers were not used in the detection of SVs and were only calculated to gain a 

better understanding of the context for SVs. Because the coverage profiles for the 1st 

generation 10× GemCode libraries showed substantial GC bias, we used standard PCR-free 

Illumina libraries to calculate copy number, normalized to the matched normal and 

normalized for DNA content within a sample. Coverage was typically higher for the tumor 

samples because of the many, large single-copy genomic regions.

Sequence assembly of breakpoints

Next, a permissive clustering step groups breakpoints together if they share a substantial 

proportion of their barcodes. This is formulated as a simple threshold using the Jaccard 

Index, defined as the number of barcodes shared between the loci divided by the total 

number of barcodes. This Jaccard Index can be viewed as a sort of “allele frequency,” where 

the numerator counts the number of fragments supporting the event, and the denominator 

counts the number of fragments in the reference and alternate alleles. This is however an 

approximation because it is difficult to confidently assign any individual fragment to one 

allele since both reference- and alternate-allele-supporting fragments can end near either 

breakpoint location. Theoretically, another confounder is the non-zero rate of “barcode 

collisions”, where one fragment occurs near breakpoint x and an independent fragment 

occurs near breakpoint y, both in the same barcode. However, barcode collisions typically 

contribute a negligible amount to the numerator since the average number of barcode 

collisions is very small for most genomic regions (< 1 for GemCode and <<1 for Chromium 

in normal copy number regions, and only appreciably higher for extreme copy number 

outliers).

Within each cluster, the barcodes supporting each event are pooled together, and all reads 

originating from these supporting barcodes are collected. Sequence assembly is then 

performed on the collected reads using idba_ud21. As each barcode marks multiple 
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fragments, many of the reads do not derive from a breakpoint-supporting genomic region. 

However, because fragments are randomly assigned to a barcode, these non-supporting 

fragments should be distributed randomly throughout the genome. Thus, combined sequence 

coverage is highest near the breakpoints, which should be covered by every barcode, and low 

elsewhere. Therefore, most assembled contigs actually derive from the SV haplotype.

As with breakpoint refinement, sequence assembly is performed multi-sample, so spanning 

fragments can be used for assembly even if they occur in samples with very low allele 

frequency. idba_ud was selected because its good performance across a wide range of 

sequence coverage, which is highest near the breakpoints and then low farther away. Contigs 

are then aligned against the reference genome and breakpoint locations are called where 

appropriate. Note that this assembly process may discover additional breakpoints that were 

not significant in the genome-wide breakpoint detection step for various reasons.

Phasing germline haplotypes across SVs

In addition to providing high physical coverage of structural variant breakpoints, the long-

fragment information in the 10× data allows for phasing of small variants with respect to the 

germline haplotypes13. Read clouds overlapping a heterozygous short variant can be 

assigned to one of the haplotypes. The low sequence coverage CR of each fragment means 

that some read clouds, especially shorter ones, will not cover a short variant informative for 

haplotype assignment. However, the high physical coverage CF results in a high total 

number of phased fragments for most genomic regions.

Because the structural variant breakpoints are distant from one another in the genome, the 

haplotypes are called independently for each side of the breakpoint, and so the standard 

phasing process does not uncover the phase arrangement for the tumor genome. However, 

nearly all informative fragments near each breakpoint support a single haplotype indicating 

that each side of the breakpoint only contributes a single haplotype to the event (Figure 

1c,g). Thus we can use the predominant haplotype on either side of a breakpoint to locally 

phase the genomic regions that participate in the SV.

We identified 239 somatic breakpoints in the sarcoma with at least 20 phased read clouds 

supporting each side of the breakpoint. Of these events, the vast majority (229 or 96%) were 

supported by only a single haplotype combination, which is expected because the probability 

of the same exact SV occurring at the same position on both haplotypes is vanishingly small. 

In contrast, systematic errors resulting from, for example, genome repetitiveness, should 

affect all haplotypes equally. Therefore, the high percentage of events supported by only a 

single haplotype combination not only supports the validity of our phasing across 

breakpoints but also provides evidence that the breakpoint calls themselves do not result 

from substantial systematic biases.

Genome-wide reconstruction of complex events

Following sequence assembly, a more rigorous complex event reconstruction is performed. 

First, breakends sharing a substantial proportion of barcodes are again clustered together. 

The resulting clusters are represented as graphs with breakends represented as nodes, and 

connections between nearby (contiguous genomic segments) and distant (non-contiguous 
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structural variants) breakends represented as edges. Because fragments may span many 

breakpoints at once, there may be barcode similarity between breakends that are separated 

by one or more breakpoints. Thus, for each breakend, we first select the assembly-supported 

breakpoint if one exists. The remaining breakpoints are selected based on the highest 

barcode support (nearby breakends should share more barcodes than distant ones). This 

process uses the high-quality information present in the sequence assemblies but can still 

perform complex event reconstruction even for breakpoints that cannot be sequence-

assembled.

Post-processing

During post-processing, a more rigorous p-value is assigned to each breakpoint. This p-value 

is calculated by randomly sampling the correct number of barcodes for each breakend from 

the background distribution of fragments per barcode, then calculating the number of shared 

barcodes. Resampling is performed 100 times, then the significance of the observed vs 

resampled number of shared barcodes is calculated using a ranksum test. This resampling 

procedure takes into account the effect of differences in genome coverage as well as the non-

uniform partitioning of fragments across barcodes.

Additional filters are applied, primarily for use when analyzing germline events to identify 

candidate confounding segmental duplications (segmental duplications should be present in 

both tumor and matched normal samples and are thus removed when analyzing somatic 

events). One filter of note compares the observed fragment lengths across breakpoints to 

those expected based on the background distribution. Structural variants should show long 

fragment support at 10s of kb away from each breakend. In contrast, segmental duplications 

and other repetitive genomic sequences often result in short supporting read clouds.

A final post-processing step assigns a present/absent call to each event for each sample. This 

genotype combines the resampling p-value calculated above as well as requiring a minimum 

allele frequency (again calculated using the Jaccard Index). Note that heterozygous and 

homozygous calls are not calculated because these are difficult to accurately define for the 

different types of structural variant and especially when copy numbers are variable. SV calls 

were considered to be somatic if there was no more than 1 supporting barcode in the control 

sample; results were nearly identical when using cutoffs of 0 or 2 barcodes instead.

Validation and comparison to short-fragment methods

Mate-pair validation was performed by counting the number of mate-pairs in the expected 

orientation and distance relative to the two breakends. We used only reads with a very 

conservative mapping quality filter of mapq ≥ 55. The rationale for this high mapq filter was 

that true events should typically have mates mapping several kb away from the breakend, 

escaping any local repetitiveness around a breakend. We analyzed the background 

distribution of random genomic regions, and found that the vast majority of regions shared 

zero mate-pairs, and thus we used a conservative cutoff of 50 mate-pairs to consider an event 

to be validated. We also tried a more lenient cutoff of 10 mate-pairs with similar results.

Identification of large-scale SVs from the standard short-fragment Illumina sequencing 

libraries was performed using LUMPY14. We also performed these analyses using delly22 
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but only the LUMPY SV calls are shown as these validate more consistently using mate-pair 

data. A threshold of <1 reads in the control sample supporting the event was used to filter 

out germline events and artifacts, with the remainder of the events therefore inferred to be 

somatic. This conservative threshold produced the most specific results possible, and a 

slightly less conservative threshold of <2 control reads did not substantially affect sensitivity 

while substantially decreasing specificity.

Evolutionary analysis

Evolutionary trees relating samples within the sarcoma were built as in16 and23. The 

alternate allele frequencies of the SNVs of the two phylogenetically informative classes are 

highly consistent with the allele frequencies of the ancestral SNVs. The frequencies of 

SNVs present in the mixed lineage samples (3 and 10) are consistent with one another, with 

their sums matching the ancestral frequencies. The mutation spectrum of the somatic SNVs 

(data not shown) closely matches that of germline events, suggesting that they were caused 

by replication errors without special mutational mechanisms, and that they accumulated at a 

rate proportional to the number of cell divisions. Finally, as expected, the most 

phylogenetically similar samples were in close spatial proximity to one another within the 

tumor (Supplementary Figure 5c). These lines of evidence support the idea that we were 

able to construct a robust evolutionary tree of our samples that could form the basis for 

interpreting the accumulation of SVs in this tumor (Figure 3d).

Data Availability and Accession Codes

GROC-SVs is open source and available at https://github.com/grocsvs/grocsvs. Raw 

sequencing data are available from dbGaP with accession code phs001255.v1.p1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of breakpoint signals in 10× data. (a – d), a simple breakpoint in sarcoma sample 

0, GemCode data. (e – h), two breakpoints in close proximity in sarcoma sample 0. (a, e), 

barcode similarity histograms in tumor. For each pair of genomic locations, the number of 

shared barcodes is color-coded according to the scales to the right, with the greatest signal 

forming a corner shape whose point is at the breakpoint coordinates. (b, f), same locations in 

the control samples. (c, g), inferred extent of breakpoint-supporting read clouds 

(corresponding to input fragments). Each row is one cloud, colored according to its 

assignment to a haplotype: supporting haplotype, orange; unassigned, black; cyan, non-

supporting haplotype; and non-supporting cloud in the same barcode as a supporting cloud, 

grey (derived from independent fragments in the same molecular partition). As barcodes are 

ordered identically in the left and right panel for each event, the long fragments can be seen 

to tile across the breakpoint when ordered by their left-most position in the left panel. (d, h), 

copy number profiles based on the short fragment data in the sarcoma. Decreasing 

coordinates indicate depiction of minus strand.
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Figure 2. 
Reconstruction of complex events. (a – c) Read clouds that support a complex event in the 

sarcoma. Clouds, colored as in Figure 1, tile across 5 consecutive breakpoints (a) with 

consistent copy number profiles (b). Circos plot with arcs depicting breakpoint connections 

illustrates that the event connects distant segments from the long arm of chromosome 12 (c). 

From outside to inside, chromosome ideogram (green indicates the location of the 

centromere), then copy number profiles, then copy number aberration calls (blue for 

amplifications, red for deletions) are shown. (d – f) A complex event in cell line HCC1143 

(d) and its corresponding sequence read coverage (e, f).
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Figure 3. 
Somatic genome evolution of the sarcoma. (a), Circos plots of the 414 ancestral (trunkal) 

events (b), events private to sample 0 and (c), events private to sample 10. Blue, 

interchromosomal events; magenta, intrachromosomal. Otherwise, as in 2c. (d) Lineage tree 

of the samples reconstructed from high-confidence somatic SNVs. Number of SNVs 

supporting each branch are in small font, number of breakpoints are in bold italic with circos 

plot panel letters indicated for plots a–c. Samples are subdivided proportionally to somatic 

allele frequencies to indicate subclone size. Portion corresponding to normal contribution 

(e.g., infiltrating lymphocytes) is in dark grey. (e) Number of SVs vs SNVs for each branch 
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in lineage tree. The ancestral branch is shown as a dashed line indicating the rate at which 

SVs would accumulate relative to SNVs under a constant rate model.
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